Mathematics Learning Centre

Exponents

Christopher Thomas

© 1998 University of Sydney

1 Exponents

1.1 Introduction

Whenever we use expressions like 7^{3} or 2^{5} we are using exponents.
The symbol 2^{5} means $\underbrace{2 \times 2 \times 2 \times 2 \times 2}_{5 \text { factors }}$. This symbol is spoken as 'two raised to the power five', 'two to the power five' or simply 'two to the five'. The expression 2^{5} is just a shorthand way of writing 'multiply 2 by itself 5 times'. The number 2 is called the base, and 5 the exponent.
Similarly, if b is any real number then b^{3} stands for $b \times b \times b$. Here b is the base, and 3 the exponent.
If n is a whole number, b^{n} stands for $\underbrace{b \times b \times \cdots \times b}_{n \text { factors }}$. We say that b^{n} is written in exponential form, and we call b the base and n the exponent, power or index.

Special names are used when the exponent is 2 or 3 . The expression b^{2} is usually spoken as ' b squared', and the expression b^{3} as ' b cubed'. Thus 'two cubed' means $2^{3}=2 \times 2 \times 2=8$.

1.2 Exponents with the same base

We will begin with a very simple definition. If b is any real number and n is a positive integer then b^{n} means b multiplied by itself n times. The rules for the behaviour of exponents follow naturally from this definition.

Rule 1: $b^{n} \times b^{m}=b^{n+m}$.
That is, to multiply two numbers in exponential form (with the same base), we add their exponents.

Rule 2: $\frac{b^{n}}{b^{m}}=b^{n-m}$.
In words, to divide two numbers in exponential form (with the same base), we subtract their exponents.

We have not yet given any meaning to negative exponents, so n must be greater than m for this rule to make sense. In a moment we will see what happens if n is not greater than m.

Rule 3: $\left(b^{m}\right)^{n}=b^{m n}$
That is, to raise a number in exponential form to a power, we multiply the exponents.
Until now we have only considered exponents which are positive integers, such as 7 or 189. Our intention is to extend this notation to cover exponents which are not necessarily positive integers, for example -5 , or $\frac{113}{31}$, or numbers such as $\pi \approx 3.14159$.

Also, we have not attached any meaning to the expression b^{0}. It doesn't make sense to talk about a number being multiplied by itself 0 times. However, if we want rule 2 to continue to be valid when $n=m$ then we must define the expression b^{0} to mean the number 1.

If $b \neq 0$ then we define b^{0} to be equal to 1 . We do not attempt to give any meaning to the expression 0^{0}. It remains undefined.

We initially had no idea of how to extend our notation to cover a zero exponent, but if we wish rules 1,2 and 3 to remain valid for such an exponent then the definition $b^{0}=1$ is forced on us. We have no choice.

We have come up with a sensible definition of b^{0} by taking $m=n$ in rule 2 and seeing what b^{0} must be if rule 2 is to remain valid. To come up with a suitable meaning for negative exponents we can take $n<m$ in rule 2 . For example, let's try $n=2$ and $m=3$.
Rule 2 gives

$$
\begin{aligned}
\frac{b^{2}}{b^{3}} & =b^{-1} \quad \text { or } \\
\frac{1}{b} & =b^{-1} .
\end{aligned}
$$

This suggests that we should define b^{-1} to be equal to $\frac{1}{b}$. This definition, too, makes sense for all values of b except $b=0$.
In a similar way we can see that we should define b^{-n} to mean $\frac{1}{b^{n}}$, except when $b=0$, in which case it is undefined. You should convince yourself of this by showing that the requirement that rule 2 remains valid forces on us the definitions

$$
\begin{aligned}
b^{-2} & =\frac{1}{b^{2}} \quad \text { and } \\
b^{-3} & =\frac{1}{b^{3}}
\end{aligned}
$$

If n is a positive integer (for example $n=17$ or $n=178$) then we define b^{-n} to be equal to $\frac{1}{b^{n}}$. This definition makes sense for all values of b except $b=0$, in which case the expression b^{-n} remains undefined.

