“Taking the Art out of Smart Beta”

Cherry Muijsson
Faculty of Economics, University of Cambridge

Ed Fishwick
Managing Director, and Global Co-Head of Risk and Quantitative Analysis at BlackRock

Stephen Satchell
Trinity College Cambridge / University of Sydney Business School
Taking the Art out of Smart Beta

Cherry Muijsson, Ed Fishwick, and Steve Satchell

September 4, 2014

Abstract

The reasons for out-performance in smart-beta portfolios remain mysterious. We extend previous literature on the link between portfolio performance and macroeconomic factors by exploring the response of a smart beta portfolio to interest rate movements. The implications for fund managers heavily invested in low risk strategies where the immediate risk lies in the future rise in interest rates are worth considering. In particular, low beta funds appear to go up when interest rates fall more than when interest rates rise. We focus on the case of US equity investment based on the CAPM. We find that the anomaly is partially explained by interest rate sign changes due to macroeconomic policy rather than mismeasurement in the term structure, and observe heterogeneous impacts for low and high beta portfolios.

Ms Cherry Muijsson is a PhD student at the Faculty of Economics, Cambridge University. Silver Street, CB3 9EU Cambridge. cafm3@cam.ac.uk.

Mr Edward Fishwick is a Managing Director, and Global Co-Head of Risk and Quantitative Analysis at BlackRock. Edward.Fishwick@blackrock.com.

Prof Dr Stephen Satchell is a Fellow of Trinity College, Cambridge, and Professor of Finance, Sydney University. ses11@cam.ac.uk.
One of the observations over the cross section of stocks is that the historical risk-return trade-off is flat or inverted: within the CAPM one would expect that stocks with high systemic risk would outperform their low risk counterparts, but results have shown otherwise. It is an empirical fact that interest rates have been declining over the last decades, and there is evidence that interest rate movements affect portfolio choice. The question then arises whether there are heterogeneous impacts to the interest rate for high and low beta portfolios, as the anomaly stems from the observation that low beta portfolios outperform their high beta counterparts. We want to find the origin of this so called 'anomaly’, which we believe is linked to the behaviour of portfolios to interest rates.

There is some evidence that in the context of Sharpe’s market model (Sharpe [1964]) the differing exposures to interest rate movements are not captured by systematic risk, but by an alpha effect that is heterogeneous over portfolios. We observe that low beta portfolios outperform high beta portfolios at times of low interest rates: we saw a steady decrease in interest rates over 1980-2010, which matches the period of low beta outperformance. However, a model that estimates the interest rate effect as a structural break would fail to take the one period nature of the CAPM into account, and the resulting effect on the ex ante expectations set by the model. This relates directly to the setting of the interest rate target by the Federal Open Market Committee (FOMC); movements in the target rate are gradual, almost constant in magnitude, and highly persistent.

Hence, we propose a method where we use sign changes in interest rates to capture the underlying macroeconomic policy implications for actual reactions of investors. The heterogeneous impact can be quantified through the effect on the intercept of the CAPM, indicating a violation of the CAPM assumptions and suggesting a change in behaviour around a zero change. We validate the threshold with a grid search along the likelihood function of our data, and link the asymmetry in the portfolio returns to the persistence of interest rate sign changes.

There are two lines of argument as to why low and high beta portfolios react differently: first, the opportunity cost when the interest rate decreases makes safer investments more attractive, and second that the interest rate is a reflection of real
economic conditions economic health, which particularly impacts firms that have more gearing. We do not see a similar switch in high beta portfolios as of the heterogeneous gearing across firms in a high beta portfolio: firms that are riskier are generally more equity financed in absolute terms rather than leveraged on debt.

As firms with a lower market beta usually have a higher gearing ratio, we expect that increases in the interest rate affect their performance more than firms with a higher market beta; low beta portfolios will have a lower return when interest rates increase, but see a higher return when the interest rate is decreasing. Thus, interest rate changes affect low beta portfolios asymmetrically because of the underlying composition of debt. At the source is the trade-off between being implicitly long or short bonds in times of interest rate changes, and the mismeasurement that occurs if one does not account for the term structure. The argument follows from the observation of inverted yield curves in times of recession, and suggests that the anomaly stems from exogenous macroeconomic influences.

Literature Review

The anomaly has been recognized empirically in many applications (see for instance Black [1972], Black, Jensen and Scholes [1972], Fama and French [1992] and Haugen and Heinz [1975]). Baker and Wurgler [2011] provide an extensive review in favour of the low beta anomaly. Also see Ang, Hodrick, Ying and Zhang [2006], who find that stocks with higher idiosyncratic risk earn lower returns in all cases considered.

The causes of the anomaly and how to quantify them are at the heart of the literature: for instance approaches using mismeasurement and volatility premiums on high risk stocks (see di Bartolomeo [2012] and Klepfish [2013]), the impact of unobservables and leverage on the returns (Fama and French [1996], Cochrane [2013], Frazzini and Pedersen [2011]), approaches using cumulative prospect theory from Kahneman and Tversky [1992] to model lottery preferences and different preferences in the loss domain (see Cornell [2008], Barberis and Huang [2008], Bhootra and Hur [2011], Levi, De Giorgio and Hens [2012] and Kumar [2009]), and manager behaviour perspectives (Chevalier and Ekkusin [1997], Sirri and Tufano [1998], Asness, Pedersen and Frazzini [2012]).
We focus on the literature relating to unobservables and underlying leverage, and combine it with macroeconomic factors and studies relating to the term structure of interest rates (see Estrella and Mishkin [1996] and Baele, Bekäert and Inghelbrecht [2010]), where we distinguish portfolios as heterogeneous investors as in Brennan [1993]. We argue that the different portfolio return distributions for interest sign changes lead to a discrepancy between low and high beta portfolio returns.

