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1 For Reference

1.1 Table of derivatives

Function (f(x)) Derivative
(
f ′(x) i.e. d

dx
(f(x))

)
xn nxn−1 (n any real number)

ex ex

ln x 1
x

(x > 0)

sin x cos x

cos x − sin x

tan x sec2 x

cot x − csc2 x

sec x sec x tan x

csc x − csc x cot x

sin−1 x
1√

(1 − x2)
(|x| < 1)

tan−1 x
1

1 + x2

1.2 New notation

Symbol Meaning∫
f(x)dx The indefinite integral of f(x) with respect to x

i.e. a function whose derivative is f(x).

Note that
∫

...dx acts like a pair of brackets around the function. Just as a left-hand

bracket has no meaning unless it is followed by a closing right-hand bracket, the integral
sign cannot stand by itself, but needs “dx” to complete it. The integral sign tells us what
operation to perform and the “dx” tells us that the variable with respect to which we are
integrating is x.

New terms Meaning

Anti-derivative
Primitive function
Indefinite integral

These are all different ways of saying “a function
whose derivative is ...”
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2 Introduction

This booklet is intended for students who have never done integration before, or who have
done it before, but so long ago that they feel they have forgotten it all.

Integration is used in dealing with two essentially different types of problems:

The first type are problems in which the derivative of a function, or its rate of change,
or the slope of its graph, is known and we want to find the function. We are therefore
required to reverse the process of differentiation. This reverse process is known as anti-
differentiation, or finding a primitive function, or finding an indefinite integral.

The second type are problems which involve adding up a very large number of very small
quantities, (and then taking a limit as the size of the quantities approaches zero while
the number of terms tends to infinity). This process leads to the definition of the definite
integral. Definite integrals are used for finding area, volume, centre of gravity, moment of
inertia, work done by a force, and in many other applications.

This unit will deal only with problems of the first type, i.e. with indefinite integrals. The
second type of problem is dealt with in Introduction to Integration Part 2 - The Definite
Integral.

2.1 How to use this book

You will not gain much by just reading this booklet. Have pencil and paper ready to
work through the examples before reading their solutions. Do all the exercises. It is
important that you try hard to complete the exercises on your own, rather than refer to
the solutions as soon as you are stuck. If you have done integration before, and want to
revise it, you should skim through the text and then do the exercises for practice. If you
have any difficulties with the exercises, go back and study the text in more detail.

2.2 Objectives

By the time you have worked through this unit, you should:

• Be familiar with the definition of an indefinite integral as the result of reversing the
process of differentiation.

• Understand how rules for integration are worked out using the rules for
differentiation (in reverse).

• Be able to find indefinite integrals of sums, differences and constant multiples of
certain elementary functions.

• Be able to use the chain rule (in reverse) to find indefinite integrals of certain
expressions involving composite functions.

• Be able to apply these techniques to problems in which the rate of change of a
function is known and the function has to be found.
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2.3 Assumed knowledge

We assume that you are familiar with the following elementary functions: polynomials,
powers of x, and the trigonometric, exponential and natural logarithm functions, and are
able to differentiate these. We also assume that you can recognise composite functions
and are familiar with the chain rule for differentiating them.

In addition you will need to know some simple trigonometric identities: those based on the
definitions of tan, cot, sec and csc and those based on Pythagoras’ Theorem. These are
covered in sections of the Mathematics Learning Centre booklet Trigonometric Identities.

Other trigonometric identities are not needed for this booklet, but will be needed in any
course on integration, so if you are preparing for a course on integration you should work
through the whole of Trigonometric Identities as well as this booklet.

Finally, knowledge of the inverse trigonometric functions, sin−1, cos−1, and tan−1 and
their derivatives would be a help, but is not essential.

2.4 Test yourself

To check how well you remember all the things we will be assuming, try the following
questions, and check your answers against those on the next page.

1. Find the derivatives of the following functions:

i x10

ii
√

x

iii
1

x

iv 5x3 − 3
x2

2. Find f ′(x) for each of the functions f(x) given:

i f(x) = ex

ii f(x) = ln(x)

iii f(x) = cos x + sin x

iv f(x) = cot x

3. Find derivatives of:

i (2x + 1)12

ii sin 3x

iii ex2

iv
1

x2 − 3

v cos(x3)

vi ln(sin x)
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4. Simplify the following expressions:

i tan x csc x

ii 1 − sec2 x

*5. Find the derivatives of:

i sin−1 x

ii tan−1 x

*Omit this question if you have not studied inverse trigonometric functions.

2.5 Solutions to ‘Test yourself’

1. i d
dx

(x10) = 10x9

ii d
dx

(
√

x) = d
dx

(x
1
2 ) = 1

2
x− 1

2 = 1
2
√

x

iii d
dx

( 1
x
) = d

dx
(x−1) = (−1)x−2 = − 1

x2

iv d
dx

(5x3 − 3
x2 ) = 5 · 3x2 − 3 · (−2)x−3 = 15x2 + 6

x3

2. i f ′(x) = ex

ii f ′(x) = 1
x

iii f ′(x) = − sin x + cos x

iv f ′(x) = − csc2 x

3. i d
dx

(2x + 1)12 = 12(2x + 1)11 · 2 = 24(2x + 1)11

ii d
dx

(sin 3x) = cos 3x · 3 = 3 cos 3x

iii d
dx

(ex2
) = ex2 · 2x = 2xex2

iv d
dx

( 1
x2−3

) = d
dx

((x2 − 3)−1) = (−1)(x2 − 3)−2 · 2x = − 2x
(x2−3)2

v d
dx

(cos(x3)) = − sin(x3) · 3x2 = −3x2 sin(x3)

vi d
dx

(ln(sin x)) = 1
sin x

· cos x = cot x

4. i tan x csc x = sin x
cos x

· 1
sin x

= 1
cos x

= sec x

ii Since sec2 x = 1 + tan2 x, 1 − sec2 x = − tan2 x

*5. i d
dx

(sin−1 x) = 1√
1−x2

ii d
dx

(tan−1 x) = 1
1+x2

If you had difficulty with many of these questions it may be better for you to revise
differentiation and trig identities before going on with this booklet.
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3 Definition of the Integral as an Anti-Derivative

If
d

dx
(F (x)) = f(x) then

∫
f(x)dx = F (x).