Pause for a moment and look at what has been achieved. We have been able to give a meaning to b^{n} for all integer values of n, positive, negative, and zero, and we have done it in such a way that all three of the rules above still hold. We can give meaning to expressions like $\left(\frac{35}{7}\right)^{13}$ and π^{-7}.
We have come quite a way, but there are a lot of exponents that we cannot yet handle. For example, what meaning would we give to an expression like $5^{\frac{7}{9}}$? Our next task is to give a suitable meaning to expressions involving fractional powers.
Let us start with $b^{\frac{1}{2}}$. If rule 2 is to hold we must have

$$
b^{\frac{1}{2}} \times b^{\frac{1}{2}}=b^{\frac{1}{2}+\frac{1}{2}}=b^{1}=b
$$

So, $b^{\frac{1}{2}}$ is defined to be the positive square root of b, also written \sqrt{b}. So $b^{\frac{1}{2}}=\sqrt{b}$.
Of course, b must be positive if $b^{\frac{1}{2}}$ is to have any meaning for us, because if we take any real number and multiply itself by itself then we get a positive number. (Actually there
is a way of giving meaning to the square root of a negative number. This leads to the notion of complex numbers, a beautiful area of mathematics which is beyond the scope of this booklet.)

That takes care of a meaning for $b^{\frac{1}{2}}$ if $b>0$. Now have a look at $b^{\frac{1}{3}}$. If rule 2 is to remain valid then we must have

$$
b^{\frac{1}{3}} \times b^{\frac{1}{3}} \times b^{\frac{1}{3}}=b^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=b^{1}=b
$$

In general if we wish we wish to give meaning to expressions like $b^{\frac{1}{n}}$ in such a way that rule 3 holds then we must have $\left(b^{\frac{1}{n}}\right)^{n}=b^{1}=b$.

If b is positive, $b^{\frac{1}{n}}$ is defined to be a positive number, the $n^{\text {th }}$ root of b. That is, a number whose $n^{\text {th }}$ power is equal to b. This number is sometimes written $\sqrt[n]{b}$.

If b is negative we need to look at separately at the cases where n is even and where n is odd.
If n is even and b is negative, $b^{\frac{1}{n}}$ cannot be defined, because raising any number to an even power results in a positive number.
If n is $o d d$ and b is negative, $b^{\frac{1}{n}}$ can be defined. It is a negative number, the $n^{t h}$ root of b. For example, $(-27)^{\frac{1}{3}}=-3$ because $(-3) \times(-3) \times(-3)=-27$.
Now we can see how to define $b^{\frac{p}{q}}$ for any number of the form $\frac{p}{q}$, where p and q are integers. Such numbers are called rational numbers.
Notice that $\frac{p}{q}=p \times \frac{1}{q}$, so if rule 3 is to hold then $b^{\frac{p}{q}}=\left(b^{\frac{1}{q}}\right)^{p}=\left(b^{p}\right)^{\frac{1}{q}}$.
We know how to make sense of $\left(b^{\frac{1}{q}}\right)^{p}$ and $\left(b^{p}\right)^{\frac{1}{q}}$, and they turn out to be equal, so this tells us how to make sense of $b^{\frac{p}{q}}$. If we want rules 1,2 and 3 to hold then we must define $b^{\frac{p}{q}}$ to be either one of $\left(b^{p}\right)^{\frac{1}{q}}$ or $\left(b^{\frac{1}{q}}\right)^{p}$.
This definition always makes sense when b is positive, but we must take care when b is negative. If q is even then we may have trouble in making sense of $b^{\frac{p}{q}}$ for negative b. For example we cannot make sense of $(-3)^{\frac{3}{2}}$. This is because we cannot even make sense of $(-3)^{\frac{1}{2}}$, let alone $\left((-3)^{\frac{1}{2}}\right)^{3}$. Trying to take the exponents in the other order does not help us because $(-3)^{3}=-27$ and we cannot make sense of $(-27)^{\frac{1}{2}}$.