Di Bartolomeo [2012] and Klepfish [2013] argue that high frequency arithmetic rates of returns are mistakenly compared to the geometric rates of return over longer period, leading to a volatility premium. For instance, one can show that a discrete return adjusted for a volatility premium can be expanded as a Taylor series:

\[
E_t \left(\frac{P_{t+1}}{P_t} - 1 \right) - E_t (\ln(P_{t+1}) - \ln(P_t)) = \frac{1}{2} (\mu^2 - \sigma^2) + o(\mu^3)
\]

The symbol \(o(\mu^3)\) means that the remainder is of order three in the instantaneous mean. We note too that under these assumptions, as long as the instantaneous mean is small, we require that the instantaneous information coefficient about zero be greater than one in absolute value for arithmetic expected returns to be greater than geometric ones. Not accounting for this factor causes substantial differences between arithmetic and geometric returns, particularly in their average volatility. Hence, portfolios with a higher beta would underestimate the expected return if the volatility bias is not taken into account.

Mispricing can also occur through the effect of unobservable factors, as in the three factor model by Fama and French [1996]. This model uses three stock specific factors that offer potentially orthogonal dimensions of risk and a return (Scherer [2011]) premium for investors willing to take the risk with these factors (Cochrane [2013]). The factor premiums capture effects formerly incorporated in a CAPM intercept, which implies that the higher low risk return is not an anomaly but a mismeasurement because of missing factors.

This is related to leverage constraints on portfolio choice. Frazzini and Pedersen’s [2011] explanation of this phenomenon follows from the preference of investors to carry more risk than the market can provide, but leverage is costly to obtain. In
turn, these investors buy high beta stocks instead of leveraging, driving up the cost for high beta stocks relative to low beta counterparts. An extension using option theory is provided by Cowan and Wilderman [2011]. In the context of our simple model, explicitly levering low beta simply gives us the high beta portfolio due to two fund money separation so we will not pursue this explanation further.

The riskiness of leverage strategies is determined by the underlying risk free rate: interest rates can affect the portfolios through the effect of maturity premia and the borrowing constraints of investors. The yield curve shows the range of interest rates across bonds of the same risk and liquidity but with differing maturities. It is argued in previous work by Estrella and Mishkin [1996] that the slope of the yield curve is a good predictor of recessions in the US as the sign gives an indication of whether the economy is slowing down and the money supply is tightening. In economic turmoil it is possible that the yield inverts: as the long term interest rate represents the risk adjusted average of the expected future short term interest rates and the long term interest rates will fall, but by a smaller amount than the short term interest rates. Others confirming this result are Adrian, Estrella and Shin [2010], Bernanke and Blinder [1992], Bernard and Gerlach [1998], and Rudebusch and Wu [2004] who validate the predictive power of the term structure.

Furthermore, the magnitude of changes in the target interest rate have been remarkably constant, regardless of the sign of the respective change (see for instance Coibion and Gorodnichenko [2011], Goodhart [2005], and Gurkaynak, Sack and Swanson [2005]). Also, Coibion and Gorodnichenko show that there is substantial persistence in the target rate set by the FOMC, which implies that there are cumulative, non independent expectations of interest rate changes. The leverage argument does provide substantial insight how portfolio returns may differ with regards to their interest sensitivity, with more importance to the gearing on debt of the firms underlying the portfolio that causes the anomaly. As the gearing ratio is an indicator of the debt structure of a firm, there are heterogeneous responses to interest rate movements over high and low beta firms. We reconcile the above approaches to argue that failure to account for interest rate movements leads to substantial mispricing which causes the low beta anomaly.
Method

Let μ_i, μ_m be the expected arithmetic rates of return on asset i and the market m respectively. Let β_i, r_f be the population beta of asset i with respect to the market m and the riskless rate of return, respectively. The CAPM states:

$$\mu_i - r_f = \beta_i(\mu_m - r_f)$$ (1)

We shall look at this relationship to see how changing conditions influence the price of the asset. We can conceive of this as being the following things within the model framework: multiple changes (1), changes in the risk premium (2), changes in expectations of future earnings (3), changes in aggregate risk aversion (4).

Noting that at time t: $\mu_i = \frac{E_t(P_{i,t+1})}{P_{i,t}} - 1$, where $E_t(P_{i,t+1})$ is the expectation held at time t of the price of asset i at time t+1, an amount that would take into account expected capital gains and dividends:

$$P_{i,t} = \frac{E_t(P_{i,t+1})}{1 + r_f + \beta_i(\mu_t - r_f)}$$ (2)

Suppose we were to consider a change in the market expected rate of return and a simultaneous change in the riskless rate of return. We denote these changes by $d\mu_m$ and $d r_f$ respectively. Let the change in the price be dP_{it}. Then,

$$dP_{it} = \frac{dP_{it}}{dr_f} dr_f + \frac{dP_{it}}{d\mu_m} d\mu_m = \frac{-E_t(P_{i,t+1})}{(1 + r_f + \beta_i(\mu_m - r_f))^2} (dr_f + \beta_i(d\mu_m - dr_f))$$ (3)

Since the terms to the left of the brackets are unambiguously negative we can see that a total change in the risk premium ($d\mu_m - dr_f$) that is positive, say 2 percent with an asset with a beta of .5 will decrease prices as long as the associated interest rate fall is less than 1 percent.

There is a difference in the response across portfolio types: as high beta portfolios are linked to being short bonds while low beta ones are long bonds, the latter carry a different sensitivity to the interest rate. By going long on the riskless bond, low beta portfolios see an increase in their relative return in times of interest.
decreases while high beta portfolios see a decrease under similar conditions.

