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1 Exponents

1.1 Introduction

Whenever we use expressions like 73 or 25 we are using exponents.

The symbol 25 means 2 × 2 × 2 × 2 × 2︸ ︷︷ ︸
5 factors

. This symbol is spoken as ‘two raised to the

power five’, ‘two to the power five’ or simply ‘two to the five’. The expression 25 is just a
shorthand way of writing ‘multiply 2 by itself 5 times’. The number 2 is called the base,
and 5 the exponent.

Similarly, if b is any real number then b3 stands for b × b × b. Here b is the base, and 3
the exponent.

If n is a whole number, bn stands for b × b × · · · × b︸ ︷︷ ︸
n factors

. We say that bn is written in

exponential form, and we call b the base and n the exponent, power or index.

Special names are used when the exponent is 2 or 3. The expression b2 is usually
spoken as ‘b squared’, and the expression b3 as ‘b cubed’. Thus ‘two cubed’ means
23 = 2 × 2 × 2 = 8.

1.2 Exponents with the same base

We will begin with a very simple definition. If b is any real number and n is a positive
integer then bn means b multiplied by itself n times. The rules for the behaviour of
exponents follow naturally from this definition.

Rule 1: bn × bm = bn+m.

That is, to multiply two numbers in exponential form (with the same base), we add their
exponents.

Rule 2: bn

bm = bn−m.

In words, to divide two numbers in exponential form (with the same base) , we subtract
their exponents.

We have not yet given any meaning to negative exponents, so n must be greater than m
for this rule to make sense. In a moment we will see what happens if n is not greater than
m.

Rule 3: (bm)n = bmn

That is, to raise a number in exponential form to a power, we multiply the exponents.

Until now we have only considered exponents which are positive integers, such as 7 or
189. Our intention is to extend this notation to cover exponents which are not necessarily
positive integers, for example −5, or 113

31
, or numbers such as π ≈ 3.14159.



Mathematics Learning Centre, University of Sydney 2

Also, we have not attached any meaning to the expression b0. It doesn’t make sense to
talk about a number being multiplied by itself 0 times. However, if we want rule 2 to
continue to be valid when n = m then we must define the expression b0 to mean the
number 1.

If b �= 0 then we define b0 to be equal to 1. We do not attempt to give any meaning to the
expression 00. It remains undefined.

We initially had no idea of how to extend our notation to cover a zero exponent, but if
we wish rules 1, 2 and 3 to remain valid for such an exponent then the definition b0 = 1
is forced on us. We have no choice.

We have come up with a sensible definition of b0 by taking m = n in rule 2 and seeing
what b0 must be if rule 2 is to remain valid. To come up with a suitable meaning for
negative exponents we can take n < m in rule 2. For example, let’s try n = 2 and m = 3.

Rule 2 gives

b2

b3
= b−1 or

1

b
= b−1.

This suggests that we should define b−1 to be equal to 1
b
. This definition, too, makes sense

for all values of b except b = 0.

In a similar way we can see that we should define b−n to mean 1
bn , except when b = 0,

in which case it is undefined. You should convince yourself of this by showing that the
requirement that rule 2 remains valid forces on us the definitions

b−2 =
1

b2
and

b−3 =
1

b3
.

If n is a positive integer (for example n = 17 or n = 178) then we define b−n to be equal
to 1

bn . This definition makes sense for all values of b except b = 0, in which case the
expression b−n remains undefined.

Pause for a moment and look at what has been achieved. We have been able to give a
meaning to bn for all integer values of n, positive, negative, and zero, and we have done
it in such a way that all three of the rules above still hold. We can give meaning to
expressions like (35

7
)13 and π−7.

We have come quite a way, but there are a lot of exponents that we cannot yet handle.
For example, what meaning would we give to an expression like 5

7
9 ? Our next task is to

give a suitable meaning to expressions involving fractional powers.

Let us start with b
1
2 . If rule 2 is to hold we must have

b
1
2 × b

1
2 = b

1
2
+ 1

2 = b1 = b.

So, b
1
2 is defined to be the positive square root of b, also written

√
b. So b

1
2 =

√
b.

Of course, b must be positive if b
1
2 is to have any meaning for us, because if we take any

real number and multiply itself by itself then we get a positive number. (Actually there
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is a way of giving meaning to the square root of a negative number. This leads to the
notion of complex numbers, a beautiful area of mathematics which is beyond the scope
of this booklet.)

That takes care of a meaning for b
1
2 if b > 0. Now have a look at b

1
3 . If rule 2 is to remain

valid then we must have

b
1
3 × b

1
3 × b

1
3 = b

1
3
+ 1

3
+ 1

3 = b1 = b.

