Light & Laser Microscopy

LOCATED AT CHARLES PERKINS CENTRE (CPC)
For enquiries about our Light & Optical capabilities contact Light & Optical    

Leica TCS SP8 STED 3X microscope
Super Resolution Fluorescence Microscopy collects images of fluorescent molecules with resolution that is not limited by the diffraction limit of light. Stimulated Emission Depletion (STED) is built on a Confocal microscope and is a laser scanning technique.

STED can improve lateral resolution to a theoretical limit of 50nm, actual ~100nm. Axial resolution can also be improved with STED to a theoretical limit of 130nm, actual ~300nm. If optimal resolution in XY and Z is required the actual achievable resolution is approximately 150nm laterally and 500nm axiallly.

This microscope also features an Insight DeepSee laser for multiphoton and Second Harmonic Generation (SHG) imaging with excitation wavelenghts of 680-1300nm.

Black paneled box incubator around microscope for live cell imaging.

Lasers:
         - UV: 405nm
         - Argon: 458, 476, 488, 496, 514nm
         - White Light Laser (WLL): tunable 470nm - 670nm
         - Multi-photon 1: tunable 690nm - 1300nm
         - Multi-photon 2: 1040nm
         - STED 592nm
         - STED 775nm

Detectors:
         - Internal, AOBS: tunable 400nm - 800nm
                  - 3 standard PMTs
                  - 2 Hybrid Detectors (high sensitivity PMTs)
         - External Non-Descanned (uses filter cubes)
                  - Transmitted Light: 2 standard PMTs
                  - Reflected Light: 2 standard PMTs & 2 Hybrid Detectors

 

 

Leica Ground State Depletion (GSD) microscope
This Leica SR GSD 3D is a widefield fluorescence and TIRF microscope which uses ground state depletion and single molecule return to localise molecules of interest. Using this technique coupled with optimal sample preparation and supported dyes, strucutures of interest can be resolved up to 20nm laterally and 50nm axially.

Lasers: Wavelength (power)
             - 405nm (30mW)
             - 488nm (300mW)
             - 532nm (500mW)
             - 642nm (500mW)

Objectives:
             - HCX PLAPO 160x/1.43 Oil CORR GSD
             - HC PLAPO 10x/0.40
             - HCX PL FLUOTAR L 40x/0.60
             Note: Field of view with GSD objective 18x18μm or 51x51μm

Recommended Fluorophores:
             - AlexaFluor 488, 532, 546, 555, 568, 647, 680, 700
               (Life  Technologies)
             - Atto 488 520, 633, 647n, 655 (Sigma Aldrich)
             - Chromeo 488, 505 (Active Motif)
             - YFP, GFP

   

Nikon A1R Advanced Confocal microscope
Confocal lasers: 403, 457, 488, 514, 560, 640nm

FLIM / FCS / FCCS lasers: 405, 488, 640nm

Detectors:
            DU4 uses Filter Blocks
                 - 2 standard PMTs
                 - 2 Galium Arsenide Phosphide (GaAsP; high sensitivity PMTs)

            Spectral Detector
            - uses prism to split emission wavelengths to discrete bandwidths

           2 FLIM / FCS / FCCS GaAsPs

   

Nikon TIRF & DMD microscope
Total Internal Reflection microscopy is a Super Resolution technique.

Lasers: 405, 488, 561, 640nm

Lumencor SpectraX LED: 395, 440, 470, 508, 555, 640nm

DMD: for photoactivation and photouncaging

Cameras: TIRF Monochrome - Andor iXon Ultra 888 (max 26 f/s at 1024x1024, 96f/s at 512x512)

   

Nikon Ti-E Spinning Disk/TIRF Confocal Live Cell microscope
Live cell fluorescence, DIC, large mosaics, multi-point, time series, perfect focus.

Light Source:
           - Lasers: 405, 488, 561, 640nm
           - DG4 White Light Source for Fura2, 340 and 380 excitation filters
           - Lumencor SpectraX LED: 395, 440, 470, 508, 555, 640nm
           - Halogen lamp and optics for Brightfield, Phase contrast, DIC

Cameras:
           - Brightfield Monochrome: DS-Qi2 (max 6 frames/second)
           - TIRF and SD Monochrome: Andor iXon Ultra 888 (max 26 f/s at
             1024x1024, 96f/s at 512x512)

   

PerkinElmer Mantra microscope
Visualise, analyse, quantify and phenotype immune cells in situ.