Ross (1971, 1976) developed a theory of asset pricing following the attack on the conclusions reached by the CAPM as equity returns are not normally distributed and the model is not empirically validated. Arbitrage Pricing Theory (APT) follows from the notion that, for any financial asset, there is no single systematic risk factor but rather a combination of many. One of the main implications of the APT is the principle of diversification, meaning that idiosyncratic risk is not present for well diversified portfolios. In particular,

$$\mu_i - r_f = \beta_{i1}(\mu_{m1} - r_f) + \cdots + \beta_{ik}(\mu_{mk} - r_f)$$

Burmeister et al. [2003] provides an overview of the methods in which risk factors can be included in the empirical justification of the APT. Again, empirical specifications of the APT are subject to the critique of Fama and French [1996] as one can think of an infinite set of factors that might have an influence on the expected returns: hence, there is a need for a proper theoretical foundation of the factors. For instance, interest rate risk is identified as a strong potential risk factor. We write the CAPM as follows:

$$\mu_i = \beta_i \mu_m + (1 - \beta_i)r_f$$

Inspecting the CAPM above it is clear that, if we are in equilibrium, a fall in the interest rate will lower the expected rate of return for a low beta asset and raise the expected rate of return for a high beta asset. A possible explanation of a failure of modeling this in the CAPM lies in the difficulties of using a one period model with a time series of data, and the failure to provide insights into disequilibria.

By decomposing the CAPM to incorporate the risk free rate directly, we see that macroeconomic interest rate movements have a direct impact on the portfolio returns. Our contribution is empirical but has a theoretical basis: interest rate movements follow from the CAPM as a subcase of the APT and we estimate the potential difference in impacts for low and high beta portfolios. Following from the observation that the magnitude of interest rate changes is fairly constant, we
argue that interest rate sensitivity is captured by the sign changes and cumulative persistence of the target rate.

A rise in the interest rate is equivalent to a fall in the price of cash and shorting such an asset will increase the value of the portfolio, the high beta stock. We argue that the cost of taking on gearing is related to interest rate movements: when the relative cost of borrowing increases, firms underlying a low beta portfolio which generally take on more debt are more affected than firms that are mostly equity financed: investment moves towards (away) to high (low) beta portfolios, driving up (down) the price and return of these products.

Model Specification

In keeping with an APT interpretation, we extend the traditional CAPM analysis by including a term that captures the relative leverage of portfolios to the risk free rate. In order to test for heterogeneous impacts for high and low beta portfolios, we study two portfolios with differing beta exposures.

\[r_t = \alpha + \beta r_{mt} + v_t \] (4)

For a time series regression on a single portfolio, the ordinary least squares estimator (OLS) will be unbiased and efficient if the characteristics of our error term and estimator follow the Gauss-Markov assumptions. Under a correct CAPM specification, one should find that the intercept term \(\alpha \) is insignificant in the specification. However, many attempts at CAPM modeling have concluded that this is not the case, particularly for low beta stocks. To capture why we would see a non-zero intercept, we estimate the CAPM again but model the changes in the interest rate directly as an extra factor:

\[r_t = \alpha + \beta r_{mt} + \gamma \Delta r_{ft} + v_t \] (5)

We expect that portfolios with different degrees of systematic risk are affected asymmetrically: low beta portfolios are expected to be negatively affected by the positive changes in the interest rate, while high beta returns are expected to increase.
Rather than modelling the magnitude of interest rate changes, we are more interested in the effect of interest sign changes on the portfolio intercept and market beta as the magnitudes of changes in the rate are constant over time. A structural break analysis at the point of major change in interest rate movements only gives us information on the effect on different samples rather than the actual change in expectations. We propose a threshold analysis where we estimate the CAPM based on the sign of the interest rate change around a reference point c:

$$i_t = \begin{cases}
1 & \text{if } \Delta r_{ft} > c, \\
0 & \text{if } \Delta r_{ft} \leq c.
\end{cases}$$

The reference point takes a natural value of zero when we are interested in the sign of interest rate changes. We estimate the threshold using a grid search upon the likelihood function with refined tolerances as a robustness check. We estimate the model with interaction terms with the market premium to test whether interest rate changes also affect systemic risk of a portfolio.

$$r_t = \alpha_1 i_t + \alpha_2 (1 - i_t) + (\beta_1 i_t + \beta_2 (1 - i_t))r_{mt} + v_t$$ \hspace{1cm} (6)$$

One immediate difficulty with the static CAPM is that it is not informative about what interest rate we should be using. The CAPM as discussed above is a one period theory and the interest rate used would correspond to the holding period of the representative agent. Whilst this quantity will be very difficult to estimate, we can consider two polar cases: the monthly T bill rate and the ten year bond rate. In a world of nominal prices, these correspond to holding periods of one month (the rebalancing interval of institutional investors), and a holding period of ten years (medium to long term investment). We present a version of the CAPM in Appendix A where we assume that some investors use short maturity bonds whilst others use long maturity bonds. Incorrectly assuming one rate or the other to be correct throws up additional terms in the regression. In our analysis we make use of the mixed equilibrium riskless rate, which captures bond yield curve effects.
\[r_t = \alpha + \beta r_{mt} + \gamma_1 r_{f1t} + \gamma_2 r_{f2t} + \nu_t \]

(7)

To further analyze the impact of specific investing horizons, we use a weighted average of the rates based on the ratio of a particular type of investor to the total investors. It is an established fact in the literature that large institutional investors and professionally managed funds trade on higher frequency (the short end of the yield curve) than smaller, independent investors (see Shapira and Venezia [2000], Diamond and Verrecchia [1991], and Cohn, Lewellen, Lease and Schlarbaum [1975]).

We expect that larger investors tend to be more sensitive to the short term rate while smaller investors are more affected by the long term rate. The result for portfolios is dependent on the main investors in the market: given that large investors are generally less risk averse, their presence would lead to a higher demand for portfolios with a higher beta. In our specification, we assume that 80 percent of the market is dominated by large institutional investors. Therefore, we estimate a mixed equilibrium rate which is based on the weights of the investors in the market.

Empirical Analysis and Results

As the CAPM is a one period theory of portfolio choice of a representative agent, we need to be clear on which interest rate would correspond to the dominating factor. We estimate the model using the ten year bond rate as well as a mixed equilibrium rate as in appendix A. We argue that there is no distinct difference between the monthly T bill rate and the ten year bond rate when it comes to their general movements over the time period, but in terms of changes and volatility there is a major difference. The short term rate is much less volatile than the long term rate, which can have substantial differences in a one period model such as the CAPM. Hence, even though interest rates in general may have been declining over the last decades, what matters is the change over the time frequency which explains our preference for a sign change indicator rather than a structural break analysis.

