The University of Sydney

Absolute values

Jackie Nicholas
Jacquie Hargreaves
Janet Hunter

1 The absolute value function

Before we define the absolute value function we will review the definition of the absolute value of a number.
The Absolute value of a number x is written $|x|$ and is defined as

$$
|x|=x \text { if } x \geq 0 \quad \text { or } \quad|x|=-x \text { if } x<0 .
$$

That is, $|4|=4$ since 4 is positive, but $|-2|=2$ since -2 is negative.
We can also think of $|x|$ geometrically as the distance of x from 0 on the number line.

$\leftarrow\|-2\|=2 \rightarrow$	$\leftarrow, \quad\|4\|=4$,	\rightarrow
-2	0	,$\quad 4$

More generally, $|x-a|$ can be thought of as the distance of x from a on the numberline.

Note that $|a-x|=|x-a|$.
The absolute value function is written as $y=|x|$.
We define this function as

$$
y= \begin{cases}+x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

From this definition we can graph the function by taking each part separately. The graph of $y=|x|$ is given below.

The graph of $y=|x|$.

Example

Sketch the graph of $y=|x-2|$.

Solution

For $y=|x-2|$ we have

$$
y=\left\{\begin{array}{llll}
+(x-2) & \text { when } x-2 \geq 0 & \text { or } & x \geq 2 \\
-(x-2) & \text { when } x-2<0 & \text { or } & x<2
\end{array}\right.
$$

That is,

$$
y= \begin{cases}x-2 & \text { for } x \geq 2 \\ -x+2 & \text { for } x<2\end{cases}
$$

Hence we can draw the graph in two parts.

The graph of $y=|x-2|$.

We could have sketched this graph by first of all sketching the graph of $y=x-2$ and then reflecting the negative part in the x-axis.

Example

Find the values of x for which $|x+3|=6$.

Solution

First of all note that

$$
|x+3|=\left\{\begin{array}{lll}
+(x+3) & \text { when } x+3 \geq 0 & \text { or }
\end{array} \quad x \geq-301 . ~(x+3) \quad \text { when } x+3<0 \quad \text { or } \quad x<-3\right.
$$

Taking each of these separately.
When $x \leq-3,|x+3|=-x-3=6$, so $x=-9$.
When $x \geq-3,|x+3|=x+3=6$, so $x=3$.
Therefore $|x+3|=6$ when $x=-9$ or $x=3$. You can check this by substitution.

Example

For what values of x is $|x-4|=|2 x-1|$.

Solution

We know that the values $x=\frac{1}{2}$ and $x=4$ are important x values here, so we will use them to divide the x axis into three sections and will consider them in turn.
Case 1. For $x<\frac{1}{2},|x-4|=-(x-4)=|2 x-1|=-(2 x-1)$, so $-x+4=-2 x+1$.
Therefore, $x=-3$.
Case 2. For $\frac{1}{2} \leq x<4,|x-4|=-(x-4)=|2 x-1|=2 x-1$, so $-x+4=2 x-1$.
Therefore, $x=\frac{5}{3}$.
Case 3. For $x \geq 4,|x-4|=x-4=|2 x-1|=2 x-1$, so $x-4=2 x-1$.
Therefore, $x=-3$, but this does not satisfy the assumption $x \geq 4$ so this case does not give us a solution.

The solutions are $x=-3$ and $x=\frac{5}{3}$.