The Mantra quantitiative pathology workstation, with inForm image analysis software, enables easy visualisation, quantification and phenotyping of cells in situ in tissue sections using multiplexed biomarkers. This integrated workstation features a spectral detector to collect spectral data for unmixing overlapping signals and removal of autofluorescence. inForm software features user-trained algorithm to enable automatic identification of specific tissue types based on tissue morphology and indentification of cells within the tissue for quantification.

   

Nikon C2 Basic Confocal microscope
Upright Confocal microscope with motorised stage.

Lasers: 405, 488, 561, 640nm

Detectors: 3 standard PMTs using Filter Blocks - DAPI/Cy5, FITC, TRITC

 

Nikon Ni-E Basic Fluoresence Widefield microscope
Upright microscope for mosaics and multipoint.

Light Source: Lumencor SpectraX LED - 395, 440, 470, 508, 555, 640nm

Cameras: Monochrome - DS-Qi2, Colour - DS-Fi2

 

Leica DM6000 microscope
Basic upright widefield fluoresence microscope for mosaics using a combined monochrome/colour camera for fluorescence and histology. It uses a white light source (mercury lamp) and a set of filter cubes.

     Fliter Cubes          Ex                 Dichroic              Em
     - Ana
     - DAP                  BP 350/50      LP 400               BP 460/50
     - L5                    BP 480/40      LP 505               BP 527/30
     - RHO                 BP 546/10      LP 560               BP 585/40
     - Y5                    BP 620/60      LP 660               BP 700/75

 

Zeiss Axiovert 200M microscope
Inverted Fluorescence microscope for FURA2 imaging.

 

LOCATED AT MADSEN BUILDING

Olympus FluoView FV3000 Confocal microscope

Equipped with 405,488,561 and 640nm lasers and a transmitted ligt detector allwing for the majority of fluorophores to be imaged with a beautiful DIC (or brightfield) overlay. With the fastest Resonance Scanner on the market, it can capture up to 438fps at 512 x 32 or 30fps at 512 x 512. This, combined with a stagetop incubator results in excellent temporal resolution for imaging live cells.

Live cell imaging is made easy with Multiple Area Time Lapse acquisition and Micropplate navigator. TruSpectral technology prvovides fantastic spectral resolution that enables users to collect the emission profile of a visible fluorophore at any point in their sample. It can also be used for up to 16 channel sequential scanning. This gives rise to a spectral un-mixing function which allows separation of spectrally close fluorophores, particularly handy for users with autofluoesence interfering with the signal of their labelled target of interest.

  FV1000
Leica SP5 II Confocal and Multiphoton microscope
This instrument covers a broad range of requirements in confocal and multiphoton imaging - with the full array of scan speeds at highest resolution. You can image your live cells then image the same “dynamic” event later at high resolution in the TEM. The microscope is equipped with a new Spectra-Physics Mai Tai DeepSee™ Ti:Sapphire femtosecond pulsed laser, specialised objectives and external non-descanned detectors. This means that we can image more than 300 microns deep into thick specimens without any signal drop-off. Single photon excitation at 458, 476, 488, 496, 514, 561 and 633nm. Multiphoton excitation variable 690-1060nm.

The system is equipped with a resonance and galvanometer scanner, so we can now image around three times faster at higher resolution than ever before (e.g. a 512 x 128 pixel array every 15ms).

The system features Fluorescence Lifetime Imaging (FLIM) and forward and backward Second Harmonic Generation (SHG) capabilities.  It is equipped with a time-correlated single-photon-counting (TCSPC) board for (FLIM) which can measure the lifetime of a fluorophore faster and more accurately than before at various excitation wavelengths. Its photomultiplier tubes (PMTs) in the forward direction are calibrated to optimise forward and backward SHG imaging.
   Leica TCS SPII Multi-Photon Microscope

Zeiss Shuttle & Find microscope

Correlative Fluorescence with SEM on Zeiss Sigma.