We use long run industry level data to analyse beta effects. The source of the data is the monthly industry level Fama-French industry level returns from Kenneth French’s website. We use 43 industry groupings from 1953.01 to 2012.12 to
calculate full sample betas. Some initial rolling calculations on the data found five industries that had betas less than one (defensive) and nine with betas greater than 1 (aggressive). The defensive industries are Food products, Tobacco, Oil, Utilities and Telecoms. The aggressive industries are building materials, Fun and Entertainment, Construction, Steel, machinery, Electrical equipment, Chips, Lab equipment and Financials. Then, we build market capitalisation-weighted portfolios of the high beta and low beta industries. The rationale for this methodology could also be construed in Bayesian terms. We could argue that we have prior beliefs about the nature of certain sectors, for example, we think of utilities as defensive and computers as aggressive. The reason for taking this approach is that it avoids the high degrees of uncertainty in estimated beta. Our empirical approach simply supports what could be justified by prior beliefs. We summarize the data in Exhibit 1, where the numbers reported show noticeable differences between arithmetic and geometric returns. We also report the medians and standard deviations of geometric returns. In all periods, and overall, the standard deviations of high-beta portfolios are higher than those of low-beta portfolios.

We estimated the CAPM by regressing portfolio excess returns on an intercept and market excess returns, and present our results in the first panel of Exhibit 4. We would expect the intercept to be zero if the CAPM holds; interestingly, the low beta portfolio has a positive intercept whilst the high beta portfolio does not. This demonstration shows the returns to low risk portfolios based on a CAPM theory of risk. Investing in low beta portfolios gives us an extra 3.68 percent per annum relative to what the CAPM suggests.

By including the change in the interest rate (ten year bond rate) as in equation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIB LOB</td>
<td>HIB LOB</td>
<td>HIB LOB</td>
</tr>
<tr>
<td>Arithmetic Mean</td>
<td>0.69 0.69</td>
<td>0.69 0.55</td>
<td>0.69 0.80</td>
</tr>
<tr>
<td>Geometric Mean</td>
<td>0.51 0.62</td>
<td>0.55 0.49</td>
<td>0.48 0.72</td>
</tr>
<tr>
<td>Median</td>
<td>1.08 0.87</td>
<td>0.97 0.64</td>
<td>1.20 0.96</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>5.86 3.63</td>
<td>5.32 3.38</td>
<td>6.27 3.83</td>
</tr>
</tbody>
</table>

Exhibit 1: Statistics of Equity Portfolios Measured in Returns Per Month
Exhibit 2: Count of Interest Rate Changes Before and After 1983

<table>
<thead>
<tr>
<th>Panel 1</th>
<th>Interest ↑</th>
<th>Interest ↓</th>
<th>HIB ↑</th>
<th>HIB ↓</th>
<th>LOB ↑</th>
<th>LOB ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.016</td>
<td>-0.016</td>
<td>0.568</td>
<td>0.803</td>
<td>0.003</td>
<td>1.354</td>
</tr>
<tr>
<td>Standard Dev</td>
<td>0.016</td>
<td>0.018</td>
<td>5.891</td>
<td>5.829</td>
<td>3.514</td>
<td>3.630</td>
</tr>
<tr>
<td>Skewness</td>
<td>2.504</td>
<td>-3.224</td>
<td>-0.592</td>
<td>-0.340</td>
<td>-0.533</td>
<td>0.021</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>10.903</td>
<td>15.475</td>
<td>3.407</td>
<td>0.880</td>
<td>1.384</td>
<td>1.259</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel 2</th>
<th>Pre</th>
<th>Post</th>
<th>HIBPre</th>
<th>HIBPost</th>
<th>LOBPre</th>
<th>LOBPost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>6.088</td>
<td>6.232</td>
<td>0.666</td>
<td>0.708</td>
<td>0.547</td>
<td>0.825</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.146</td>
<td>0.581</td>
<td>-0.048</td>
<td>-0.747</td>
<td>0.150</td>
<td>-0.495</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>0.935</td>
<td>-0.048</td>
<td>0.739</td>
<td>2.883</td>
<td>1.456</td>
<td>1.414</td>
</tr>
</tbody>
</table>

Exhibit 3: Moments of Ten Year Rate, HIB and LOB on Interest Changes

(5), we see an increase in the explanatory power for the low beta model and significance for both specifications. The estimates are of opposite sign, which confirms our hypothesis that the low beta portfolio is negatively affected by positive changes in the risk free rate, while the opposite holds for high beta portfolios. We expect alpha to be significantly different from zero and negative for a portfolio with low beta, and insignificant for high beta portfolios. Exhibit 4 shows that alpha is a significant factor for low beta portfolios, albeit not negative. The negative sign is captured by the estimate on the changes in the interest rate.

In the second panel of Exhibit 4, we allow for a structural break in 1983 when interest rates started to decrease. From the results we see that there is no significant difference in the two samples, and no evidence of an increase in systematic risk for
either portfolios in the different interest rate regimes. There is some significance on the 15 percent level for low beta portfolios, but this only results in a double alpha effect rather than a systematic change. Exhibit 3 shows the moments for the interest sign changes (panel 1) and interest magnitude changes (panel 2); Clearly, a structural break is unable to pick up the asymmetry in mean returns in the way a sign change does. The moments for interest rate changes are remarkably similar across positive and negative times for both the sign and magnitude specification. The abnormal return for low beta portfolios for negative interest changes is more visible with sign changes, where we see a positive return of 1.354 for negative changes and 0.003 for positive changes.

