Rotational benefits of legume N_2 fixation – universal or with caveats?

David Herridge, UNE
This talk.....

1. Legumes in agriculture
2. The value of legume N$_2$ fixing: low vs high input systems
 1. Pigeonpea-maize intercropping in southern Africa
 2. Chickpea in Australia
3. Environmental credentials of N$_2$ fixing legumes vs mineral-N dependent crops
 1. Nitrous oxide (N$_2$O) emissions
 2. C footprints
Legumes in agriculture

- Legumes have been cultivated and eaten for more than 5000 years.
- Lucerne was cultivated in Babylonia (Iraq) nearly 3,000 years ago.
- About 2500 years ago, Theophrastus wrote “Beans...are not burdensome to the ground; they even seem to manure it...”
- Varro wrote in 37 B.C. “Legumes should be planted on light soils, not so much for their own crops as for the good they do to subsequent crops”
- In Australia..
Legumes in agriculture...

JL Thompson summarised the reasons for using legumes in farming systems in NSW (Australia):

- More economical of manure
- More economical of nutrients in the soil
- Benefits of deep-rooted and air feeding crops for following crops
- Benefits for following cereals from leguminous crops
- Allows for better distribution of labour on the farm
- Allows for better weed control
- Management of plant pathogens and insects
- Allows for better management of livestock
- Spread of economic risk
Legumes in agriculture...

JL Thompson summarised the reasons for using legumes in farming systems in NSW (Australia):

- More economical of manure
- More economical of nutrients in the soil
- Benefits of deep-rooted and air feeding crops for following crops
- Benefits for following cereals from leguminous crops
- Allows for better distribution of labour on the farm
- Allows for better weed control
- Management of plant pathogens and insects
- Allows for better management of livestock
- Spread of economic risk

Thompson, JL (1895). Agricultural Gazette of NSW
N₂-fixing legumes in Australian agriculture

- 25,000 grain farmers plant ca. 27 Mha crops annually
- Of that 2 Mha (8%) are legumes
- About 24 Mha legume-based pastures

- N fixed by crop legumes 150-200,000 t annually
- N fixed by pasture legumes ca. 2.5 Mt annually

Image: revised from Dalal and Chan (2001)
Australia’s reliance on legume N\textsubscript{2} fixation dwarfed by the situation in South America

Current production of soybean in Brazil and Argentina, Paraguay, Uruguay and Bolivia >160 Mt annually from >55 Mha

An estimated 80-90% of soybean currently inoculated with bradyrhizobia (ca. 50 Mha) and >3 Mha coinoculated with Azospirillum

N\textsubscript{2} fixation inputs of ca. 13 Mt N annually, valued at USD15 billion.
The intrinsic value of legume N$_2$ fixation changes with level of plant-available N supply

- In low N supply systems (low inputs, degraded soils), legume N$_2$ fixation can mean the difference between life- and livelihood-sustaining yields and food insecurity.
- In these systems, N$_2$-fixing legumes produce greater yields of grain and grain protein than mineral N-dependent crops and leave the soil with more plant-available N for the subsequent crop.
- With increasing N supply, the grain yield advantage disappears and planting of legume or non-legume becomes a purely economic and flexible decision.
Lowveld Research Unit, DARDLEA, Nelspruit, Mpumalanga Province, SA
Intercropping legumes (pigeonpea) and maize

- Fertiliser N a difficult option for low input small holder farmers
- Here, the N-fixing legume, pigeonpea, delivered N into the N-deficient system
- Intercrop system had almost twice the yield and protein productivity*
- The two crops complementary in sharing land area. Two-thirds PP growth after maize harvest

*All zero fertiliser N

Intercropping legumes (pigeonpea) and maize

- Grain yields of maize following maize-pigeonpea intercrop and sole pigeonpea similar and greater than following maize*
- 2-year revenue increased by 90% with intercrop and ca. 40% with sole pigeonpea, compared with maize-maize*
- Value for food security and economic livelihood with the intercrop system based on the N$_2$ fixing pigeonpea and the staple food maize

