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1 Exponents

1.1 Introduction

Whenever we use expressions like 73 or 2° we are using exponents.

The symbol 2° means 2 x 2 x 2 x 2 x 2. This symbol is spoken as ‘two raised to the

5 factors
power five’, ‘two to the power five’ or simply ‘two to the five’. The expression 2° is just a

shorthand way of writing ‘multiply 2 by itself 5 times’. The number 2 is called the base,
and 5 the exponent.

Similarly, if b is any real number then b% stands for b x b x b. Here b is the base, and 3
the exponent.

If n is a whole number, b" stands for b x b x --- x b. We say that b" is written in
—_———

n factors
exponential form, and we call b the base and n the exponent, power or index.

Special names are used when the exponent is 2 or 3. The expression b? is usually
spoken as ‘b squared’, and the expression b® as ‘b cubed’. Thus ‘two cubed’ means
22 =2x2x2=8.

1.2 Exponents with the same base

We will begin with a very simple definition. If b is any real number and n is a positive
integer then " means b multiplied by itself n times. The rules for the behaviour of
exponents follow naturally from this definition.

Rule 1: b x b™ = p*tm,

That is, to multiply two numbers in exponential form (with the same base), we add their
exponents.

Rule 2: 5—; =b"m.
In words, to divide two numbers in exponential form (with the same base) , we subtract
their exponents.

We have not yet given any meaning to negative exponents, so n must be greater than m
for this rule to make sense. In a moment we will see what happens if n is not greater than
m.

Rule 3: ()" = ™"

That is, to raise a number in exponential form to a power, we multiply the exponents.

Until now we have only considered exponents which are positive integers, such as 7 or

189. Our intention is to extend this notation to cover exponents which are not necessarily

positive integers, for example —5, or %, or numbers such as 7 &~ 3.14159.
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Also, we have not attached any meaning to the expression 0°. It doesn’t make sense to
talk about a number being multiplied by itself 0 times. However, if we want rule 2 to
continue to be valid when n = m then we must define the expression b° to mean the
number 1.

If b # 0 then we define b° to be equal to 1. We do not attempt to give any meaning to the
expression 0°. It remains undefined.

We initially had no idea of how to extend our notation to cover a zero exponent, but if
we wish rules 1, 2 and 3 to remain valid for such an exponent then the definition 0° = 1
is forced on us. We have no choice.

We have come up with a sensible definition of ° by taking m = n in rule 2 and seeing
what ° must be if rule 2 is to remain valid. To come up with a suitable meaning for
negative exponents we can take n < m in rule 2. For example, let’s try n = 2 and m = 3.

Rule 2 gives

b?

b—3 = bil or
1

==l

b

This suggests that we should define b~! to be equal to % This definition, too, makes sense
for all values of b except b = 0.

In a similar way we can see that we should define b= to mean bin, except when b = 0,

in which case it is undefined. You should convince yourself of this by showing that the
requirement that rule 2 remains valid forces on us the definitions

1

b_2 = b_2 and
1
-3
b = 5

If n is a positive integer (for example n = 17 or n = 178) then we define b=" to be equal
to bin This definition makes sense for all values of b except b = 0, in which case the
expression b™" remains undefined.

Pause for a moment and look at what has been achieved. We have been able to give a
meaning to b" for all integer values of n, positive, negative, and zero, and we have done
it in such a way that all three of the rules above still hold. We can give meaning to

expressions like (22)'% and 777

We have come quite a way, but there are a lot of exponents that we cannot yet handle.

. . . . 4 .
For example, what meaning would we give to an expression like 557 Our next task is to
give a suitable meaning to expressions involving fractional powers.

Let us start with bz. If rule 2 is to hold we must have

[SIES
N|=
SR

|

b2 x bz =b2t2 =b' =,

So, b2 is defined to be the positive square root of b, also written v/b. So b = /b.

Of course, b must be positive if b is to have any meaning for us, because if we take any
real number and multiply itself by itself then we get a positive number. (Actually there
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is a way of giving meaning to the square root of a negative number. This leads to the
notion of complex numbers, a beautiful area of mathematics which is beyond the scope
of this booklet.)

That takes care of a meaning for bz if b > 0. Now have a look at b3. If rule 2 is to remain
valid then we must have

5 =pl =D

Wl
wl=

— p3t

wl—

b3 x b3 x b

In general if we wish we wish to give meaning to expressions like br in such a way that
1
rule 3 holds then we must have (b»)" = b' = b.

If b is positive, br is defined to be a positive number, the n'® root of b. That is, a number
whose n'" power is equal to b. This number is sometimes written V/b.

If b is negative we need to look at separately at the cases where n is even and where n is
odd.

. . . 1 ..
If n is even and b is negative, b» cannot be defined, because raising any number to an
even power results in a positive number.

If n is odd and b is negative, b can be defined. It is a negative number, the n” root of
b. For example, (—27)3 = —3 because (—3) x (=3) x (=3) = —27.

Now we can see how to define b4 for any number of the form g, where p and ¢ are integers.
Such numbers are called rational numbers.

Notice that 2 = p x é, so if rule 3 is to hold then b = (b%)p = (bp)%

We know how to make sense of (b%)p and (bp)%, and they turn out to be equal, so this

tells us how to make sense of b4. If we want rules 1, 2 and 3 to hold then we must define
P 1 1

ba to be either one of (b)e or (ba)?.

