An Introduction to Matrix Algebra

Jackie Nicholas
Mathematics Learning Centre

An introduction to matrices

Jackie Nicholas

Mathematics Learning Centre University of Sydney
(C)2010 University of Sydney

What is a matrix?

A matrix is an array of numbers.

$$
\left[\begin{array}{cccc}
4 & -1 & 3 & 0 \\
1 & -2 & 9 & -1
\end{array}\right]
$$

The size of the matrix is determined by its number of rows and number of columns.

The matrix above is a 2 by 4 matrix. That is, it has 2 rows and 4 columns. We write this as 2×4.

Row and column matrices

A matrix with only one row is called a row matrix or row vector.

$$
\left[\begin{array}{llll}
4 & -1 & 3 & 0
\end{array}\right]
$$

A matrix with only one column is called a column matrix or column vector.

$$
\left[\begin{array}{r}
4 \\
-1 \\
3 \\
0
\end{array}\right]
$$

Square matrices and zero matrices

A matrix with the same number of rows and columns is called a square matrix.

$$
\left[\begin{array}{ccc}
4 & -1 & 3 \\
-1 & 0 & -1 \\
1 & 3 & -2
\end{array}\right] \quad \text { is a } 3 \times 3 \text { square matrix. }
$$

If we have a matrix where every entry is zero, this matrix is called a zero matrix.

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

is the 3×4 zero matrix.

Identity matrices

A square matrix which has 1's on the diagonal and 0's everywhere else is called an identity matrix.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { is the } 3 \times 3 \text { identity matrix. }} \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { is the } 4 \times 4 \text { identity matrix. }}
\end{aligned}
$$

Labelling entries of a matrix

Consider the following matrix which we shall call A.

$$
A=\left[\begin{array}{cccc}
1 & 0 & -1 & 6 \\
7 & 1 & 0 & -2 \\
0 & 3 & 1 & 0
\end{array}\right] \quad \text { is a } 3 \times 4 \text { matrix. }
$$

The (i, j) th entry of A is the entry in the ith row and the j th column of A.

For example, the $(3,2)$ th entry of A is 3 .
We often refer to the (i, j) th entry of A as $a_{i j}$.

The transpose of a matrix

Consider the following matrix $A=\left[\begin{array}{rrrr}1 & 0 & -1 & 6 \\ 7 & 1 & 0 & -2 \\ 0 & 3 & 1 & 0\end{array}\right]$
We define the transpose of A, A^{\prime}, as the matrix whose (i, j) th entry is the (j, i) th entry of A.
The $(2,3)$ th entry of A^{\prime} is the $(3,2)$ th entry of A, ie 3 . So,

$$
A^{\prime}=\left[\begin{array}{rrr}
1 & 7 & 0 \\
0 & 1 & 3 \\
-1 & 0 & 1 \\
6 & -2 & 0
\end{array}\right] .
$$

Notice that while A is a 3×4 matrix, A^{\prime} is a 4×3 matrix, and the rows of A are the columns of A^{\prime}.