*All zero fertiliser N
By way of contrast, N$_2$-fixing chickpea in Australia

- In Australia, the value of legume N$_2$ fixation is more about economics than food security and livelihoods
- Published summary of data for rain-fed chickpea – wheat rotations, about 60 sites x years data*
- Average soil nitrate benefit 35 kg N/ha (= 50 kg fertiliser-N/ha)
- Average yield (cereal) benefit 0.7 t/ha, but as much as 1.5 t/ha when water not limiting
- Increased grain proteins of 1.0-1.5%
- Reductions in crown rot of wheat

N₂-fixing chickpea in Australia

- Mean values for 2 tillage treatments x 2 sites in long-term trials in northern NSW (Herridge et al. 1995).
- N inputs of 140 kg/ha from N₂ fixation (CP) and 100 kg/ha from fertiliser N (wheat)

<table>
<thead>
<tr>
<th></th>
<th>Chickpea-wheat 0N</th>
<th>Wheat 100N-wheat 0N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1 (chickpea or wheat 100N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sowing soil nitrate</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>Grain yield (t/ha)</td>
<td>2.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Fertiliser N applied (kg/ha)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Total crop N fixed (kg/ha)</td>
<td>140</td>
<td>0</td>
</tr>
<tr>
<td>Residue N (kg/ha)</td>
<td>133</td>
<td>55</td>
</tr>
<tr>
<td>Year 2 (wheat 0N only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sowing soil nitrate</td>
<td>102</td>
<td>74</td>
</tr>
<tr>
<td>Grain yield (t/ha)</td>
<td>2.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>
N₂-fixing chickpea in Australia

- Gross margins for the chickpea-wheat rotation ca. 4 times that of the wheat-wheat rotation
- Economic benefit of chickpea essentially due to the extremely high grain price and not really driven by N benefits

<table>
<thead>
<tr>
<th>Year 1 (chickpea or wheat 100N)</th>
<th>Chickpea-wheat 0N</th>
<th>Wheat 100N-wheat 0N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain ($)¹</td>
<td>1,725</td>
<td>830</td>
</tr>
<tr>
<td>Cost of production ($)²</td>
<td>450</td>
<td>420</td>
</tr>
<tr>
<td>Gross margin ($)</td>
<td>1,275</td>
<td>410</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2 (wheat 0N only)</th>
<th>Chickpea-wheat 0N</th>
<th>Wheat 100N-wheat 0N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain ($)¹</td>
<td>730</td>
<td>470</td>
</tr>
<tr>
<td>Cost of production ($)²</td>
<td>290</td>
<td>290</td>
</tr>
<tr>
<td>Gross margin ($)</td>
<td>440</td>
<td>180</td>
</tr>
</tbody>
</table>

¹Chickpea @ $750/t; wheat @$260/t; ²NSW DPI figures (2016)
But with increasing cost of fertiliser N...

- Rather than chickpea plantings being driven by the value of the grain, there was a time during 2007-09 when farmers looked to chickpea because of N\textsubscript{2} fixation.
- During 2007-09, the cost of fertiliser N doubled to close to $2/kg N – at that time chickpea grain prices were ca. $450/t.

![Urea price chart](Source: ABARES Australian commodity statistics 2014)
N$_2$–fixing legumes in agriculture...

- N$_2$–fixing legumes have substantial benefits in low input, small-holder systems, tied to food security and livelihoods.
- Farmers have more options in moderate-high input systems. They don’t need to rely on biologically fixed N, they can purchase and use industrially-fixed N.
- N$_2$ fixation can be a cost benefit of the particular crop, e.g. chickpea in Australia where the major driver of expanding production has been the grain price and other rotational effects.
- The reduced cost of production can sometimes be the major factor for planting legumes e.g. doubling of fertiliser N costs in 2007-09 and chickpea, fababean in Australia.
- But, legumes don’t grow or yield as well as mineral-N dependent cereal and oilseed crops.
- Why is that?
But, legumes don’t grow or yield as well as mineral-N dependent cereal and oilseed crops

- Average **grain yields** of legumes ca. 30% less than those of cereals
- Not necessarily because of lower harvest index (HI); average HIs from database (Unkovich et al. 2010) were 0.37 (wheat) and 0.37 (legumes) but 0.28 (canola)
- Average **biomass yields** of legumes also 30% less than those of cereals partly (ca. 45%) explained by the loss of plant biomass with N$_2$ fixation
- Reduction in biomass means less residue C returned to the soil after grain harvest

Source: FAOSTAT (2016)

Source: Unkovich et al. (2010) involving ca. 23,000 grain values and ca. 1,700 shoot biomass values
Legume fixed N is not free....