In general if we wish we wish to give meaning to expressions like b
1
n in such a way that

rule 3 holds then we must have (b
1
n )n = b1 = b.

If b is positive, b
1
n is defined to be a positive number, the nth root of b. That is, a number

whose nth power is equal to b. This number is sometimes written n
√

b.

If b is negative we need to look at separately at the cases where n is even and where n is
odd.

If n is even and b is negative, b
1
n cannot be defined, because raising any number to an

even power results in a positive number.

If n is odd and b is negative, b
1
n can be defined. It is a negative number, the nth root of

b. For example, (−27)
1
3 = −3 because (−3) × (−3) × (−3) = −27.

Now we can see how to define b
p
q for any number of the form p

q
, where p and q are integers.

Such numbers are called rational numbers.

Notice that p
q

= p × 1
q
, so if rule 3 is to hold then b

p
q = (b

1
q )p = (bp)

1
q .

We know how to make sense of (b
1
q )p and (bp)

1
q , and they turn out to be equal, so this

tells us how to make sense of b
p
q . If we want rules 1, 2 and 3 to hold then we must define

b
p
q to be either one of (bp)

1
q or (b

1
q )p.

This definition always makes sense when b is positive, but we must take care when b is
negative. If q is even then we may have trouble in making sense of b

p
q for negative b. For

example we cannot make sense of (−3)
3
2 . This is because we cannot even make sense of

(−3)
1
2 , let alone ((−3)

1
2 )3. Trying to take the exponents in the other order does not help

us because (−3)3 = −27 and we cannot make sense of (−27)
1
2 .

However it may be that the numerator and denominator of p
q

contain common factors
which, when cancelled, leave the denominator odd. For example we can make sense of
(−3)

4
6 , even though 6 is even, because 4

6
= 2

3
, and we can make sense of (−3)

2
3 . A rational

number p
q

is said to be expressed in its lowest form if p and q contain no common factors.

If p
q
, when expressed in its lowest form, has q odd then we can make sense of b

p
q even for

b < 0.

To recapitulate, we define

b
p
q = (b

1
q )p = (bp)

1
q .

This definition makes sense for all p
q

if b > 0. If b < 0 then this definition makes sense
providing that p

q
is expressed in its lowest form and q is odd.
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So far, if b > 0, we have been able to give a suitable meaning to bx for all rational numbers
x. Not every number is a rational number. For example,

√
2 is an irrational number:

there do not exist integers p and q such that
√

2 = p
q
. However for b > 0 it is possible to

extend the definition of bx to irrational exponents x so that rules 1, 2 and 3 remain valid.
Thus if b > 0 then bx is defined for all real numbers x and satisfies rules 1, 2 and 3. We
will not show how bx may be defined for irrational numbers x.

Examples

(1
3
)−1 = 1

( 1
3
)

= 3

(0.2)−3 = 1
(0.2)3

= 1
0.008

= 125

(−64)
2
3 = [(−64)

1
3 ]2 = (−4)2 = 16 or,

(−64)
2
3 = [(−64)2]

1
3 = (4096)

1
3 = 16

16
3
4 = ( 4

√
16)3 = 23 = 8

(−16)
3
4 is not defined.

5
3
2 = 51+ 1

2 = 5 × 5
1
2 = 5

√
5

1.3 Exponents with different bases

From the definition of exponents we know that if n is a positive integer then

(ab)n = (ab) × (ab) × · · · × (ab)︸ ︷︷ ︸
n factors

= a × a × · · · × a︸ ︷︷ ︸
n factors

× b × b × · · · × b︸ ︷︷ ︸
n factors

(switching the order around)

= anbn.

Just as in section 1.2, we can show that this equation holds true for more general exponents
than integers, and we can formulate the following rule:

Rule 4: (ab)x = axbx whenever both sides of this equation make sense, that is, when
each of (ab)x, ax and bx make sense.

Again, from the definition of exponents we know that if n is a positive integer then(
a

b

)n

=
a

b
× a

b
× · · · × a

b︸ ︷︷ ︸
n factors

(b �= 0)

=

n factors︷ ︸︸ ︷
a × a × · · · × a

b × b × · · · × b︸ ︷︷ ︸
n factors

=
an

bn

As in section 1.2, we can show that this equation remains valid if the integer n is replaced
by a more general exponent x. We can formulate the following rule:
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Rule 5: (
a

b
)x =

ax

bx
whenever both sides of this equation make sense, that is, whenever

(a
b
)x, ax and bx make sense.