Next, we turn to the model specification in equation (6). Using the indicator setup we are able to pinpoint the impact of the sign of interest rate changes from a reference point, and absorb these changes in double alpha and/or double beta effects. It is clear from Exhibit 3 that the distribution of positive and negative changes is quite different over the two sample periods: before 1983, there were significantly more positive interest rate changes than from 1984 onwards, which can be explained by the rise of monetarism and the focus on inflation fighting by the chairman of the Federal Reserve under Reagan’s administration.

Furthermore, Exhibit 2 indicates that the number of "ups" and "downs" are remarkably similar in structure in that the proportion of decreases prior to 1983 is approximately the same as the proportions of increases post 1983. Panel 3 of Exhibit 4 presents our results for interest sign changes. This enables us to study the relative impact of idiosyncratic and systemic elements of interest rate risk.

We observe that the impact of the sign of interest rate changes is not captured by a two beta model for both low and high beta portfolios. Instead, the impact is captured by a two alpha model for both portfolios. Focusing on the alpha effect-only models, we see that alpha becomes a significant factor in the high beta portfolio if we include the sign of interest rate changes (see panel 4). The estimates for beta in both portfolios hardly change when we include the sign changes, suggesting that systemic risk itself is not affected.

Continuing with our discussion of panel 4, we demonstrate the impact on low
beta portfolios as an example of the total effect on the intercept when including sign changes. We see that the intercept is positive (0.770) whenever we have a negative change in the interest rate as alpha is positive and the indicator takes value zero. This result is in line with the observation that returns of low beta portfolios are positively affected by negative changes in the interest rate. Whenever we see positive changes in the rate (and the indicator takes value unity), alpha for low beta portfolios is negative (-0.159) which confirms our hypothesis that low beta portfolios are asymmetrically affected.

The opposite mechanism holds for high beta portfolios: a decrease in the rate leads to a decrease in the return (-0.282) and an increase leads to a positive change (0.269). Again, this confirms our hypothesis that low beta portfolios outperform high beta counterparts in times of interest rate declines. We found some evidence for a lower alpha in the period leading up to 1983 for low-beta than in the period after 1983 and thus gives some broad support to the argument listing interest rates as being a factor in low-beta outperformance. Interest rates are a significant factor in low beta outperformance and extend the result to the one period CAPM model.

We checked our estimates for robustness by estimating the reference point using a refined grid search over the likelihood function to find the global minimum. We find the possible minimum and maximum value of the threshold and start by estimating the model for each step starting from the minimum, and computing the sum of squared residuals at each point. Then, we find the optimal threshold by minimizing the RSS function.

The results are presented in panel 7. We see that there is not a significant difference from zero, and the estimates are robust to the refinement level. The results support our original model. We find that there is strong evidence that the alphas are significantly different from zero for both portfolios, but with opposite signs depending on the interest rate changes. Exhibit 5 shows the behaviour of the likelihood function, and shows a clear minimum at the reference point.

The distribution of the estimates is nonstandard can be estimated using bootstrapping methods. We use three refinement scales (steps of 0.01, 0.001 and 0.0001 which we denote c1, c2 and c3). We find that the points are not significantly different from zero for the largest refinement scales, but they are for the finest scale (minimum at 0.0034, 95 percent confidence interval of 0.0648, 0.1021). But this distance is so close to zero that we do not change our results.
<table>
<thead>
<tr>
<th>Panel 1</th>
<th>α</th>
<th>t(α)</th>
<th>R_m</th>
<th>t(R_m)</th>
<th>ΔR_f</th>
<th>t(ΔR_f)</th>
<th>R²</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIB</td>
<td>-0.007</td>
<td>-0.102</td>
<td>1.274</td>
<td>81.138</td>
<td>-</td>
<td>-</td>
<td>0.902</td>
<td>-</td>
</tr>
<tr>
<td>LOB</td>
<td>0.307</td>
<td>4.096</td>
<td>0.696</td>
<td>40.857</td>
<td>-</td>
<td>-</td>
<td>0.699</td>
<td>-</td>
</tr>
<tr>
<td>Equation (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIB</td>
<td>-0.011</td>
<td>-0.154</td>
<td>1.282</td>
<td>81.324</td>
<td>10.740</td>
<td>3.569</td>
<td>0.903</td>
<td>-</td>
</tr>
<tr>
<td>LOB</td>
<td>0.313</td>
<td>4.254</td>
<td>0.681</td>
<td>40.267</td>
<td>-17.585</td>
<td>-5.448</td>
<td>0.711</td>
<td>-</td>
</tr>
<tr>
<td>Panel 2</td>
<td>α</td>
<td>t(α)</td>
<td>R_m</td>
<td>t(R_m)</td>
<td>Δ(ΔR_f)</td>
<td>t(Δ(ΔR_f))</td>
<td>R²</td>
<td>-</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sample Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIB</td>
<td>-0.061</td>
<td>-0.612</td>
<td>1.273</td>
<td>80.863</td>
<td>0.113</td>
<td>0.792</td>
<td>0.903</td>
<td>-</td>
</tr>
<tr>
<td>LOB</td>
<td>0.404</td>
<td>3.911</td>
<td>0.702</td>
<td>40.982</td>
<td>-0.201</td>
<td>-1.332</td>
<td>0.711</td>
<td>-</td>
</tr>
<tr>
<td>Panel 3</td>
<td>α</td>
<td>t(α)</td>
<td>R_m</td>
<td>t(R_m)</td>
<td>i_t</td>
<td>t(i_t)</td>
<td>i_tR_m</td>
<td>t(i_tR_m)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Equation (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIB βα</td>
<td>-0.270</td>
<td>-2.852</td>
<td>1.273</td>
<td>57.730</td>
<td>0.545</td>
<td>3.977</td>
<td>0.011</td>
<td>0.347</td>
</tr>
<tr>
<td>HIB α</td>
<td>-0.280</td>
<td>-2.928</td>
<td>1.278</td>
<td>82.087</td>
<td>0.551</td>
<td>4.053</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LOB βα</td>
<td>0.766</td>
<td>7.381</td>
<td>0.693</td>
<td>29.466</td>
<td>-0.923</td>
<td>-6.321</td>
<td>-0.010</td>
<td>-0.297</td>
</tr>
<tr>
<td>LOB α</td>
<td>0.770</td>
<td>7.496</td>
<td>0.688</td>
<td>41.424</td>
<td>-0.929</td>
<td>-6.402</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Panel 4</td>
<td>α</td>
<td>t(α)</td>
<td>R_m</td>
<td>t(R_m)</td>
<td>R²</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double Alpha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIB</td>
<td>0.269</td>
<td>2.789</td>
<td>-0.282</td>
<td>-2.928</td>
<td>1.278</td>
<td>82.087</td>
<td>0.904</td>
<td>-</td>
</tr>
<tr>
<td>LOB</td>
<td>-0.159</td>
<td>-1.540</td>
<td>0.770</td>
<td>7.496</td>
<td>0.688</td>
<td>41.424</td>
<td>0.716</td>
<td>-</td>
</tr>
<tr>
<td>Panel 5</td>
<td>α</td>
<td>t(α)</td>
<td>R_m</td>
<td>t(R_m)</td>
<td>+i_t</td>
<td>t(+i_t)</td>
<td>-i_t</td>
<td>t(-i_t)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Actual Changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIB</td>
<td>0.010</td>
<td>0.100</td>
<td>1.281</td>
<td>81.262</td>
<td>9.372</td>
<td>1.764</td>
<td>11.837</td>
<td>2.468</td>
</tr>
<tr>
<td>LOB</td>
<td>0.312</td>
<td>3.092</td>
<td>0.687</td>
<td>40.236</td>
<td>-17.490</td>
<td>-3.073</td>
<td>-17.670</td>
<td>-3.390</td>
</tr>
<tr>
<td>Panel 6</td>
<td>α</td>
<td>t(α)</td>
<td>R_m</td>
<td>t(R_m)</td>
<td>R_f1</td>
<td>t(R_f1)</td>
<td>R_f2</td>
<td>t(R_f2)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Equation (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIB</td>
<td>-0.147</td>
<td>-2.096</td>
<td>1.281</td>
<td>80.540</td>
<td>10.580</td>
<td>3.467</td>
<td>-0.390</td>
<td>-0.353</td>
</tr>
<tr>
<td>LOB</td>
<td>0.467</td>
<td>6.210</td>
<td>0.682</td>
<td>39.965</td>
<td>-17.286</td>
<td>-5.280</td>
<td>0.142</td>
<td>0.119</td>
</tr>
</tbody>
</table>