In words,

If the derivative of F (x) is f(x), then we say that an indefinite integral of f(x)
with respect to x is F (x).

For example, since the derivative (with respect to x) of x2 is 2x, we can say that an
indefinite integral of 2x is x2.

In symbols:

d

dx
(x2) = 2x, so

∫
2xdx = x2.

Note that we say an indefinite integral, not the indefinite integral. This is because the
indefinite integral is not unique. In our example, notice that the derivative of x2 + 3 is
also 2x, so x2 + 3 is another indefinite integral of 2x. In fact, if c is any constant, the
derivative of x2 + c is 2x and so x2 + c is an indefinite integral of 2x.

We express this in symbols by writing

∫
2xdx = x2 + c

where c is what we call an “arbitrary constant”. This means that c has no specified value,
but can be given any value we like in a particular problem. In this way we encapsulate
all possible solutions to the problem of finding an indefinite integral of 2x in a single
expression.

In most cases, if you are asked to find an indefinite integral of a function, it is not necessary
to add the +c. However, there are cases in which it is essential. For example, if additional
information is given and a specific function has to be found, or if the general solution of
a differential equation is sought. (You will learn about these later.) So it is a good idea
to get into the habit of adding the arbitrary constant every time, so that when it is really
needed you don’t forget it.

The inverse relationship between differentiation and integration means that, for every
statement about differentiation, we can write down a corresponding statement about
integration.

For example,

d

dx
(x4) = 4x3, so

∫
4x3dx = x4 + c.
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Exercises 3.1

Complete the following statements:

(i) d
dx

(sin x) = cos x, so
∫

cos x dx = sin x + c.

(ii) d
dx

(x5) = , so
∫

dx =

(iii) d
dx

(ex) = , so
∫

dx =

(iv) d
dx

(
1
x2

)
= , so

∫
dx =

(v) d
dx

(x) = , so
∫

dx =

(vi) d
dx

(ln x) = , so
∫

dx =

The next step is, when we are given a function to integrate, to run quickly through all
the standard differentiation formulae in our minds, until we come to one which fits our
problem.

In other words, we have to learn to recognise a given function as the derivative of another
function (where possible).

Try to do the following exercises by recognising the function which has the given function
as its derivative.

Exercises 3.2

i
∫

(− sin x)dx

ii
∫

3x2dx

iii
∫

2dx

iv
∫

sec2 xdx

v
∫ 3

2
x

1
2 dx

vi
∫ (

− 1

x2

)
dx
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4 Some Rules for Calculating Integrals

Rules for operating with integrals are derived from the rules for operating with derivatives.
So, because

d

dx
(cf(x)) = c

d

dx
(f(x)) , for any constant c,

we have

Rule 1 ∫
(cf(x))dx = c

∫
f(x)dx, for any constant c.

For example
∫

10 cos xdx = 10
∫

cos xdx = 10 sin x + c.

It sometimes helps people to understand and remember rules like this if they say them
in words. The rule given above says: The integral of a constant multiple of a function is
a constant multiple of the integral of the function. Another way of putting it is You can
move a constant past the integral sign without changing the value of the expression.

Similarly, from
d

dx
(f(x) + g(x)) =

d

dx
(f(x)) +

d

dx
(g(x)),

we can derive the rule

Rule 2 ∫
(f(x) + g(x))dx =

∫
f(x)dx +

∫
g(x)dx.

For example,
∫

(ex + 2x)dx =
∫

exdx +
∫

2xdx

= ex + x2 + c.

In words, the integral of the sum of two functions is the sum of their integrals.

We can easily extend this rule to include differences as well as sums, and to the case where
there are more than two terms in the sum.

Examples

Find the following indefinite integrals:

i
∫

(1 + 2x − 3x2 + sin x)dx

ii
∫

(3 cos x − 1

2
ex)dx
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Solutions

i ∫
(1 + 2x − 3x2 + sin x)dx =

∫
1dx +

∫
2xdx −

∫
3x2dx −

∫
(− sin x)dx

= x + x2 − x3 − cos x + c.

Note: We have written +
∫

sin xdx as − ∫
(− sin x)dx because (− sin x) is the deriva-

tive of cos x.

ii ∫
(3 cos x − 1

2
ex)dx = 3

∫
cos xdx − 1

2

∫
exdx

= 3 sin x − 1

2
ex + c.

You will find you can usually omit the first step and write the answer immediately.

Exercises 4

Find the following indefinite integrals:

i
∫

(cos x + sin x)dx

ii
∫

(ex − 1)dx

iii
∫

(1 − 10x + 9x2)dx

iv
∫

(3 sec2 x +
4

x
)dx
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5 Integrating Powers of x and Other Elementary

Functions

We can now work out how to integrate any power of x by looking at the corresponding
rule for differentiation:

d

dx
(xn) = nxn−1, so

∫
nxn−1dx = xn + c.

Similarly

d

dx

(
xn+1

)
= (n + 1)xn, so

∫
(n + 1)xndx = xn+1 + c.

Therefore

∫
xndx =

∫ 1

n + 1
· (n + 1)xndx

=
1

n + 1

∫
(n + 1)xndx

=
1

n + 1
xn+1 + c.

← notice that 1
n+1

· (n + 1) is just 1
when we cancel

← take 1
n+1

outside the
∫

sign

We should now look carefully at the formula we have just worked out and ask: for which
values of n does it hold?

Remember that the differentiation rule d
dx

(xn) = nxn−1 holds whether n is positive or
negative, a whole number or a fraction or even irrational; in other words, for all real
numbers n.

We might expect the integration rule to hold for all real numbers also. But there is one
snag: in working it out, we divided by n + 1. Since division by zero does not make sense,
the rule will not hold when n + 1 = 0, that is, when n = −1. So we conclude that

Rule 3 ∫
xndx =

1

n + 1
xn+1 + c

for all real numbers n, except n = −1.

When n = −1,
∫

xndx becomes
∫

x−1dx =
∫ 1

x
dx. We don’t need to worry that the rule

above doesn’t apply in this case, because we already know the integral of 1
x
.