- There is a C cost of N\(_2\) fixation by nodulated legumes related to the process of N\(_2\) fixation, plant and bacterial cell maintenance etc.
- Values in table from glasshouse-cultured plants and theoretical calculations vary 6-17 kg CO\(_2\)/kg N fixed.

<table>
<thead>
<tr>
<th>Crop</th>
<th>C resp/N fixed</th>
<th>CO(_2) resp/N fixed (g/g)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cowpea</td>
<td>1.5</td>
<td>5.7</td>
<td>Layzell DB et al. (1979) Plant Physiol. 64:888-91</td>
</tr>
<tr>
<td>White lupin</td>
<td>3.6</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td>Nodulated soybean</td>
<td>5.2</td>
<td>19.0</td>
<td>Finke RL et al. (1982) Plant Physiol. 70:1178-84</td>
</tr>
<tr>
<td>Nitrate-fed soybean</td>
<td>2.7</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>Diff</td>
<td>2.5</td>
<td>9.3</td>
<td></td>
</tr>
</tbody>
</table>
Legume fixed N is not free....

- Data sets from Doughton JA et al. (1993) AJAR 44:1403-13 involving field-grown chickpea and Herridge DF et al. (1990) Plant Physiol. 93:708-16 involving irrigated soybean (each value mean of 7 cvs) indicate:
 - N-fixing chickpea, soybean had ca. 30% less DM, C than min N-fed plants
 - 13.6 kg DM reduced/kg N fixed = 5.44 kg C or 19.9 kg CO₂/kg N fixed (chickpea)
 - 13.8 kg DM reduced/kg N fixed = 5.52 kg C or 20.2 kg CO₂/kg N fixed (soybean)

![Graphs showing relationship between Shoot dry matter (Mg/ha) and %Ndfa for Soybean and Chickpea](attachment:graphs.png)

![Graphs showing relationship between Shoot dry matter (Mg/ha) and Shoot N fixed (kg/ha) for Soybean and Chickpea](attachment:graphs2.png)
Legumes don’t grow or yield as well as mineral-N dependent cereal and oilseed crops

- Average grain yields of legumes ca. 30% less than those of cereals
- Not necessarily because of lower harvest index (HI); average HIs from database were 0.37 (wheat) and 0.37 (legumes) but 0.28 (canola)
- Average biomass yields of legumes also 30% less than those of cereals partly (ca. 45%) explained by the loss of plant biomass with N₂ fixation
- Reduction in biomass means less residue C returned to the soil after grain harvest

Source: FAOSTAT (2016)
Source: Unkovich et al. (2010) involving ca. 23,000 grain values and ca. 1,700 shoot biomass values
Legumes in agriculture...

JL Thompson summarised the reasons for using legumes in farming systems in NSW (Australia):

- More economical of manure
- More economical of nutrients in the soil
- Benefits of deep-rooted and air feeding crops for following crops
- Benefits for following cereals from leguminous crops
- Allows for better distribution of labour on the farm
- Allows for better weed control
- Management of plant pathogens and insects
- Allows for better management of livestock
- Spread of economic risk
- **Reduces greenhouse gas emissions**

Thompson, JL (1895). *Agricultural Gazette of NSW*, amended by Herridge, DF in 2011
N$_2$-fixing grain legumes have smaller C footprints than N-fertilised crops....

- General consensus* that N$_2$–fixing legumes produce less greenhouse gas (CO$_2$ and N$_2$O) emissions than N-fertilised crops because of:
 - Emissions of CO$_2$ from production and transport of fertiliser N and from dissolution of urea in the soil
 - Greater emissions of N$_2$O from soil associated with fertiliser N use than from N$_2$ fixing legumes
 - In GHG emissions accounting there are no emissions (CO$_2$ or N$_2$O) directly attributed to N$_2$ fixation (IPCC 2006)

- Increased use of N$_2$-fixing legumes represents potentially-effective strategy for GHG mitigation, although not such clear messages about impacts on soil C sequestration or loss

Automated chambers monitoring chickpea and canola
Inside field lab, gas chromatograph fitted with electron capture and flame ionisation detectors for N_2O and CH_4.
Seasonal profiles of N_2O emissions