However it may be that the numerator and denominator of $\frac{p}{q}$ contain common factors which, when cancelled, leave the denominator odd. For example we can make sense of $(-3)^{\frac{4}{6}}$, even though 6 is even, because $\frac{4}{6}=\frac{2}{3}$, and we can make sense of $(-3)^{\frac{2}{3}}$. A rational number $\frac{p}{q}$ is said to be expressed in its lowest form if p and q contain no common factors. If $\frac{p}{q}$, when expressed in its lowest form, has q odd then we can make sense of $b^{\frac{p}{q}}$ even for $b<0$ 。

To recapitulate, we define

$$
b^{\frac{p}{q}}=\left(b^{\frac{1}{q}}\right)^{p}=\left(b^{p}\right)^{\frac{1}{q}} .
$$

This definition makes sense for all $\frac{p}{q}$ if $b>0$. If $b<0$ then this definition makes sense providing that $\frac{p}{q}$ is expressed in its lowest form and q is odd.

So far, if $b>0$, we have been able to give a suitable meaning to b^{x} for all rational numbers x. Not every number is a rational number. For example, $\sqrt{2}$ is an irrational number: there do not exist integers p and q such that $\sqrt{2}=\frac{p}{q}$. However for $b>0$ it is possible to extend the definition of b^{x} to irrational exponents x so that rules 1,2 and 3 remain valid. Thus if $b>0$ then b^{x} is defined for all real numbers x and satisfies rules 1,2 and 3 . We will not show how b^{x} may be defined for irrational numbers x.

Examples

$\left(\frac{1}{3}\right)^{-1}=\frac{1}{\left(\frac{1}{3}\right)}=3$
$(0.2)^{-3}=\frac{1}{(0.2)^{3}}=\frac{1}{0.008}=125$
$(-64)^{\frac{2}{3}}=\left[(-64)^{\frac{1}{3}}\right]^{2}=(-4)^{2}=16$ or,
$(-64)^{\frac{2}{3}}=\left[(-64)^{2}\right]^{\frac{1}{3}}=(4096)^{\frac{1}{3}}=16$
$16^{\frac{3}{4}}=(\sqrt[4]{16})^{3}=2^{3}=8$
$(-16)^{\frac{3}{4}}$ is not defined.
$5^{\frac{3}{2}}=5^{1+\frac{1}{2}}=5 \times 5^{\frac{1}{2}}=5 \sqrt{5}$

1.3 Exponents with different bases

From the definition of exponents we know that if n is a positive integer then

$$
\begin{aligned}
(a b)^{n} & =\underbrace{(a b) \times(a b) \times \cdots \times(a b)}_{n \text { factors }} \\
& =\underbrace{a \times a \times \cdots \times a}_{n \text { factors }} \times \underbrace{b \times b \times \cdots \times b}_{n \text { factors }} \quad \text { (switching the order around) } \\
& =a^{n} b^{n} .
\end{aligned}
$$

Just as in section 1.2, we can show that this equation holds true for more general exponents than integers, and we can formulate the following rule:

Rule 4: $(a b)^{x}=a^{x} b^{x}$ whenever both sides of this equation make sense, that is, when each of $(a b)^{x}, a^{x}$ and b^{x} make sense.

Again, from the definition of exponents we know that if n is a positive integer then

$$
\begin{aligned}
\left(\frac{a}{b}\right)^{n} & =\underbrace{\frac{a}{b} \times \frac{a}{b} \times \cdots \times \frac{a}{b}}_{n \text { factors }} \quad(b \neq 0) \\
& =\overbrace{n \text { factors }}^{\frac{a \times a \times \cdots \times a}{b \times b \times \cdots \times b}} \underbrace{b \times \cdots}_{n \text { factors }} \\
& =\frac{a^{n}}{b^{n}}
\end{aligned}
$$

As in section 1.2, we can show that this equation remains valid if the integer n is replaced by a more general exponent x. We can formulate the following rule:

Rule 5: $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$ whenever both sides of this equation make sense, that is, whenever $\left(\frac{a}{b}\right)^{x}, a^{x}$ and b^{x} make sense.