   

Leica DM6000 Fluorescence microscope
General-use light and fluorescence microscope for life sciences, material science and medical applications. Standard filter sets (FITC, GFP, Rhodamine, DAPI) for fluorescence. Bright field, phase and Nomarski optics.

Leica DFC400 camera with 1.4 megapixel for very fast image captures.

Example image:
Prepared fluid mount of Spirogyra showing Nomarski optics and fluorescence using three standard filter sets (FITC, Rhodamine, DAPI).

   

Leica DMi8M

Inverted optical microscope for materials science. Ample working space to easily place large and heavy samples (up to 30kg). DMC4500 camera, reflected light only, DIC, Polarizer, manual objectives and stage, Leica LAS-X software.

  Olympus BX61 Motorized System Microscope (SIS)

LOCATED AT BRAIN AND MIND CENTRE

Leica SP8 DIVE Multiphoton Microscope
This custom built system is the world's first commercially available multiphoton system to contain 3 tuneable lasers. Its special lasers can peer deep into the tissue of live animals, providing researchers with a view of biological or pathological processes as they occur. It uses 3 nano-second pulsed lasers which can illuminate up to 8 fluorophores simultaneously, providing exceptionally fast imaging.

 
   

Olympus VS120 Slide Scanner
This state of the art slide scanner allows researchers to observe labelled tissues on slides, using 5 channel fluorescence, dark field, Differential Interference Contrast (DIC) and transmitted light modalities. Researchers can either acquire immunoflourescently labelled tissues, or typical staining procedures including DAB and H & E stained tissue.

The system has a robotic arm used in conjunction with 2 x 50 slide racks allowing up to 100 slides to be put under the microscope objective one slide at a time. Then the system autofocuses onto the tissue on the slides, recognises the edges of the tissue and scans the entire tissue, stitching the image in real time, before moving onto the next slide. It also has the capability of performing a Z-stack of up to 50um, to achieve a fully stitched 3D construction of the tissue of interest.

This instrument also has a standalone analysis computer with software allowing for detailed image viewing and analysis of the massive files which are produced from the acquisition system.


                                      

Nikon A1R Advanced Confocal Microscope
Equipped with 405,457,488,514,640nm lasers and a transmitted light detector allowing for the majority of fluorophores to be imaged with a beautiful DIC (or brightfield) overlay. This microscope has both a stagetop and cage incubator resulting in excellent stability for imaging living cell dynamics 24,48 even 72 hrs. Live cell imaging is made easy with Multiple Area Time Lapse acquisition. Set up the microscope to image live cells from each well in a multiwell plate overnight.

 

Nikon C2 Confocal Microscope
Upright confocal microsocpe with 405,457,488,514,560 and 640nm lasers and motorised stage ideal for imaging fluorescent slides. The motorised stage can be used to collect large stitche mosaics combined with z-stack function for very large volume images.

 
Leica Aperio XT - slide scanner
This slide scanner has the capacity to scan 400 slides in one run, saving the files directly onto a special server. The system only has a 20X objecitve (with capacity for doubling to 40X) and only performs brightfield scanning. Performs slide scanner with a fully automated system and is very simple to operate.
 

Zeiss Axio Observer Z1 Live Cell Imaging System
This microscope has been set up in order to visualise and acquire long term (or very fast) images, to show cell migration, wound healing, cell proliferation amongst others, over time. This inverted microscopy system has a specially designed atmospheric chamber which is thermocontrolled to 37C and pumped with gasses to keep the cells we are observing live and happy for extended periods of time. The stage which the culture dish sits within is also heated and held tightly in place, to prevent any thermal drift over time. The machine is equipped with 5 Objectives (10x, 20x, 40x, 63x and 100x), 4 channel fluorescence, and transilluminated light, allowing for observation of a wide variety of cells.

 
Leica DM6000
Basic inverted widefield fluorescence microscope using a monochrome camera for fluorescence. It uses a white light source (metal halide lamp) and a set of filter cubes.
 
Leica DM5000B
Basic upright microscope for mosaics using a colour camera for histology slides.