Exhibit 4: CAPM Results Per Specification
Next, we use the contemporaneous slope of the yield curve as our interest rate variable. We find that using the one month T bill rate gives insignificant results for the change in the interest rate, which is explained by the frequency of rebalancing of portfolios by institutional investors. In a correct specification of the CAPM the market premium is the only risk factor. When the long term rate is significant, it leads to a misspecification in the framework. Panel 8 presents the results for the yield curve specification. We observe that the sign changes are not as significant any more for high beta portfolios, but still very significant for the low beta set. This confirms our hypothesis that portfolios with low beta are negatively affected by positive interest rate movements.

Exhibit 4: CAPM Results Per Specification (continued)

<table>
<thead>
<tr>
<th>Panel 7</th>
<th>(\alpha)</th>
<th>(t(\alpha))</th>
<th>(R_m)</th>
<th>(t(R_m))</th>
<th>(i_t)</th>
<th>(t(i_t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Estimated (6)}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(HIB \ c1)</td>
<td>-0.282</td>
<td>-2.928</td>
<td>1.278</td>
<td>82.087</td>
<td>0.551</td>
<td>4.053</td>
</tr>
<tr>
<td>(HIB \ c2)</td>
<td>-0.307</td>
<td>-3.033</td>
<td>1.279</td>
<td>82.001</td>
<td>0.549</td>
<td>4.018</td>
</tr>
<tr>
<td>(HIB \ c3)</td>
<td>-0.255</td>
<td>-2.907</td>
<td>1.280</td>
<td>82.267</td>
<td>0.624</td>
<td>4.486</td>
</tr>
<tr>
<td>\textit{Estimated (6)}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LOB \ c1)</td>
<td>0.770</td>
<td>7.496</td>
<td>0.688</td>
<td>41.424</td>
<td>-0.929</td>
<td>-6.402</td>
</tr>
<tr>
<td>(LOB \ c2)</td>
<td>0.648</td>
<td>6.870</td>
<td>0.687</td>
<td>41.028</td>
<td>-0.860</td>
<td>-5.745</td>
</tr>
<tr>
<td>(LOB \ c3)</td>
<td>0.750</td>
<td>7.520</td>
<td>0.686</td>
<td>41.294</td>
<td>-0.947</td>
<td>-6.506</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel 8</th>
<th>(\alpha)</th>
<th>(t(\alpha))</th>
<th>(R_m)</th>
<th>(t(R_m))</th>
<th>(\Delta R_f)</th>
<th>(t(\Delta R_f))</th>
<th>(i_t)</th>
<th>(t(i_t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Yield Curve}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(HIB)</td>
<td>-0.110</td>
<td>-1.221</td>
<td>1.273</td>
<td>80.954</td>
<td>0.972</td>
<td>0.891</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(LOB)</td>
<td>0.310</td>
<td>-4.092</td>
<td>0.701</td>
<td>40.840</td>
<td>-1.062</td>
<td>-0.900</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(HIB)</td>
<td>-0.283</td>
<td>-1.252</td>
<td>1.272</td>
<td>81.231</td>
<td>-</td>
<td>-</td>
<td>0.243</td>
<td>1.732</td>
</tr>
<tr>
<td>(LOB)</td>
<td>0.481</td>
<td>-4.762</td>
<td>0.702</td>
<td>41.402</td>
<td>-</td>
<td>-</td>
<td>-0.381</td>
<td>-2.560</td>
</tr>
</tbody>
</table>

2Numbers are estimates of coefficients of variables, including constant and market risk, and the ten year rate respectively. Values of the t-statistic above 1.645 indicate significance above the five percent level, while values above 2.326 indicate significance above the one percent level.

