The University of Sydney

Functions: The domain and range

Jackie Nicholas
Jacquie Hargreaves
Janet Hunter

(c)2006 University of Sydney

1 Functions

In these notes we will cover various aspects of functions. We will look at the definition of a function, the domain and range of a function, and what we mean by specifying the domain of a function.

1.1 What is a function?

1.1.1 Definition of a function

A function f from a set of elements X to a set of elements Y is a rule that assigns to each element x in X exactly one element y in Y.

One way to demonstrate the meaning of this definition is by using arrow diagrams.

$g: X \rightarrow Y$ is not a function. The element 1 in set X is assigned two elements, 5 and 6 in set Y.

A function can also be described as a set of ordered pairs (x, y) such that for any x-value in the set, there is only one y-value. This means that there cannot be any repeated x-values with different y-values.

The examples above can be described by the following sets of ordered pairs.
$\mathrm{F}=\{(1,5),(3,3),(2,3),(4,2)\}$ is a func- $\mathrm{G}=\{(1,5),(4,2),(2,3),(3,3),(1,6)\}$ is not tion.
a function.
The definition we have given is a general one. While in the examples we have used numbers as elements of X and Y, there is no reason why this must be so. However, in these notes we will only consider functions where X and Y are subsets of the real numbers.

In this setting, we often describe a function using the rule, $y=f(x)$, and create a graph of that function by plotting the ordered pairs $(x, f(x))$ on the Cartesian Plane. This graphical representation allows us to use a test to decide whether or not we have the graph of a function: The Vertical Line Test.

1.1.2 The Vertical Line Test

The Vertical Line Test states that if it is not possible to draw a vertical line through a graph so that it cuts the graph in more than one point, then the graph is a function.

This is the graph of a function. All possible vertical lines will cut this graph only once.

This is not the graph of a function. The vertical line we have drawn cuts the graph twice.

1.1.3 Domain of a function

For a function $f: X \rightarrow Y$ the domain of f is the set X.
This also corresponds to the set of x-values when we describe a function as a set of ordered pairs (x, y).

If only the rule $y=f(x)$ is given, then the domain is taken to be the set of all real x for which the function is defined. For example, $y=\sqrt{x}$ has domain; all real $x \geq 0$. This is sometimes referred to as the natural domain of the function.

1.1.4 Range of a function

For a function $f: X \rightarrow Y$ the range of f is the set of y-values such that $y=f(x)$ for some x in X.

This corresponds to the set of y-values when we describe a function as a set of ordered pairs (x, y). The function $y=\sqrt{x}$ has range; all real $y \geq 0$.

Example

a. State the domain and range of $y=\sqrt{x+4}$.
b. Sketch, showing significant features, the graph of $y=\sqrt{x+4}$.

Solution

a. The domain of $y=\sqrt{x+4}$ is all real $x \geq-4$. We know that square root functions are only defined for positive numbers so we require that $x+4 \geq 0$, ie $x \geq-4$. We also know that the square root functions are always positive so the range of $y=\sqrt{x+4}$ is all real $y \geq 0$.
b.

The graph of $y=\sqrt{x+4}$.

Example

a. A parabola, which has vertex $(3,-3)$, is sketched below.

b. Find the domain and range of this function.

Solution

The domain of this parabola is all real x. The range is all real $y \geq-3$.

Example

Sketch the graph of $f(x)=3 x-x^{2}$ and find
a. the domain and range
b. $f(q)$
c. $f\left(x^{2}\right)$.

Solution

The graph of $f(x)=3 x-x^{2}$.
a. The domain is all real x. The range is all real y where $y \leq 2.25$.
b. $f(q)=3 q-q^{2}$
c. $f\left(x^{2}\right)=3\left(x^{2}\right)-\left(x^{2}\right)^{2}=3 x^{2}-x^{4}$

Example

The graph of the function $f(x)=(x-1)^{2}+1$ is sketched below.

The graph of $f(x)=(x-1)^{2}+1$.

State its domain and range.

Solution

The function is defined for all real x. The vertex of the function is at $(1,1)$ and therfore the range of the function is all real $y \geq 1$.

1.2 Specifying or restricting the domain of a function

We sometimes give the rule $y=f(x)$ along with the domain of definition. This domain may not necessarily be the natural domain. For example, if we have the function

$$
y=x^{2} \quad \text { for } \quad 0 \leq x \leq 2
$$

then the domain is given as $0 \leq x \leq 2$. The natural domain has been restricted to the subinterval $0 \leq x \leq 2$.

Consequently, the range of this function is all real y where $0 \leq y \leq 4$. We can best illustrate this by sketching the graph.

The graph of $y=x^{2}$ for $0 \leq x \leq 2$.

1.3 Exercises

1. a. State the domain and range of $f(x)=\sqrt{9-x^{2}}$.
b. Sketch the graph of $y=\sqrt{9-x^{2}}$.
2. Sketch the following functions stating the domain and range of each:
a. $y=\sqrt{x-1}$
b. $y=|2 x|$
c. $y=\frac{1}{x-4}$
d. $y=|2 x|-1$.
3. Explain the meanings of function, domain and range. Discuss whether or not $y^{2}=x^{3}$ is a function.
4. Sketch the following relations, showing all intercepts and features. State which ones are functions giving their domain and range.
a. $y=-\sqrt{4-x^{2}}$
b. $|x|-|y|=0$
c. $y=x^{3}$
d. $y=\frac{x}{|x|}, x \neq 0$
e. $|y|=x$.
5. Write down the values of x which are not in the domain of the following functions:
a. $f(x)=\sqrt{x^{2}-4 x}$
b. $g(x)=\frac{x}{x^{2}-1}$

1.4 Solutions to exercises 1.3

1. a. The domain of $f(x)=\sqrt{9-x^{2}}$ is all real x where $-3 \leq x \leq 3$. The range is all real y such that $0 \leq y \leq 3$.
b.

The graph of $f(x)=\sqrt{9-x^{2}}$.
2. a.

The graph of $y=\sqrt{x-1}$. The domain is all real $x \geq 1$ and the range is all real $y \geq 0$.
b.

The graph of $y=|2 x|$. Its domain is all real x and range all real $y \geq 0$.
c.

The graph of $y=\frac{1}{x-4}$. The domain is all real $x \neq 4$ and the range is all real $y \neq 0$.
d.

The graph of $y=|2 x|-1$. The domain is all real x, and the range is all real $y \geq-1$.
3. $y^{2}=x^{3}$ is not a function. If $x=1$, then $y^{2}=1$ and $y=1$ or $y=-1$.
4. a.

The graph of $y=-\sqrt{4-x^{2}}$. This is a function with the domain: all real x such that $-2 \leq x \leq 2$ and range: all real y such that $-2 \leq y \leq 0$.
b.

The graph of $|x|-|y|=0$. This is not the graph of a function.
d.

The graph of $y=\frac{x}{|x|}$. This is the graph of a function which is not defined at $x=$ 0 . Its domain is all real $x \neq 0$, and range is $y= \pm 1$.
e.

The graph of $|y|=x$. This is not the graph of a function.
5. a. The values of x in the interval $0<x<4$ are not in the domain of the function.
b. $x=1$ and $x=-1$ are not in the domain of the function.

