Addition, subtraction and scalar multiplication

Jackie Nicholas

Mathematics Learning Centre University of Sydney
(C)2010 University of Sydney

Addition of matrices

We can add matrices if they are the same size. If
$A=\left[\begin{array}{rrrr}4 & -1 & 3 & 0 \\ 1 & -2 & 9 & -1\end{array}\right]$ and $B=\left[\begin{array}{rrrr}0 & -5 & 0 & -1 \\ -1 & -4 & 3 & -1\end{array}\right]$
then we define $A+B$ as the matrix we get by adding the corresponding entries.
$\left[\begin{array}{rrrr}4 & -1 & 3 & 0 \\ 1 & -2 & 9 & -1\end{array}\right]+\left[\begin{array}{rrrr}0 & -5 & 0 & -1 \\ -1 & -4 & 3 & -1\end{array}\right]=\left[\begin{array}{rrrr}4 & -6 & 3 & -1 \\ 0 & -6 & 12 & -2\end{array}\right]$

Subtracting matrices

Similarly we define $A-B$ as the matrix we get when we subtract corresponding entries.
$\left[\begin{array}{rrrr}4 & -1 & 3 & 0 \\ 1 & -2 & 9 & -1\end{array}\right]-\left[\begin{array}{rrrr}0 & -5 & 0 & -1 \\ -1 & -4 & 3 & -1\end{array}\right]=\left[\begin{array}{llll}4 & 4 & 3 & 1 \\ 2 & 2 & 6 & 0\end{array}\right]$
Note that we cannot add or subtract matrices that are different sizes.
$\left[\begin{array}{rrrr}4 & -1 & 3 & 0 \\ 1 & -2 & 9 & -1\end{array}\right]-\left[\begin{array}{rrr}0 & -5 & 0 \\ -1 & -4 & 3 \\ 6 & -2 & 1\end{array}\right]$ does not make sense.

Scalar multiplication of matrices

We can multiply a matrix by a scalar.
Let $A=\left[\begin{array}{rrr}0 & -5 & 0 \\ -1 & -4 & 3 \\ 6 & -2 & 1\end{array}\right]$ then $3 A=\left[\begin{array}{rrr}0 & -15 & 0 \\ -3 & -12 & 9 \\ 18 & -6 & 3\end{array}\right]$.
We have multiplied each entry in A by the scalar 3 .
Let $B=\left[\begin{array}{rr}-15 & 0 \\ -3 & -12 \\ -6 & 3\end{array}\right]$ then $-2 B=\left[\begin{array}{rr}30 & 0 \\ 6 & 24 \\ 12 & -6\end{array}\right]$.

Some simple properties of matrices

Let A, B and C be matrices that are the same size, then
$A+B=B+A, \quad A+(B+C)=(A+B)+C$.
Where 0 is the zero matrix that is the same size as A,
$A+0=0+A=A, \quad A+(-1) A=A-A=0$.
If α and β are scalars then
$\alpha(\beta A)=(\alpha \beta) A, \quad \alpha(A+B)=\alpha A+\alpha B, \quad(\alpha+\beta) A=\alpha A+\beta A$.
We will demonstrated one of these in the next slide but will leave the rest for you.

Demonstrating one of the properties

Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right], B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]$, and $C=\left[\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right]$.
Then

$$
\begin{aligned}
A+(B+C) & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]+\left[\begin{array}{ll}
b_{11}+c_{11} & b_{12}+c_{12} \\
b_{21}+c_{21} & b_{22}+c_{22}
\end{array}\right] \\
& =\left[\begin{array}{ll}
a_{11}+b_{11}+c_{11} & a_{12}+b_{12}+c_{12} \\
a_{21}+b_{21}+c_{21} & a_{22}+b_{22}+c_{22}
\end{array}\right] \\
& =\left[\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right]+\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right] \\
& =(A+B)+C .
\end{aligned}
$$