An expression of the form $a^{x} b^{y}$ cannot generally be simplified, though it can be written in the form $\left(a b^{\frac{y}{x}}\right)^{x}$ or $\left(a^{\frac{x}{y}} b\right)^{y}$ if necessary. For example, we cannot really make the expression $a^{2} b^{5}$ any simpler than it is, though we could write it in the form $\left(a b^{\frac{5}{2}}\right)^{2}$ or $\left(a^{\frac{2}{5}} b\right)^{5}$.

Examples

$(2 \times 3)^{3}=2^{3} \times 3^{3}=8 \times 27=216=6^{3}$
$(4 x)^{\frac{1}{2}}=4^{\frac{1}{2}} x^{\frac{1}{2}}=2 x^{\frac{1}{2}}=2 \sqrt{x}$
$(-40)^{\frac{1}{3}}=(-8 \times 5)^{\frac{1}{3}}=(-8)^{\frac{1}{3}} \times(5)^{\frac{1}{3}}=-2 \times \sqrt[3]{5}$
$\left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}=\frac{8}{27}$
$\left(\frac{4}{7}\right)^{-2}=\frac{1}{\left(\frac{4}{7}\right)^{2}}=1 \times \frac{7^{2}}{4^{2}}=\frac{49}{16}$
$\left(-\frac{27}{8}\right)^{-\frac{1}{3}}=\left(-\frac{8}{27}\right)^{\frac{1}{3}}=\frac{(-8)^{\frac{1}{3}}}{27^{\frac{1}{3}}}=-\frac{2}{3}$

1.4 Summary

If $b>0$ then b^{x} is defined for all numbers x. If $b<0$ then b^{x} is defined for all integers and all numbers of the form $\frac{p}{q}$ where p and q are integers, $\frac{p}{q}$ is expressed in its lowest form and q is odd. The number b is called the base and x is called the power, index or exponent. Exponents have the following properties:

1. If n is a positive integer and b is any real number then $b^{n}=\underbrace{b \times b \times \cdots \times b}_{n \text { factors }}$.
2. $b^{\frac{1}{n}}=\sqrt[n]{b}$, and if n is even we take this to mean the positive $n^{\text {th }}$ root of b.
3. If $b \neq 0$ then $b^{0}=1 . b^{0}$ is undefined for $b=0$.
4. If p and q are integers then $b^{\frac{p}{q}}=\left(b^{\frac{1}{q}}\right)^{p}=\left(b^{p}\right)^{\frac{1}{q}}$.
5. $b^{x} \times b^{y}=b^{x+y}$ whenever both sides of this equation are defined.
6. $\frac{b^{x}}{b^{y}}=b^{x-y}$ whenever both sides of this equation are defined.
7. $b^{-x}=\frac{1}{b^{x}}$ whenever both sides of this equation are defined.
8. $(a b)^{x}=a^{x} b^{x}$ whenever both sides of this equation are defined.
9. $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$ whenever both sides of this equation are defined.

1.5 Exercises

The following expressions evaluate to quite a 'simple' number. If you leave some of your answers in fractional form you won't need a calculator.

1. $9^{\frac{1}{2}}$
2. $16^{\frac{3}{4}}$
3. $\left(\frac{1}{5}\right)^{-1}$
4. $\left(3^{-1}\right)^{2}$
5. $\left(\frac{5}{2}\right)^{-2}$
6. $(-8)^{\frac{3}{2}}$
7. $\left(\frac{-27}{8}\right)^{\frac{2}{3}}$
8. $5^{27} 5^{-24}$
9. $8^{\frac{1}{2}} 2^{\frac{1}{2}}$
10. $(-125)^{\frac{2}{3}}$