This definition always makes sense when b is positive, but we must take care when b is
negative. If ¢ is even then we may have trouble in making sense of b for negative b. For
example we cannot make sense of (—3)%. This is because we cannot even make sense of
(—3)z, let alone ((—3)2)?. Trying to take the exponents in the other order does not help

3

us because (—3)? = —27 and we cannot make sense of (—27)2.

However it may be that the numerator and denominator of 2 contain common factors
which, when cancelled, leave the denominator odd. For example we can make sense of
42

(—3)%, even though 6 is even, because & = 3, and we can make sense of (—3)3. A rational

number g is said to be expressed in its lowest form if p and ¢ contain no common factors.

If g, when expressed in its lowest form, has ¢ odd then we can make sense of be even for
b<0.

To recapitulate, we define

This definition makes sense for all 2 if b > 0. If b < 0 then this definition makes sense
providing that § is expressed in its lowest form and ¢ is odd.
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So far, if b > 0, we have been able to give a suitable meaning to b* for all rational numbers
z. Not every number is a rational number. For example, /2 is an #rrational number:
there do not exist integers p and ¢ such that /2 = g. However for b > 0 it is possible to
extend the definition of * to irrational exponents x so that rules 1, 2 and 3 remain valid.
Thus if b > 0 then b* is defined for all real numbers z and satisfies rules 1, 2 and 3. We
will not show how b* may be defined for irrational numbers x.

Examples
-1 1
3 = =3
-3 _ 1 _ 1 _
(0.2)7% = 0.2)3 — 0.008 125
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(—16)7 is not defined.
53 = 5142 = 5 x 52 = 5/5

1.3 Exponents with different bases

From the definition of exponents we know that if n is a positive integer then

(ab)™ = (ab) x (ab) x -+ x (ab)

= axaxX---xaxbxbx---xb (switching the order around)

n factors n factors
= a"b".

Just as in section 1.2, we can show that this equation holds true for more general exponents
than integers, and we can formulate the following rule:

Rule 4: (ab)® = a®"b® whenever both sides of this equation make sense, that is, when
each of (ab)*, a® and b” make sense.

Again, from the definition of exponents we know that if n is a positive integer then

a\" a a a

(G) = 5x5xxg 020
n factors
n factors

axXaX---Xa
bxbx---xb
— ——

n factors

CL’VL

"
As in section 1.2, we can show that this equation remains valid if the integer n is replaced
by a more general exponent x. We can formulate the following rule:
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a x
Rule 5: (5)m =1 whenever both sides of this equation make sense, that is, whenever

(9)*, a® and b” make sense.

An expression of the form a”b? cannot generally be simplified, though it can be written in
the form (ab=)* or (a¥b)¥ if necessary. For example, we cannot really make the expression
a%b® any simpler than it is, though we could write it in the form (ab%)2 or (a3b)®.

Examples

(2x3)3=28x33=8x27=216=6"

1.4 Summary

If b > 0 then 0” is defined for all numbers x. If b < 0 then 0” is defined for all integers and
all numbers of the form § where p and ¢ are integers, § is expressed in its lowest form and
q is odd. The number b is called the base and x is called the power, index or exponent.
Exponents have the following properties:

1. If n is a positive integer and b is any real number then b" =b x b x --- x b.
—_— ——
n factors

h

2. b = Vb, and if n is even we take this to mean the positive n'" root of b.

3. If b # 0 then b° = 1. ° is undefined for b = 0.

Q=

4. If p and ¢ are integers then bi = (b%)p = (bP)a.
5. b* x bY = b"TY whenever both sides of this equation are defined.

bCC
6. o b*"Y whenever both sides of this equation are defined.

1
7.0 = e whenever both sides of this equation are defined.
8. (ab)” = a"b" whenever both sides of this equation are defined.

xT

9. (-)* = Z_I whenever both sides of this equation are defined.
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1.5 Exercises

The following expressions evaluate to quite a ‘simple’ number. If you leave some of your
answers in fractional form you won’t need a calculator.

1. 92 2. 161 3. (1) 4. (3712 5. (3)2
6. (—8)2 7. (F2)3 8. 527524 9. 8222 10. (—125)3

These look a little complicated but are equivalent to simpler ones. ‘Simplify’ them. Again,
you won’t need a calculator.
3n+2 16
. 12. 4/ —
3n—2 26
T+

11

14. (224922 — 2222+ 92"z 15. T
T2
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1.6 Solutions to exercises

1. 92=9=3

2. 167 = (161)3 =23 =8
1\— 1

3. (5)1:g:5

4 (3—1)2:3—2:3%:%

5. 5)2=(3)7=4

6. (—8)2 is not defined.
(D)5 = ()32 = () =4

5275—24 — 527—24 — 53 =125

© ® X

8225 = (8 x 2)2 = 162 =4
10. (—125)5 = ((—125)5)? = (—5)2 = 25
11, 32 _ gnt2-(n—2) _ 34 _ g

3n—2 -

1
12. (E):(E)%: 162 — 4

13. (a2 + b2)2 = (a2)? + 2a2b2 + (b2)2 = a + 2a2b2 + b

14.
2 2% L 2(,.2 -2 2 2L z?
(@"+y7): —a (" +y') 2 = (°+y’)?
(@ 1)
_ @4y ) o
(% +y?)2
B 2?2 4 y? — g
(22 + y?)2
@+ )]
3 3 1
15, 542 = 22 4 2 =1 4 2
x2 x2 x2
16.
(ué—v%)(ué—%(uv)%%—v%) = uéué—|—7¢L%(m})§—|—u§v§—v%ué—v%(uv)é

= U—-v



