Determinants

Jackie Nicholas

Mathematics Learning Centre University of Sydney
(C)2010 University of Sydney

Determinants

Recall, we defined the determinant of the 2×2 matrix
$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ as $\operatorname{det} A=a d-b c$.
We also write this as $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.
We can define the determinant of any square matrix.
Let's start with a 1×1 matrix.
If $B=\left[b_{11}\right]$, then

$$
\operatorname{det} B=|B|=b_{11} .
$$

Determinant of a 3×3 matrix

If $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & k\end{array}\right]$ then

$$
\operatorname{det} A=|A|=a\left|\begin{array}{ll}
e & f \\
h & k
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & k
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| .
$$

Notice the negative sign before b (to be discussed later).
The 2×2 determinant after each coefficient is the determinant you get by deleting the row and column that coefficient is in.

Click to see how this works.

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right]
$$

Determinant of a 3×3 matrix

If $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & k\end{array}\right]$ then

$$
\operatorname{det} A=|A|=a\left|\begin{array}{ll}
e & f \\
h & k
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & k
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| .
$$

Notice the negative sign before b (to be discussed later).
The 2×2 determinant after each coefficient is the determinant you get by deleting the row and column that coefficient is in.

Click to see how this works.

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right]
$$

Determinant of a 3×3 matrix

If $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & k\end{array}\right]$ then

$$
\operatorname{det} A=|A|=a\left|\begin{array}{ll}
e & f \\
h & k
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & k
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| .
$$

Notice the negative sign before b (to be discussed later).
The 2×2 determinant after each coefficient is the determinant you get by deleting the row and column that coefficient is in.

Click to see how this works.

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right]
$$

Determinant of a 3×3 matrix

If $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & k\end{array}\right]$ then

$$
\operatorname{det} A=|A|=a\left|\begin{array}{ll}
e & f \\
h & k
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & k
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| .
$$

Notice the negative sign before b (to be discussed later).
The 2×2 determinant after each coefficient is the determinant you get by deleting the row and column that coefficient is in.

Click to see how this works.

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right]
$$

Determinant of a 3×3 matrix continued

Recall

$$
\operatorname{det} A=|A|=a\left|\begin{array}{ll}
e & f \\
h & k
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & k
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| .
$$

We have expanded the determinant along the first row; our coefficients of the 2×2 matrices are a, b and c.

But the coefficient of b is negative and so to see why we need the following "matrix of signs".

$$
\left[\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
$$

The "matrix of signs" tells us whether to multiply our coefficient by +1 or -1 according to its position. a and c are multiplied by +1 while b is multiplied by -1 .

Expanding a determinant

We can use the "matrix of signs" to expand the determinant along any row or column.

$$
\left[\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
$$

Suppose now we want to expand the determinant down the second column.

$$
\operatorname{det} A=|A|=-b\left|\begin{array}{ll}
d & f \\
g & k
\end{array}\right|+e\left|\begin{array}{ll}
a & c \\
g & k
\end{array}\right|-h\left|\begin{array}{ll}
a & c \\
d & f
\end{array}\right| .
$$

Click to see how we get the correct 2×2 determinants.

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right]
$$

Expanding a determinant

We can use the "matrix of signs" to expand the determinant along any row or column.

$$
\left[\begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
$$

Suppose now we want to expand the determinant down the second column.

$$
\operatorname{det} A=|A|=-b\left|\begin{array}{ll}
d & f \\
g & k
\end{array}\right|+e\left|\begin{array}{ll}
a & c \\
g & k
\end{array}\right|-h\left|\begin{array}{ll}
a & c \\
d & f
\end{array}\right| .
$$

Click to see how we get the correct 2×2 determinants.

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right]
$$

Expanding a determinant

We can use the "matrix of signs" to expand the determinant along any row or column.

$$
\left[\begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
$$

Suppose now we want to expand the determinant down the second column.

$$
\operatorname{det} A=|A|=-b\left|\begin{array}{ll}
d & f \\
g & k
\end{array}\right|+e\left|\begin{array}{ll}
a & c \\
g & k
\end{array}\right|-h\left|\begin{array}{ll}
a & c \\
d & f
\end{array}\right| .
$$

Click to see how we get the correct 2×2 determinants.

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right]
$$

Expanding a determinant

We can use the "matrix of signs" to expand the determinant along any row or column.

$$
\left[\begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
$$

Suppose now we want to expand the determinant down the second column.

$$
\operatorname{det} A=|A|=-b\left|\begin{array}{ll}
d & f \\
g & k
\end{array}\right|+e\left|\begin{array}{ll}
a & c \\
g & k
\end{array}\right|-h\left|\begin{array}{ll}
a & c \\
d & f
\end{array}\right| .
$$

Click to see how we get the correct 2×2 determinants.

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right]
$$

Definition and an example

Expansion along any row or any column of a determinant always gives us the same answer, which is the value of the determinant.

Let $A=\left[\begin{array}{rrr}-1 & 5 & 2 \\ 1 & 0 & -4 \\ 4 & 1 & -1\end{array}\right]$ then expanding along the first row gives

$$
\begin{aligned}
|A| & =-1\left|\begin{array}{ll}
0 & -4 \\
1 & -1
\end{array}\right|-5\left|\begin{array}{ll}
1 & -4 \\
4 & -1
\end{array}\right|+2\left|\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right| \\
& =-1(0+4)-5(-1+16)+2(1-0)=-77
\end{aligned}
$$

Expanding down the second column gives

$$
\begin{aligned}
|A| & =-5\left|\begin{array}{ll}
1 & -4 \\
4 & -1
\end{array}\right|+0-1\left|\begin{array}{rr}
-1 & 2 \\
1 & -4
\end{array}\right| \\
& =-5(-1+16)-1(4-2)=-77 .
\end{aligned}
$$

Expanding larger determinants: a 4×4 example

Example: For 4×4 matrices, the "matrix of signs" is

$$
\begin{aligned}
& {\left[\begin{array}{llll}
+ & - & + & - \\
- & + & - & + \\
+ & - & + & - \\
- & + & - & +
\end{array}\right] } \\
\left.\begin{array}{rrrr}
3 & -1 & 0 & 2 \\
0 & 0 & 1 & 0 \\
-4 & -1 & 3 & 1 \\
0 & 2 & -1 & 1
\end{array} \right\rvert\, & =0+0-1\left|\begin{array}{rrr}
3 & -1 & 2 \\
-4 & -1 & 1 \\
0 & 2 & 1
\end{array}\right|+0 \\
& =(-1)\left[\left.\begin{array}{rr}
3 & 2 \\
-2 \mid & +1\left|\begin{array}{rr}
3 & -1 \\
-4 & 1
\end{array}\right|+1 \\
-4 & -1
\end{array} \right\rvert\,\right] \\
& =(-1)[(-2)(3+8)+(-3-4)]=29
\end{aligned}
$$

We expanded the 4×4 determinant along the second row, and the 3×3 determinant along the third row.