3Structural break within equation (5) around 1983-1. Estimates are the coefficients of the constant, market risk, and changes in the ten year rate respectively.

4Estimates of coefficients as in equation (6). First line, \(\beta \alpha \) are models estimating both impact of interest changes via market risk and constant, while \(\alpha \) only estimates different constants.

5Estimates of the double alpha model in equation (6), rewritten to reveal the underlying significance of the alpha parameters. We test whether \(\alpha_1 \) and \(\alpha_2 \) are statistically different, and we find that a Wald test rejects equality for both high (15.394) and low (39.967) beta portfolios.
Panel 6 of Exhibit 4 presents results for the mixed interest rate return case. To remind the reader, the excess returns and market premium are based on the mixed interest rate as in Appendix equation A7, and we use the level of the one month rate and level of the ten year bond. To explain the anomaly we would require the long rate to have a significant impact, while the short rate should have a coefficient close to zero (particularly when the share of high frequency investors is high and beta is near one). We observe that is false and that the expected return of low beta portfolios is actually smaller when we include the long rate: for this period and market, the anomaly cannot be explained by the misspecification of interest rates at least under the assumption we have made for investor relative shares.

Hence, the preferred specification is equation (6) where we only allow for a double alpha effect. We see that the sign of the interest rate change is the most significant in distinguishing the effects for both portfolios: whenever we see an increase in the interest rate from the reference point, low beta portfolios will be negatively affected while the opposite holds for high beta portfolios. The strategy with low beta portfolios means being implicitly long on the riskless asset. Empirically, whenever we see a shift in the risk free asset, low beta portfolios are more affected than high beta ones (see, for example, Exhibit 4 where we compare -17.585 for low beta with 10.740 for high beta). The estimates show that there is a significant alpha impact in this specification for high beta portfolios, which can be
explained by portfolio rebalancing after underlying interest rate movements.

As a robustness check, we estimate model (6) including positive changes in the interest rate (dyield+) and negative changes in the rate (dyield-). Positive changes are collected in dyield+ as their actual value, where negative or null values are set to zero (similarly for negative changes). The results are presented in panel 5. A Wald test testing for the equivalence of the effects (and bringing us back to specification 5) shows that the parsimonious model is equivalent, suggesting that there is no difference in upward or downward movements of interest rates.

Time varying estimates are computed over a rolling window without overlap (Exhibit A1). We see, unsurprisingly given the construction methodology, that the result for beta is stable and shows that low beta portfolios indeed see a lower systematic risk than high beta portfolios, except for very specific periods. We see that low betas spiked above high beta portfolios in 1994 during the bond price crash: after a long recession with falling inflation, the cycle turned aggressively in this year after economic recovery and a rise in the federal interest rate. The estimates for alpha are less consistent, but show a clear distinction between high beta and low beta portfolios and mean changes over specific periods. We see that the behaviour of the low beta alpha mirrors that of high beta and observe similar implications for the interest indicator variable.

Conclusion

This paper compares different specifications with macroeconomic factors by allowing for threshold CAPMs driven by interest rate movements. From the structural break results we see that the differing exposures to interest rate movements are not captured by a heterogeneous beta model, but by a double alpha effect for low beta portfolios. However, this method fails to find the impact of actual interest rate changes on the slope and intercept of the two models when there are different changes in the same period.

In our proposed specification, using the sign of the interest rate change (validated by a reference point check using a grid search upon the likelihood function of our specification) rather than the actual change, we find that alpha is negative
for low beta portfolios whenever the interest rate is rising and that it is positive whenever the rate is decreasing. In line with previous results, we find significant evidence of outperformance of low beta portfolios based on interest rate movements and underperformance of high beta portfolios.

There is no systematic effect of the interest rate on beta itself. This is evidence that the outperformance of low beta portfolios is not related to their systematic market risk but to interest rate factors that influence the intercept of the CAPM.

By studying multiple extensions of the models, we find that low and high beta portfolios are affected differently by changes in the risk free asset. We show that the return on low beta portfolios increases whenever the interest rate decreases, and that high beta portfolios have an increase in their return whenever interest rates rise. This differentiating impact has to be accounted for in the estimation and shows that the anomaly may be a consequence of mismeasurement of the interest rate effect rather than a mystery itself.

We show that the opaque nature of the definition of the riskless asset is a complicating factor. We find evidence that the slope of the yield curve has a significant and differentiating impact on low and high beta portfolios by using a simple general equilibrium model. We consider one month, ten year rates, and an equilibrium combination of the two based on an estimated relative share of investors. We might expect that the appropriate rate for the CAPM is the one month rate as this would reflect the rebalancing period of institutional investors. What we find empirically is that we see similar results for the slope of the yield curve and the long term rate.

When we test a misspecified version of the CAPM based on a mismatch in maturity levels and investor preferences, we observe that the short term interest rate does not have a significant impact on the excess returns of the portfolios, in line with theory. However, we expect the sign of the long term rate to be positive in both cases. We find that the coefficient for the low beta portfolio is of the opposite sign, resulting in a rejection of the hypothesis that the anomaly stems from this particular form of mismeasurement. However, the analysis might differ if we include more securities of different maturities.
The main force behind the anomaly is likely to be attributed to exogenous macroeconomic factors influencing the risk free rate. Monetary policy over the last 30 years has favoured low beta strategies by increasing the price of bonds and it is fair to say that these macroeconomic factors shape our results, and are the main driver behind off-equilibrium movements of returns. Hence, our model provides a link between macroeconomic (yield curve related) factors and the origin of the low beta anomaly. It seems that the underlying exposure to the risk free asset has to be considered for a model consistent with the CAPM implications. To call out of equilibrium movements an anomaly in the social sciences seems unwarranted.