- Episodic nature of denitrification
- Treatments imposed, e.g. timing of N inputs, formulations of fert N, to explore mitigation options
- Data from such studies also aggregated to determine emissions factors (EFs) to be used in C accounting
- EF (IPCC 2006) default 1.0%, Australia 0.2%

Greenhouse gas emissions for wheat, canola and field pea

- Total GHG emissions determined using Life Cycle Assessment (LCA)
- Emissions of N$_2$O est. using EF of 0.2% (Aust Govt 2015)
- Emissions highest for N-fertilised canola and lowest for N$_2$-fixing field pea
- Differences related to fertiliser N inputs
 - Canola 100N
 - Wheat 60N
 - Field pea 0N (100N fixed)
- Soil C changes not included

Legume fixed N is not free....

- Impacts of the different crops on soil C?
- Values in table modelled using Nbudget (Herridge 2013*); difficult even impossible to measure for single crops (50 t C/ha backgrounds). Assumed:
 - annual mineralisation from SOM of 80 kg N/ha (880 kg C/ha)
 - 5% fertiliser N immobilised
 - 30-35% residue C incorporated into SOM (Ladd JN (1987))

<table>
<thead>
<tr>
<th>Crop or sequence</th>
<th>Grain yield (t/ha)</th>
<th>Above-ground biomass (t/ha)</th>
<th>AG+BG residue biomass (t/ha)</th>
<th>AG+BG residue C (t/ha)</th>
<th>C retained in soil (t/ha)(^1)</th>
<th>Net change in soil C (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>3.0</td>
<td>7.4</td>
<td>7.2</td>
<td>2.88</td>
<td>0.90</td>
<td>+0.02</td>
</tr>
<tr>
<td>Canola</td>
<td>2.0</td>
<td>7.1</td>
<td>7.7</td>
<td>3.09</td>
<td>1.08</td>
<td>+0.26</td>
</tr>
<tr>
<td>Field pea</td>
<td>1.8</td>
<td>4.9</td>
<td>4.8</td>
<td>1.94</td>
<td>0.68</td>
<td>-0.20</td>
</tr>
</tbody>
</table>

Legume fixed N is not free....

- Including estimated changes in soil C in GHG (C footprint) LCAs reverses the order with canola and canola-wheat sequence having the lowest C footprint and field pea and field pea-wheat sequence the highest

<table>
<thead>
<tr>
<th>Crops and sequences</th>
<th>Total GHG emissions (kg CO₂–e/ha)</th>
<th>Changes in soil C (kg CO₂–e/ha)</th>
<th>C footprint (kg CO₂–e/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual crops</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat after wheat 60N</td>
<td>676</td>
<td>+60</td>
<td>617</td>
</tr>
<tr>
<td>Canola 100N</td>
<td>840</td>
<td>+940</td>
<td>-100</td>
</tr>
<tr>
<td>Field pea 0N</td>
<td>530</td>
<td>-740</td>
<td>1270</td>
</tr>
<tr>
<td>2-year sequences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat–wheat</td>
<td>1350</td>
<td>+146</td>
<td>1204</td>
</tr>
<tr>
<td>Canola–wheat</td>
<td>1517</td>
<td>+1136</td>
<td>380</td>
</tr>
<tr>
<td>Field pea–wheat</td>
<td>1114</td>
<td>-366</td>
<td>1480</td>
</tr>
</tbody>
</table>
Concluding statements

- Nitrogen-fixing legumes may have benefits for environmental impact categories such as fossil fuel energy demand, eutrophication potential etc but not necessarily for global warming potential (GHG emissions).
- There is a direct C cost of N$_2$ fixation for the legume that results in a 13.8 kg DM loss/kg N fixed (equivalent to 5.5 kg C or 20 kg CO$_2$/kg N fixed). This direct cost is not factored into GHG emissions accounting.
- The loss of legume DM translates into reduced residue C returned to the soil after grain harvest and reduced incorporation of C into soil OM. Simple modelling of field pea (100N fixed) and canola (100N as fertiliser) indicate a difference in soil C stocks during 12-month period of 460 kg C/ha = 1680 kg CO$_2$ in favour of canola, substantially changing the LCIs.
- There may be little overall impact of the C cost of N$_2$ fixation on grain production because evidence that N$_2$-dependent legumes produce grain more efficiently than mineral N-dependent legumes, i.e. > HI and NHI.