Since
d

dx
(ln x) =

1

x
, we have

∫ 1

x
dx = ln x + c.
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Examples

Find

i
∫

x3dx

ii
∫ dx

x2

iii
∫ √

xdx

Solutions

i
∫

x3dx =
1

(3 + 1)
x4 + c =

1

4
x4 + c. ← replacing n by 3 in the

formula

ii
∫ dx

x2
=

∫
x−2dx =

1

−2 + 1
x−2+1 + c = −1

x
+ c. ← replacing n by −2 in the

formula

iii
∫ √

xdx =
∫

x
1
2 dx =

1
1
2

+ 1
x

1
2
+1 + c =

2

3
x

3
2 + c. ← replacing n by 1

2

Exercises 5.1

1. Find anti-derivatives of the following functions:

i x5 ii x9

iii x−4 iv 1
x2

v 1√
x

vi 3
√

x

vii x
√

2 viii x
√

x

ix 1
xπ

2. Find the following integrals:

i
∫

−3xdx

ii
∫ (

x3 + 3x2 + x + 4
)
dx

iii
∫ (

x − 1

x

)
dx

iv
∫ (

x − 1

x

)2

dx

v
∫ (

2√
x

+

√
x

2

)
dx

vi
∫ 2x4 + x2

x
dx

vii
∫ (

3 + 5x − 6x2 − 7x3

2x2

)
dx

Hint: multiply out the expression

Hint: divide through by the denominator

Hint: divide through by the denominator
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At this stage it is very tempting to give a list of standard integrals, corresponding to
the list of derivatives given at the beginning of this booklet. However, you are NOT
encouraged to memorise integration formulae, but rather to become VERY familiar with
the list of derivatives and to practise recognising a function as the derivative of another
function.

If you try memorising both differentiation and integration formulae, you will one day
mix them up and use the wrong one. And there is absolutely no need to memorise the
integration formulae if you know the differentiation ones.

It is much better to recall the way in which an integral is defined as an anti-derivative.
Every time you perform an integration you should pause for a moment and check it by
differentiating the answer to see if you get back the function you began with. This is a
very important habit to develop. There is no need to write down the checking process
every time, often you will do it in your head, but if you get into this habit you will avoid
a lot of mistakes.

There is a table of derivatives at the front of this booklet. Try to avoid using it if you
can, but refer to it if you are unsure.

Examples

Find the following indefinite integrals:

i
∫ (

ex + 3x
5
2

)
dx

ii
∫

(5 csc2 x + 3 sec2 x)dx

Solutions

i ∫ (
ex + 3x

5
2

)
dx =

∫
exdx + 3

∫
x

5
2 dx

= ex + 3 · 1
5
2

+ 1
x

5
2
+1 + c

= ex + 3 · 2

7
x

7
2 + c

= ex +
6

7
x

7
2 + c.

ii ∫
(5 csc2 x + 3 sec2 x)dx = −5

∫
(− csc2 x)dx + 3

∫
sec2 xdx

= −5 cot x + 3 tan x + c.
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Exercises 5.2

Integrate the following functions with respect to x:

i 10ex − 5 sin x

ii
√

x(x2 + x + 1)

iii
5√

(1 − x2)
+

1√
x

iv
x3 + x + 1

1 + x2

v
tan x

sin x cos x

vi tan2 x

Hint: Multiply through by
√

x, and write with
fractional exponents.

Hint: Divide through by 1+x2, and consult table
of derivatives.

Hint: Write tan x as sin x
cos x

and simplify.

Hint: Remember the formula 1 + tan2 x = sec2 x.

You may use the table of derivatives if you like.

(If you are not familiar with inverse trig functions, omit parts iii and iv.)

Hint: In order to get some of the functions above into a form in which we can recognise
what they are derivatives of, we may have to express them differently. Try to think of
ways in which they could be changed that would be helpful.
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6 Things You Can’t Do With Integrals

It is just as important to be aware of what you can’t do when integrating, as to know
what you can do. In this way you will avoid making some serious mistakes.

We mention here two fairly common ones.

1. We know that
∫

cf(x)dx = c
∫

f(x)dx, where c is a constant. That is, “you are

allowed to move a constant past the integral sign”. It is often very tempting to try

the same thing with a variable, i.e. to equate
∫

xf(x)dx with x
∫

f(x)dx.

If we check a few special cases, however, it will become clear that this is not correct.
For example, compare the values of

∫
x · xdx and x

∫
xdx.

∫
x · xdx =

∫
x2dx =

1

3
x3 + c while x

∫
xdx = x · 1

2
x2 =

1

2
x3 + c.

These expressesions are obviously different.

So the “rule” we tried to invent does not work!

It is unlikely that anybody would try to find
∫

x2dx in the way shown above.

However, if asked to find
∫

x sin xdx, one might very easily be tempted to write

x
∫

sin xdx = −x cos x + c. Although we do not yet know a method for finding∫
x sin xdx, we can very easily show that the answer obtained above is wrong. How?

By differentiating the answer, of course!

If we don’t get back to x sin x, we must have gone wrong somewhere.

Notice that x cos x is a product, so we must use the product rule to differentiate it.

d

dx
(−x cos x + c) = −x(− sin x) + (−1) cos x

= x sin x − cos x.

The first term is correct, but the second term shouldn’t be there! So the method we
used was wrong.

∫
xf(x)dx is not equal to x

∫
f(x)dx.

In words,

you cannot move a variable past the integral sign.
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2. Again, we know that
∫

(f(x) + g(x)) dx =
∫

f(x)dx +
∫

g(x)dx. That is, “the in-

tegral of a sum is equal to the sum of the integrals”. It may seem reasonable to
wonder whether there is a similar rule for products. That is, whether we can equate∫

f(x) · g(x)dx with
∫

f(x)dx ·
∫

g(x)dx.

Once again, checking a few special cases will show that this is not correct.

Take, for example,
∫

x sin xdx.

Now ∫
xdx ·

∫
sin xdx =

1

2
x2 · (− cos x) + c

= −1

2
x2 cos x + c.

But

d

dx

(
−1

2
x2 cos x + c

)
= −1

2
x2 · (− sin x) + (−x) cos x

=
1

2
x2 sin x − x cos x.

product rule again!

and this is nothing like the right answer! (Remember, it ought to have been x sin x.)

So we conclude that∫
f(x)g(x) is not equal to

∫
f(x)dx ·

∫
g(x)dx.

