Soil Structural and Functional Diversity across different Agroecological Zones in NSW

Vanessa Pino
PhD candidate

Supervisors
Alex Mc Bratney • Rosalind Deaker

Collaborators
Neil Willson • Mario Fajardo
WE KNOW

✓ May hold up to 10 billion microorganisms of thousands of different species.

✓ Less than 1% of the cells observed by direct counting can be recovered using standard cultivation methods. *Torsvik L., V Ovreas (2003)*

✓ From this ~ 1% we obtain multiple benefits/applications

 • Agriculture — N₂ fixers bacteria, pest control, nutrient cycling
 • Industry — Pharmaceutical, biotechnological
 • Environment — Bioremediation, waste recycling

✓ New technology for microbial identification

Next-generation sequencing (NGS) technology
WE STILL DO NOT KNOW

- 99% remain unexplored
 - Who/where are they? What/how are they doing?
- Does the loss of Soil Biodiversity reduce Soil function?
- Which environmental variables are driving the microbial communities structure?
- Our understanding of how microbial communities are distributed at landscape scales remains unclear.

“1510 We know more about the movement of celestial bodies than about the soil underfoot” Da Vinci
Soil structural and functional diversity across different agroecological zones in NSW

Based on Next-Generation Sequencing technology:

1. Identify the structural diversity of major soil microbial taxa, i.e., bacteria, archaea and fungi.
2. Evaluate soil microbial distribution patterns under different agro-ecological zones in NSW.
Soil sampling results

- **49** sampling sites - every 50 km
- **588** microbial - 3 rep
- **392** chemical - 2 rep
- **196** physical - 1 cylinder
Methodology

Microbial analyses

- Power Soil DNA Isolation Kit
- PCR1 amplification
 - 16S Bacteria/Archaea
 - 18S Fungi
- PCR2 amplicon libraries
- 18M sequences (7GB)
- Paired ends reads

Physicochemical analyses

- Ammonium, nitrate
- P, K, EC, pH
- Exc. (Al, Ca, Mg, K, Na)
- TC, TN
- CEC, Ca/Mg, C/N
- Aggregate stability
- Particule size
- pF curve: moisture, Db porosity
Preliminary Results

From 0-5 cm depth

Bacteria & Archaea Communities
PCoA (weighted Unifrac distance)

Soil VIS-NIR spectra
Physicochemical properties
PCoA

Cumulative explanation: 45%
Cumulative explanation: 98.59%
Highlights

Soil bacterial community structure (composition) reflects a stronger correlation to soil gradients rather than land management.

Further work

Complete analysis of structural and functional diversity of bacteria, archaea and fungal communities for both transects.
Acknowledgements

ARC Global soil Carbon Modelling

Becas Chile - Conicyt

Thomas Lawrence Pawlett Scholarship