These look a little complicated but are equivalent to simpler ones. 'Simplify' them. Again, you won't need a calculator.
11. $\frac{3^{n+2}}{3^{n-2}}$
12. $\sqrt{\frac{16}{x^{6}}}$
13. $\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)^{2}$
14. $\left(x^{2}+y^{2}\right)^{\frac{1}{2}}-x^{2}\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}$
15. $\frac{x^{\frac{1}{2}}+x}{x^{\frac{1}{2}}}$
16. $\left(u^{\frac{1}{3}}-v^{\frac{1}{3}}\right)\left(u^{\frac{2}{3}}+(u v)^{\frac{1}{3}}+v^{\frac{2}{3}}\right)$

1.6 Solutions to exercises

1. $9^{\frac{1}{2}}=\sqrt{9}=3$
2. $16^{\frac{3}{4}}=\left(16^{\frac{1}{4}}\right)^{3}=2^{3}=8$
3. $\left(\frac{1}{5}\right)^{-1}=\frac{1}{\frac{1}{5}}=5$
4. $\left(3^{-1}\right)^{2}=3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
5. $\left(\frac{5}{2}\right)^{-2}=\left(\frac{2}{5}\right)^{2}=\frac{4}{25}$
6. $(-8)^{\frac{3}{2}}$ is not defined.
7. $\left(\frac{-27}{8}\right)^{\frac{2}{3}}=\left(\left(\frac{-27}{8}\right)^{\frac{1}{3}}\right)^{2}=\left(\frac{-3}{2}\right)^{2}=\frac{9}{4}$
8. $5^{27} 5^{-24}=5^{27-24}=5^{3}=125$
9. $8^{\frac{1}{2}} 2^{\frac{1}{2}}=(8 \times 2)^{\frac{1}{2}}=16^{\frac{1}{2}}=4$
10. $(-125)^{\frac{2}{3}}=\left((-125)^{\frac{1}{3}}\right)^{2}=(-5)^{2}=25$
11. $\frac{3^{n+2}}{3^{n-2}}=3^{n+2-(n-2)}=3^{4}=81$
12. $\sqrt{\left(\frac{16}{x^{6}}\right)}=\left(\frac{16}{x^{6}}\right)^{\frac{1}{2}}=\frac{16^{\frac{1}{2}}}{x^{6 \times \frac{1}{2}}}=\frac{4}{x^{3}}$
13. $\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)^{2}=\left(a^{\frac{1}{2}}\right)^{2}+2 a^{\frac{1}{2}} b^{\frac{1}{2}}+\left(b^{\frac{1}{2}}\right)^{2}=a+2 a^{\frac{1}{2}} b^{\frac{1}{2}}+b$
14.

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{\frac{1}{2}}-x^{2}\left(x^{2}+y^{2}\right)^{-\frac{1}{2}} & =\left(x^{2}+y^{2}\right)^{\frac{1}{2}}-\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}} \\
& =\frac{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}\left(x^{2}+y^{2}\right)^{\frac{1}{2}}-x^{2}}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}} \\
& =\frac{x^{2}+y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}} \\
& =\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}
\end{aligned}
$$

15. $\frac{x^{\frac{1}{2}}+x}{x^{\frac{1}{2}}}=\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}}+\frac{x}{x^{\frac{1}{2}}}=1+x^{\frac{1}{2}}$
16.

$$
\begin{aligned}
\left(u^{\frac{1}{3}}-v^{\frac{1}{3}}\right)\left(u^{\frac{2}{3}}+(u v)^{\frac{1}{3}}+v^{\frac{2}{3}}\right) & =u^{\frac{1}{3}} u^{\frac{2}{3}}+u^{\frac{1}{3}}(u v)^{\frac{1}{3}}+u^{\frac{1}{3}} v^{\frac{2}{3}}-v^{\frac{1}{3}} u^{\frac{2}{3}}-v^{\frac{1}{3}}(u v)^{\frac{1}{3}}-v^{\frac{1}{3}} v^{\frac{2}{3}} \\
& =u-v
\end{aligned}
$$