References

Appendix A

This section presents an explanation as to why we might find significant interest rate turns within a CAPM regression. The motivation comes from a traditional theory of interest rate demand often known as the preferred habitat hypothesis. In this model investors have at their disposal a bond of a particular maturity, reflecting, perhaps the duration of their liabilities or other considerations. We shall capture this by building a CAPM-type model which assumes that there are two agents, both of whom are mean variance optimizers, both confronted by the same set of risky assets, both believing in the same asset price distribution with identical means and variances but having as choice of riskless asset a short-rate bond in one instance and a long-rate bond in the other.
The optimization problem they face is:

\[U = \omega' E(r) - \frac{\lambda}{2} \omega' \Sigma \omega - \theta (\omega' \iota - 1) \]

Where \(\theta \) is the Lagrange multiplier and where \(\lambda \) is the coefficient of absolute risk aversion, \(\omega \) is a vector of portfolio weights chosen to maximize and \(\iota \) is a vector of ones. The vector of expected rate of return of the risky assets is \(E(r) = \mu \), and the covariance matrix of returns is given by \(\Sigma \). We note the following result. The optimal Mean-Variance weights in the presence of a budget constraint with known parameters is given by:

\[\omega = \frac{1}{\lambda} \Sigma^{-1} \mu - \frac{\beta - \lambda}{\lambda \gamma} \Sigma^{-1} \]

where \(\alpha = \mu' \Sigma^{-1} \mu \), \(\beta = \mu' \Sigma^{-1} \iota \), \(\gamma = \iota' \Sigma^{-1} \iota \). The expected utility associated with this case is given by, substituting the first into the second equation and simplifying. The maximised value, \(V \), is given by

\[\frac{\alpha \gamma - (\beta - \lambda)^2}{2 \lambda \gamma} \]

If we ignore the budget constraint in the optimization, then the optimal portfolio becomes \(\omega = \frac{1}{\lambda} \Sigma^{-1} \mu \) and \(E(r) = \frac{\mu}{\lambda} \). Formally, the optimal portfolios where \(i=1,2 \) for short and long rates respectively are given by:

\[\omega_i = \frac{1}{W_0} \lambda_i^{-1} \Sigma^{-1} (E(r) - r_{if}) \]

This is the same result as above except that individuals differ in terms of initial wealth, absolute risk aversion and riskless rates of return. Defining societal wealth as \(W_{m0} \),

\[W_{m0} = W_{01} + W_{02} \]

Then societal investment in the different assets (aka the market portfolio) is equal to \(\omega \), and where \(\lambda = ((\lambda_1)^{-1} + (\lambda_2)^{-1})^{-1} \) is societal risk aversion. Therefore the optimal portfolio weights are:

\[\omega = \frac{1}{W_{m0}} \Sigma^{-1} E(r) ((\lambda_1)^{-1} + (\lambda_2)^{-1}) - \frac{1}{W_{m0}} \Sigma^{-1} \iota (r_{1f}(\lambda_1)^{-1} + r_{2f}(\lambda_2)^{-1}) \]

\[Cov(r, \omega r) = \frac{1}{W_{m0}} E(r) ((\lambda_1)^{-1} + (\lambda_2)^{-1}) - \frac{1}{W_{m0}} \Sigma^{-1} \iota (r_{1f}(\lambda_1)^{-1} + r_{2f}(\lambda_2)^{-1}) \]

\[Cov(r, \omega r) = \Sigma \omega = aE(r) + bi \]
Var(ω' r) = ω' Σω = aµm + b

Thus, aE(r) + bi = β(aµm + b). Dividing both sides by a, we arrive at:

\[
E(r) = \frac{(r_1 f(λ_1)^{-1} + r_2 f(λ_2)^{-1})}{((λ_1)^{-1} + (λ_2)^{-1})} t = β(µ_m - \frac{(r_1 f(λ_1)^{-1} + r_2 f(λ_2)^{-1})}{((λ_1)^{-1} + (λ_2)^{-1})})
\]

This we call the heterogeneous interest rate CAPM. Defining the relative risk tolerance of the short-rate investors as δ1 with the relative risk tolerance of long-rate investors being δ2. It follows immediately that δ1 + δ2 = 1. The interest rate term in the heterogeneous interest rate CAPM now becomes δ1r1f + δ2r2f and we can write our CAPM as

\[
E(r) = (δ_1 r_1 f + δ_2 r_2 f) t = β(µ_m - (δ_1 r_1 f + δ_2 r_2 f))
\]

The question that arises is: would we expect the long-rate investors to be more risk averse than the short-rate investors? We would think this to be the case so that the short-rate investors would tend to dominate; that is δ1 > 50 percent. Suppose we now run a conventional short-rate CAPM. We would assume the constraint instead of the true model.

\[
E(r) - r_1 ft = β(µ_m - r_1f)
\]

This misspecification would lead to additional terms:

\[
E(r) - r_1f = β(µ_m - r_1f) + β(r_1f - (δ_1 r_1 f + δ_2 r_2 f) - r_1 ft + i(δ_1 r_1 f + δ_2 r_2 f)
\]

\[
E(r) - r_1f = β(µ_m - r_1f) + β((δ_1 r_1 f + δ_2 r_2 f)) + i(δ_1 - 1) r_1f + δ_2 r_2 f
\]

\[
E(r) - r_1f = β(µ_m - r_1f) + (β - i)(1 - δ_1) r_1f + (β + i)δ_2 r_2 f
\]

This equation gives us the misspecified CAPM and shows how interest rates can occur as a result of the misspecification. If δ1 is near 1, and β is near i, we might expect the short rate to have a coefficient close to zero whilst the long rate should be typically much larger.

Of course reality is much more complex and the precise nature of the misspecification could involve almost any point in the term structure. It is worth noting that the equilibrium discussed above generalizes to K different rates where each one will be weighted by the relative risk tolerance of the investors who use the particular discount factor. Furthermore, these relatives weights will add to 1.
Exhibit A1: Time Varying Estimates of Equation (6)