In words,

the integral of the product of two functions is not the same as the product
of their integrals.

The other important point you should have learned from this section is the value of
checking any integration by differentiating the answer. If you don’t get back to what
you started with, you know you have gone wrong somewhere, and since differentiation
is generally easier than integration, the mistake is likely to be in the integration.

Exercises 6

Explain the mistakes in the following integrations, and prove that the answer obtained in
each case is wrong, by differentiating the answers given.

i
∫

x2exdx =
1

3
x3ex + c

ii
∫ xdx√

(1 − x2)
= x

∫ 1√
(1 − x2)

dx = x sin−1 x + c

You will learn how to integrate these functions later.
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7 Using the Chain Rule in Reverse

Recall that the Chain Rule is used to differentiate composite functions such as
cos(x3+1), e

1
2
x2

, (2x2+3)11, ln(3x+1). (The Chain Rule is sometimes called the Composite
Functions Rule or Function of a Function Rule.)

If we observe carefully the answers we obtain when we use the chain rule, we can learn to
recognise when a function has this form, and so discover how to integrate such functions.

Remember that, if y = f(u) and u = g(x)

so that y = f(g(x)), (a composite function)

then
dy

dx
=

dy

du
· du

dx
.

Using function notation, this can be written as

dy

dx
= f ′(g(x)) · g′(x).

In this expression, f ′(g(x)) is another way of writing
dy

du
where y = f(u) and u = g(x)

and g′(x) is another way of writing
du

dx
where u = g(x).

This last form is the one you should learn to recognise.

Examples

By differentiating the following functions, write down the corresponding statement for
integration.

i sin 3x

ii (2x + 1)7

iii ex2

Solution

i
d

dx
sin 3x = cos 3x · 3, so

∫
cos 3x · 3dx = sin 3x + c.

ii
d

dx
(2x + 1)7 = 7(2x + 1)6 · 2, so

∫
7(2x + 1)6 · 2dx = (2x + 1)7 + c.

iii
d

dx

(
ex2

)
= ex2 · 2x, so

∫
ex2 · 2xdx = ex2

+ c.
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Exercises 7.1

Differentiate each of the following functions, and then rewrite each result in the form of
a statement about integration.

i (2x − 4)13 ii sin πx iii e3x−5

iv ln(2x − 1) v
1

5x − 3
vi tan 5x

vii (x5 − 1)
4

viii sin(x3) ix e
√

x

x cos5 x xi tan (x2 + 1) xii ln(sin x)

The next step is to learn to recognise when a function has the forms f ′(g(x)) · g′(x),
that is, when it is the derivative of a composite function. Look back at each of the
integration statements above. In every case, the function being integrated is the product
of two functions: one is a composite function, and the other is the derivative of the “inner
function” in the composite. You can think of it as “the derivative of what’s inside the
brackets”. Note that in some cases, this derivative is a constant.

For example, consider ∫
e3x · 3dx.

We can write e3x as a composite function.
3 is the derivative of 3x i.e. the derivative of “what’s inside the brackets” in e(3x).

This is in the form ∫
f ′(g(x)) · g′(x)dx

with

u = g(x) = 3x, and f ′(u) = eu.

Using the chain rule in reverse, since d
dx

(f(g(x))) = f ′(g(x)) · g′(x) we have

∫
f ′(g(x)) · g′(x)dx = f(g(x)) + c.

In this case ∫
e3x · 3dx = e3x + c.

If you have any doubts about this, it is easy to check if you are right: differentiate your
answer!

Now let’s try another: ∫
cos(x2 + 5) · 2xdx.

cos(x2 + 5) is a composite function.
2x is the derivative of x2 + 5, i.e. the derivative of “what’s inside the brackets”.



Mathematics Learning Centre, University of Sydney 17

So this is in the form∫
f ′(g(x)) · g′(x)dx with u = g(x) = x2 + 5 and f ′(u) = cos u.

Recall that if f ′(u) = cos u, f(u) = sin u.

So, ∫
cos(x2 + 5) · 2xdx = sin(x2 + 5) + c.

Again, check that this is correct, by differentiating.

People sometimes ask “Where did the 2x go?”. The answer is, “Back where it came
from.”

If we differentiate sin(x2 + 5) we get cos(x2 + 5) · 2x.

So when we integrate cos(x2 + 5) · 2x we get sin(x2 + 5).

Examples

Each of the following functions is in the form f ′(g(x)) · g′(x).

Identify f ′(u) and u = g(x) and hence find an indefinite integral of the function.

i (3x2 − 1)4 · 6x

ii sin(
√

x) · 1

2
√

x

Solutions

i (3x2 − 1)4 · 6x is a product of (3x2 − 1)4 and 6x.

Clearly (3x2 − 1)4 is the composite function f ′(g(x)). So g(x) should be 3x2 − 1.

6x is the “other part”. This should be the derivative of “what’s inside the brackets”
i.e. 3x2 − 1, and clearly, this is the case:

d

dx
(3x2 − 1) = 6x.

So, u = g(x) = 3x2 − 1 and f ′(u) = u4 giving f ′(g(x)) · g′(x) = (3x2 − 1)4 · 6x.

If f ′(u) = u4, f(u) = 1
5
u5.

So, using the rule ∫
f ′(g(x)) · g′(x)dx = f(g(x)) + c

we conclude ∫
(3x3 − 1)4 · 6x =

1

5
(3x2 − 1)5 + c.

You should differentiate this answer immediately and check that you get back the
function you began with.
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ii sin(
√

x) · 1

2
√

x

This is a product of sin(
√

x) and 1
2
√

x
.

Clearly sin(
√

x) is a composite function.

The part “inside the brackets” is
√

x, so we would like this to be g(x). The other
factor 1

2
√

x
ought to be g′(x). Let’s check if this is the case:

g(x) =
√

x = x
1
2 , so g′(x) =

1

2
x− 1

2 =
1

2x
1
2

=
1

2
√

x
.

So we’re right! Thus u = g(x) =
√

x and f ′(u) = sin u giving

f ′(g(x)) · g′(x) = sin(
√

x) · 1

2
√

x
.

Now, if f ′(u) = sin u, f(u) = − cos u.

So using the rule ∫
f ′(g(x)) · g′(x)dx = f(g(x)) + c

we conclude ∫
sin(

√
x) · 1

2
√

x
dx = − cos(

√
x) + c.