An expression of the form axby cannot generally be simplified, though it can be written in
the form (ab

y
x )x or (a

x
y b)y if necessary. For example, we cannot really make the expression

a2b5 any simpler than it is, though we could write it in the form (ab
5
2 )2 or (a

2
5 b)5.

Examples

(2 × 3)3 = 23 × 33 = 8 × 27 = 216 = 63

(4x)
1
2 = 4

1
2 x

1
2 = 2x

1
2 = 2

√
x

(−40)
1
3 = (−8 × 5)

1
3 = (−8)

1
3 × (5)

1
3 = −2 × 3

√
5

(2
3
)3 = 23

33 = 8
27

(4
7
)−2 = 1

( 4
7
)2

= 1 × 72

42 = 49
16

(−27
8
)−

1
3 = (− 8

27
)

1
3 = (−8)

1
3

27
1
3

= −2
3

1.4 Summary

If b > 0 then bx is defined for all numbers x. If b < 0 then bx is defined for all integers and
all numbers of the form p

q
where p and q are integers, p

q
is expressed in its lowest form and

q is odd. The number b is called the base and x is called the power, index or exponent.
Exponents have the following properties:

1. If n is a positive integer and b is any real number then bn = b × b × · · · × b︸ ︷︷ ︸
n factors

.

2. b
1
n =

n
√

b, and if n is even we take this to mean the positive nth root of b.

3. If b �= 0 then b0 = 1. b0 is undefined for b = 0.

4. If p and q are integers then b
p
q = (b

1
q )p = (bp)

1
q .

5. bx × by = bx+y whenever both sides of this equation are defined.

6.
bx

by
= bx−y whenever both sides of this equation are defined.

7. b−x =
1

bx
whenever both sides of this equation are defined.

8. (ab)x = axbx whenever both sides of this equation are defined.

9. (
a

b
)x =

ax

bx
whenever both sides of this equation are defined.
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1.5 Exercises

The following expressions evaluate to quite a ‘simple’ number. If you leave some of your
answers in fractional form you won’t need a calculator.

1. 9
1
2 2. 16

3
4 3. (1

5
)−1 4. (3−1)2 5. (5

2
)−2

6. (−8)
3
2 7. (−27

8
)

2
3 8. 5275−24 9. 8

1
2 2

1
2 10. (−125)

2
3

These look a little complicated but are equivalent to simpler ones. ‘Simplify’ them. Again,
you won’t need a calculator.

11.
3n+2

3n−2
12.

√
16

x6
13. (a

1
2 + b

1
2 )2

14. (x2 + y2)
1
2 − x2(x2 + y2)−

1
2 15.

x
1
2 + x

x
1
2

16. (u
1
3 − v

1
3 )(u

2
3 + (uv)

1
3 + v

2
3 )
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1.6 Solutions to exercises

1. 9
1
2 =

√
9 = 3

2. 16
3
4 = (16

1
4 )3 = 23 = 8

3. (1
5
)−1 = 1

1
5

= 5

4. (3−1)2 = 3−2 = 1
32 = 1

9

5. (5
2
)−2 = (2

5
)2 = 4

25

6. (−8)
3
2 is not defined.

7. (−27
8

)
2
3 = ((−27

8
)

1
3 )2 = (−3

2
)2 = 9

4

8. 5275−24 = 527−24 = 53 = 125

9. 8
1
2 2

1
2 = (8 × 2)

1
2 = 16

1
2 = 4

10. (−125)
2
3 = ((−125)

1
3 )2 = (−5)2 = 25

11. 3n+2

3n−2 = 3n+2−(n−2) = 34 = 81

12.
√

( 16
x6 ) = ( 16

x6 )
1
2 = 16

1
2

x6× 1
2

= 4
x3

13. (a
1
2 + b

1
2 )2 = (a

1
2 )2 + 2a

1
2 b

1
2 + (b

1
2 )2 = a + 2a

1
2 b

1
2 + b

14.

(x2 + y2)
1
2 − x2(x2 + y2)−

1
2 = (x2 + y2)

1
2 − x2

(x2 + y2)
1
2

=
(x2 + y2)

1
2 (x2 + y2)

1
2 − x2

(x2 + y2)
1
2

=
x2 + y2 − x2

(x2 + y2)
1
2

=
y2

(x2 + y2)
1
2

15. x
1
2 +x

x
1
2

= x
1
2

x
1
2

+ x

x
1
2

= 1 + x
1
2

16.

(u
1
3 − v

1
3 )(u

2
3 + (uv)

1
3 + v

2
3 ) = u

1
3 u

2
3 + u

1
3 (uv)

1
3 + u

1
3 v

2
3 − v

1
3 u

2
3 − v

1
3 (uv)

1
3 − v

1
3 v

2
3

= u − v