Again, check immediately by differentiating the answer.

Note: The explanations given here are fairly lengthy, to help you to understand
what we’re doing. Once you have grasped the idea, you will be able to do these very
quickly, without needing to write down any explanation.

Example

Integrate
∫

sin3 x · cos xdx.

Solution

∫
sin3 x · cos xdx =

∫
(sin x)3 · cos xdx.

So u = g(x) = sin x with g′(x) = cos x.

And f ′(u) = u3 giving f(u) = 1
4
u4.

Hence
∫

sin3 x · cos xdx =
1

4
(sin x)4 + c =

1

4
sin4 x + c.
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Exercises 7.2

Each of the following functions is in the form f ′(g(x)) · g′(x). Identify f ′(u) and u = g(x)
and hence find an indefinite integral of the function.

i
1

3x − 1
· 3 ii

√
2x + 1 · 2 iii (ln x)2 · 1

x

iv e2x+4 · 2 v sin(x3) · 3x2 vi cos
(

πx

2

)
· π

2

vii (7x − 8)12 · 7 viii sin(ln x) · 1

x
ix

(
1

sin x

)
· cos x

x etan x · sec2 x xi ex3 · 3x2 xii sec2(5x − 3) · 5

xiii (2x − 1)
1
3 · 2 xiv

√
sin x · cos x

The final step in learning to use this process is to be able to recognise when a function is
not quite in the correct form but can be put into the correct form by minor changes.

For example, we try to calculate
∫

x3
√

x4 + 1dx.

We notice that
√

x4 + 1 is a composite function, so we would like to have u = g(x) = x4+1.
But this would mean g′(x) = 4x3, and the integrand (i.e. the function we are trying to
integrate) only has x3. However, we can easily make it 4x3, as follows:

∫
x3
√

x4 + 1dx =
1

4

∫ √
x4 + 1 · 4x3dx.

Note: The 1
4

and the 4 cancel with each other, so the expression is not changed.

So u = g(x) = x4 + 1, g′(x) = 4x3

And f ′(u) = u
1
2 f(u) = 2

3
u

3
2

So,
∫

x3
√

x4 + 1dx =
1

4

∫ √
x4 + 1 · 4x2dx =

1

4
· 2

3

(
x4 + 1

) 3
2 + c.

Note: We may only insert constants in this way, not variables.

We cannot for example evaluate
∫

ex2

dx by writing
1

2x

∫
ex2 · 2xdx, because

the 1
x

in front of the integral sign does not cancel with the x which has been
inserted in the integrand.

This integral cannot, in fact, be evaluated in terms of elementary functions.



Mathematics Learning Centre, University of Sydney 20

The example above illustrates one of the difficulties with integration: many seemingly
simple functions cannot be integrated without inventing new functions to express the
integrals. There is no set of rules which we can apply which will tell us how to integrate
any function. All we can do is give some techniques which will work for some functions.

Exercises 7.3

Write the following functions in the form f ′(g(x)) · g′(x) and hence integrate them:

i cos 7x ii xex2

iii x
1−2x2 iv x2(4x3 + 3)9

v sin(1 + 3x) vi sin
√

x√
x

vii x√
(1−x2)

viii e3x

ix tan 6x

Hint: Write tan 6x in terms of sin 6x and cos 6x.
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8 Applications

Applications of anti-differentiation arise in problems in which we know the rate of change
of a function and want to find the function itself. Problems about motion provide many
examples, such as those in which the velocity of a moving object is given and we want to
find its position at any time. Since velocity is rate of change of displacement, we must
anti-differentiate to find the displacement.

Examples

1. A stone is thrown upwards from the top of a tower 50 metres high. Its velocity in an
upwards direction t second later is 20− 5t metres per second. Find the height of the
stone above the ground 3 seconds later.

Solution

Let the height of the stone above ground level at time t be h metres.

We are given two pieces of information in this problem:

i the fact that the tower is 50m high tells us that when t = 0 (that is, at the
moment the stone leaves the thrower’s hand), h = 50,

ii the fact that the velocity at time t is 20 − 5t tells us that

dh

dt
= 20 − 5t.

We begin with the second statement, which tells us about rate of change of a function.
By anti-differentiating, we obtain

h =
∫

(20 − 5t)dt

= 20t − 5

2
t2 + c. (1)

Note: it is vitally important not to forget the ‘+c’ (the constant of integration) in
problems like this.

Now we can make use of the first statement, which is called an initial condition (it
tells us what things were like at the start) to find a value for the constant c. By
substituting h = 50 and t = 0 into the equation (1), we obtain

50 = c.

So h = 20t − 5
2
t2 + 50. (2)

Finally, let us go back to the problem, and read it again, to check exactly what we
are asked to find: ‘Find the height of the stone above the ground 3 seconds later’. To
find this, all we have to do is substitute t = 3 in the expression we have just derived.

When t = 3, h = 60 − 5
2
· 9 + 50 = 87.5, so the height of the stone 3 seconds later is

87.5 metres.
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Let us look back at the structure of this problem and its solution.

• We are given information about the rate of change of a quantity, and we anti-
differentiate (i.e. integrate) to get a general expression for the quantity, including
an arbitary constant.

• We are given information about initial conditions and use this to find the value
of the constant of integration.

• We now have a precise expression for the quantity, and can use that to answer
the questions asked.

2. When a tap at the base of a storage tank is turned on, water flows out of the tank at
the rate of 200e−

1
5
t litres per minute. If the volume of water in the tank at the start

is 1000 litres, find how much is left after the tap has been running for 10 minutes.

Solution

Let the volume of water in the tank t minutes after the tap is turned on be V litres.

Since water is running out of the tank, V will be decreasing, and so dV
dt

must be
negative.

Hence
dV

dt
= −200e−

1
5
t

and so V =
∫ (

−200e−
1
5
t
)
dt

= −200 · (−5)
∫

e−
1
5
t
(
−1

5

)
dt

= 1000e−
1
5
t + c.

Now when t = 0, V = 1000, so 1000 = 1000 + c, hence c = 0.

So at any time t, V = 1000e−
1
5
t

Thus when t = 10, V = 1000e−2

≈ 135.34 litres.

Exercises 8

1. When a stone is dropped into smooth water, circular ripples spread out from the
point where it enters the water. If the area covered by ripples increases at a rate of
2πt square metres per second, find the total area of disturbed water t seconds after
the stone hits the water. What is the area covered by ripples after 3 seconds?

[Note: when t = 0, the stone is just entering the water, so the area of disturbed water
is 0.]
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2. A population of animals, under certain conditions, has a growth rate given by 500π cos 2πt
where t is the time in years. If the initial size of the herd is 3000, find the size of the
population at time t. What are the maximum and minimum numbers in the herd
during the course of a year?

3. During an experiment, the height of a growing plant increased at a rate of 1√
t+4

cm
per day, where t represents the number of days since the start of the experiment. If
the plant was 20 cm high at the beginning, what would its height be after 12 days?

4. An oral dose of a drug was administered to a patient. t hours later, the concentration
of the drug in the patient’s blood was changing at a rate give by 5e−t − e−0.2t. If
none of the drug was present in the blood at the time the dose was given, find the
concentration of the drug in the patient’s blood t hours later.

How long after administration will the concentration be greatest?

5. An object is propelled along the ground in such a way that its velocity after t seconds
is 1

t+1
metres per second. If it starts 2 metres from a fixed point, and moves in a

straight line directly towards the point, how long will it take to reach the point?
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9 Solutions to Exercises

Exercises 3.1

i d
dx

(sin x) = cos x, so
∫

cos xdx= sin x + c.

ii d
dx

(x5) = 5x4, so
∫

5x4dx = x5 + c.

iii d
dx

(ex) = ex, so
∫

exdx = ex + c.

iv d
dx

(
1
x2

)
= − 2

x3 , so
∫ − 2

x3 dx = 1
x2 + c.

(
1
x2 = x−2 and d

dx
(x−2) = −2x−3 = − 2

x3

)

v d
dx

(x) = 1, so
∫

1dx = x + c.

(Note:
∫

1dx is usually written as
∫

dx.)

vi d
dx

(ln x) = 1
x
, so

∫ 1
x
dx = ln x + c.

Exercises 3.2

Note: All these answers can be checked by differentiating!

i
∫

(− sin x)dx = cos x + c.

ii
∫

3x2dx = x3 + c.

iii
∫

2dx = 2x + c.

iv
∫

sec2 xdx = tan x + c.

v
∫ 3

2
x

1
2 dx = x

3
2 + c.

vi
∫

− 1

x2
dx =

1

x
+ c.

Exercises 4

i
∫

(cos x + sin x)dx = sin x − cos x + c.

ii
∫

(ex − 1)dx = ex − x + c.

iii
∫

(1 − 10x + 9x2)dx = x − 5x2 + 3x3 + c.

iv
∫

(3 sec2 x +
4

x
)dx = 3 tan x + 4 ln x + c.
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Exercises 5.1

1. i
∫

x5dx =
1

6
x6 + c.

ii
∫

x9dx =
1

10
x10 + c.

iii
∫

x−4dx = −1

3
x−4+1 = −1

3
x−3 + c = − 1

3x3
+ c.

iv
∫ 1

x2
dx =

∫
x−2dx =

1

−1
x−1 + c = −1

x
+ c.

v
∫ 1√

x
dx =

∫
x− 1

2 dx = 2x
1
2 + c = 2

√
x + c.

vi
∫

3
√

xdx =
∫

x
1
3 dx =

3

4
x

1
3
+1 =

3

4
x

4
3 + c.

(Note: In exercises like v and vi above, it is easier to work out what power of x is
required, and then to work out what coefficient is needed to give the correct answer on

differentiating. This is usually better than substituting for n in
1

n + 1
xn+1. So v is more

easily done by saying (mentally) “ − 1
2

+ 1 = 1
2
, so the answer will involve x

1
2 . Now 2x

1
2

will give a coefficient of 1 when differentiated so
∫

x− 1
2 dx = 2x

1
2 + c ”).

vii
∫

x
√

2dx =
1√

2 + 1
x
√

2+1 + c.

viii
∫

x
√

xdx =
∫

x
3
2 dx =

2

5
x

5
2 + c =

2

5
x2
√

x + c.

ix
∫ 1

xπ
dx =

∫
x−πdx =

1

−π + 1
x−π+1 + c = − 1

(π − 1)xπ−1
+ c.

2. i
∫

−3xdx = −3 · 1

2
x2 + c = −3

2
x2 + c.

ii
∫

(x3 + 3x2 + x + 4)dx =
1

4
x4 + x3 +

1

2
x2 + 4x + c.

iii
∫

(x − 1

x
)dx =

1

2
x2 − ln x + c.

iv
∫

(x − 1

x
)2dx =

∫
(x2 − 2 +

1

x2
)dx

=
1

3
x3 − 2x − 1

x
+ c. (Recall,

∫ 1

x2
dx = −1

x
)

v
∫ (

2√
x

+

√
x

2

)
dx = 2

∫
x− 1

2 dx +
1

2

∫
x

1
2 dx
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= 2 · 2x 1
2 +

1

2
· 2

3
x

3
2 + c

= 4
√

x +
1

3
x
√

x + c.

vi
∫ 2x4 + x2

x
dx =

∫
(2x3 + x)dx

= 2 · 1

4
x4 +

1

2
x2 + c

=
1

2
x4 +

1

2
x2 + c.

vii
∫ 3 + 5x − 6x2 − 7x3

2x2
dx =

∫ (
3

2x2
+

5

2x
− 3 − 7x

2

)
dx

=
3

2

∫
x−2dx +

5

2

∫ 1

x
dx − 3

∫
dx − 7

2

∫
xdx

=
3

2
(−1

x
) +

5

2
ln x − 3x − 7

2
· 1

2
x2 + c

= − 3

2x
+

5

2
ln x − 3x − 7

4
x2 + c.

Exercises 5.2

i
∫

(10ex − 5 sin x)dx = 10ex + 5 cos x + c.

ii
∫ √

x(x2 + x + 1)dx =
∫ (

x
5
2 + x

3
2 + x

1
2

)
dx

=
2

7
x

7
2 +

2

5
x

5
2 +

2

3
x

3
2 + c.

iii
∫ ⎛

⎝ 5√
(1 − x2)

+
1√
x

⎞
⎠ dx = 5 sin−1 x + 2

√
x + c.

iv
∫ x3 + x + 1

1 + x2
dx =

∫ x(x2 + 1) + 1

1 + x2
dx

=
∫ (

x +
1

1 + x2

)
dx Dividing through by (1 + x2)

=
1

2
x2 + tan−1 x + c.

v
∫ tan x

sin x cos x
dx =

∫ sin x

cos x
· 1

sin x cos x
dx Writing tan x = sin x

cos x
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=
∫ 1

cos2 x
dx

=
∫

sec2 xdx

= tan x + c.

vi
∫

tan2 xdx =
∫

(sec2 x − 1)dx Using tan2 x = sec2 x − 1

=
∫

sec2 xdx −
∫

1dx

= tan x − x + c.

Exercises 6

i The mistake arises from writing the integral of a product as the product of the in-
tegrals of the factors. We prove the answer obtained is wrong by differentiating it,
and showing that we do not get back the function we were trying to integrate.

d
dx

(
1
3
x3ex

)
= 1

3
x3ex + x2ex

↑ ↑ ↑
d
dx

(uv) udv
dx

du
dx

v

← NOT the same as x2ex because
of the extra term!

ii The mistake arises from taking the x outside the integral sign. We cannot do this
because x is a variable. Again, we prove the answer wrong by differentiating.
d
dx

(x sin−1 x) = x · 1√
(1−x2)

+ 1 · sin−1 x

↑ ↑ ↑
d
dx

(uv) udv
dx

du
dx

v

= x√
(1−x2)

+ sin−1 x

Again, this is not the same as x√
(1−x2)

because of the extra term!

Exercises 7.1

i
d

dx
(2x − 4)13 = 13 · (2x − 4)12 · 2, so

∫
13(2x − 4)12 · 2dx = (2x − 4)13 + c.

ii
d

dx
(sin πx) = cos πx · π, so

∫
cos πx · πdx = sin πx + c.

iii
d

dx
(e3x−5) = e3x−5 · 3, so

∫
e3x−5 · 3dx = e3x−5 + c.

iv
d

dx
(ln(2x − 1)) =

1

2x − 1
· 2, so

∫ 1

2x − 1
· 2dx = ln(2x − 1) + c.

v
d

dx
(

1

5x − 3
) = − 1

(5x − 3)2
· 5, so

∫
− 1

(5x − 3)2
· 5dx =

1

5x − 3
+ c.
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vi
d

dx
(tan 5x) = sec2 5x · 5, so

∫
sec2 5x · 5dx = tan 5x + c.

vii
d

dx
((x5 − 1)4) = 4(x5 − 1)3 · 5x4, so

∫
4(x5 − 1)3 · 5x4dx = (x5 − 1)4 + c.

viii
d

dx
(sin x3) = cos(x3) · 3x2, so

∫
cos(x3) · 3x2dx = sin(x3) + c.

ix
d

dx
(e

√
x) = e

√
x · 1

2
x− 1

2 , so
∫

e
√

x · 1

2
x− 1

2 dx = e
√

x + c.

x
d

dx
(cos5 x) = 5 cos4 x · (− sin x), so

∫
5 cos4 x · (− sin x)dx = cos5 x + c.

xi
d

dx
(tan(x2 + 1)) = sec2(x2 + 1) · 2x, so

∫
sec2(x2 + 1) · 2xdx = tan(x2 + 1) + c.

xii
d

dx
(ln(sin x)) =

1

sin x
· cos x, so

∫ 1

sin x
· cos xdx = ln(sin x) + c.

Exercises 7.2

(Before you read these solutions, check your work by differentiating your answer.)

i
∫ 1

3x − 1
· 3dx = ln(3x − 1) + c.

⎧⎪⎨
⎪⎩

u = g(x) = 3x − 1

f ′(u) = 1
u

so g′(x) = 3

so f(u) = ln u

ii
∫ √

2x + 1 · 2dx =
2

3
(2x + 1)

3
2 + c.

⎧⎪⎨
⎪⎩

u = g(x) = 2x + 1

f ′(u) =
√

u

so g′(x) = 2

so f(u) = 2
3
u

3
2

iii
∫

(ln x)2 · 1

x
dx =

1

3
(ln x)3 + c.

⎧⎪⎨
⎪⎩

u = g(x) = ln x

f ′(u) = u2

so g′(x) = 1
x

so f(u) = 1
3
u3

iv
∫

e2x+4 · 2dx = e2x+4 + c.

⎧⎪⎨
⎪⎩

u = g(x) = 2x + 4

f ′(u) = eu

so g′(x) = 2

so f(u) = eu
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v
∫

sin(x3) · 3x2dx = − cos(x3) + c.

⎧⎪⎨
⎪⎩

u = g(x) = x3

f ′(u) = sin u

so g′(x) = 3x2

so f(u) = − cos u

vi
∫

cos(
πx

2
) · π

2
dx = sin(

πx

2
) + c.

⎧⎪⎨
⎪⎩

u = g(x) = π
2
x

f ′(u) = cos u

so g′(x) = π
2

so f(u) = sin u

vii
∫

(7x − 8)12 · 7dx =
1

13
(7x − 8)13 + c.

⎧⎪⎨
⎪⎩

u = g(x) = 7x − 8

f ′(u) = u12

so g′(x) = 7

so f(u) = 1
13

u13

viii
∫

sin(ln x) · 1

x
dx = − cos(ln x) + c.

⎧⎪⎨
⎪⎩

u = g(x) = ln x

f ′(u) = sin u

so g′(x) = 1
x

so f(u) = − cos u

ix
∫ 1

sin x
· cos xdx = ln(sin x) + c.

⎧⎪⎨
⎪⎩

u = g(x) = sin x

f ′(u) = 1
u

so g′(x) = cos x

so f(u) = ln u

x
∫

etan x · sec2 xdx = etan x + c.

⎧⎪⎨
⎪⎩

u = g(x) = tan x

f ′(u) = eu

so g′(x) = sec2x

so f(u) = eu

xi
∫

ex3 · 3x2dx = ex3

+ c.

⎧⎪⎨
⎪⎩

u = g(x) = x3

f ′(u) = eu

so g′(x) = 3x2

so f(u) = eu

xii
∫

sec2(5x − 3) · 5dx = tan(5x − 3) + c.

⎧⎪⎨
⎪⎩

u = g(x) = 5x − 3

f ′(u) = sec2 u

so g′(x) = 5

so f(u) = tan u

xiii
∫

(2x − 1)
1
3 · 2dx =

3

4
(2x − 1)

4
3 + c.
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⎧⎪⎨
⎪⎩

u = g(x) = 2x − 1

f ′(u) = u
1
3

so g′(x) = 2

so f(u) = 3
4
u

4
3

xiv
∫ √

sin x · cos xdx =
2

3
(sin x)

3
2 + c.⎧⎪⎨

⎪⎩
u = g(x) = sin x

f ′(u) =
√

u

so g′(x) = cos x

so f(u) = 2
3
u

3
2

Exercises 7.3

(Before reading the solutions, check all your answers by differentiating!)

i
∫

cos 7xdx =
1

7

∫
cos 7x · 7dx =

1

7
sin 7x + c.⎧⎪⎨

⎪⎩
u = g(x) = 7x, g′(x) = 7

f ′(u) = cos u so f(u) = sin u

ii
∫

xex2

dx =
1

2

∫
ex2 · 2xdx =

1

2
ex2

+ c.⎧⎪⎨
⎪⎩

u = g(x) = x2, g′(x) = 2x

f ′(u) = eu so f(u) = eu

iii
∫ x

1 − 2x2
dx = −1

4

∫ 1

1 − 2x2
· (−4x)dx = −1

4
ln(1 − 2x2) + c.

⎧⎪⎨
⎪⎩

u = g(x) = 1 − 2x2, g′(x) = −4x

f ′(u) = 1
u

so f(u) = ln u

iv
∫

x2(4x3 + 3)9dx =
1

12

∫
(4x3 + 3)9 · 12x2dx =

1

12
· 1

10
(4x3 + 3)10 + c =

1

120
(4x3 + 3)10 + c.⎧⎪⎨

⎪⎩
u = g(x) = 4x3 + 3, g′(x) = 12x2

f ′(u) = u9 so f(u) = 1
10

u10

v
∫

sin(1 + 3x)dx =
1

3

∫
sin(1 + 3x) · 3dx = −1

3
cos(1 + 3x) + c.⎧⎪⎨

⎪⎩
u = g(x) = 1 + 3x, g′(x) = 3

f ′(u) = sin u so f(u) = − cos u

vi
∫ sin

√
x√

x
dx = 2

∫
sin

√
x · 1

2
√

x
dx = −2 cos

√
x + c.

⎧⎪⎨
⎪⎩

u = g(x) =
√

x, g′(x) = 1
2
√

x

f ′(u) = sin u so f(u) = − cos u
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vii
∫ x√

1 − x2
dx = −1

2

∫ 1√
1 − x2

· (−2x)dx = −1

2
· 2(1 − x2)

1
2 + c = −(1 − x2)

1
2 + c.

⎧⎪⎨
⎪⎩

u = g(x) = 1 − x2, g′(x) = −2x

f ′(u) = 1√
u

so f(u) = 2u
1
2

viii
∫

e3xdx =
1

3

∫
e3x · 3dx =

1

3
e3x + c.⎧⎪⎨

⎪⎩
u = g(x) = 3x, g′(x) = 3

f ′(u) = eu so f(u) = eu

ix
∫

tan 6xdx =
∫ sin 6x

cos 6x
dx = −1

6

∫ 1

cos 6x
· −6 sin 6x = −1

6
ln(cos 6x) + c.⎧⎪⎨

⎪⎩
u = g(x) = cos 6x, g′(x) = −6 sin 6x

f ′(u) = 1
u

so f(u) = ln u

Exercises 8

1. Let A square metres be the area covered by ripples after t seconds.
dA
dt

= 2πt, so A = πt2 + c.

Now when t = 0, A = 0 and hence c = 0.

So the area covered by ripples after t seconds is πt2 m2.

After 3 seconds the area covered is 9π m2.

2. Let N be the size of the population at time t.

Then dN
dt

= 500π cos 2πt.

Hence N =
∫

500π cos 2πtdt

= 500π · 1
2π

sin 2πt + c

= 250 sin 2πt + c.

Now when t = 0, N = 3000, so 3000 = 0 + c.

Thus N = 250 sin 2πt + 3000.

Since sin 2πt varies between −1 and 1 and has period 1, the maximum size of the
herd is 3250 and the minimum is 2750.

3. Let the height of the plant after t days be h cm.

We are told that dh
dt

= 1√
t+4

.

So h =
∫ 1√

t + 4
dt = 2

√
t + 4 + c.

When t = 0, h = 20, so 20 = 2
√

(4) + c which gives c = 16.

Thus h = 2
√

t + 4 + 16.

When t = 12, h = 2
√

16 + 16 = 8 + 16 = 24,

so after 12 days, the height of the plant is 24 cm.
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4. Let C be the concentration of the drug after t hours.

Then dC
dt

= 5e−t − e−0.2t.

So C = −5e−t + 1
0.2

e−0.2t + c

= −5e−t + 5e−0.2t + c.

Now when t = 0, C = 0, so 0 = −5 + 5 + c, i.e. c = 0.

Hence C = 5(e−0.2t − e−t).

To find when the concentration is greatest, we find when dC
dt

= 0

i.e. 5e−t = e−0.2t i.e. 5 = e0.8t.

Approximate solution to this is t = 2.01.

A check shows that dC
dt

is positive when t < 2.01 and negative when t > 2.01.

So the concentration is greatest approximately 2 hours after the drug is administered.

5. Let the distance of the object from the point after t seconds be D metres.

Now speed is rate of change of position, so dD
dt

will represent the speed.

However, the object is moving towards the fixed point, so D is decreasing and therefore
dD
dt

is negative.

Hence dD
dt

= − 1
t+1

.

So D = −
∫ 1

t + 1
dt = − ln(t + 1) + c.

Now when t = 0, D = 2, so 2 = − ln 1 + c, i.e. c = 2.

Thus D = 2 − ln(t + 1).

Now D = 0 (i.e. the object is at the fixed point) when 2 = ln(t + 1)

i.e. t = e2 − 1 = 6.4 (approx.).

So the object will reach the point after approximately 6.4 seconds.


