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1 Introduction

You have probably met the trigonometric ratios cosine, sine, and tangent in a right angled
triangle, and have used them to calculate the sides and angles of those triangles.

In this booklet we review the definition of these trigonometric ratios and extend the
concept of cosine, sine and tangent. We define the cosine, sine and tangent as functions
of all real numbers. These trigonometric functions are extremely important in science,
engineering and mathematics, and some familiarity with them will be assumed in most
first year university mathematics courses.

In Chapter 2 we represent an angle as radian measure and convert degrees to radians
and radians to degrees. In Chapter 3 we review the definition of the trigonometric ratios
in a right angled triangle. In Chapter 4, we extend these ideas and define cosine, sine
and tangent as functions of real numbers. In Chapter 5, we discuss the properties of
their graphs. Chapter 6 looks at derivatives of these functions and assumes that you
have studied calculus before. If you haven’t done so, then skip Chapter 6 for now. You
may find the Mathematics Learning Centre booklet: Introduction to Differential Calculus
useful if you need to study calculus. Chapter 7 gives a brief look at inverse trigonometric
functions.

1.1 How to use this booklet

You will not gain much by just reading this booklet. Mathematics is not a spectator sport!
Rather, have pen and paper ready and try to work through the examples before reading
their solutions. Do all the exercises. It is important that you try hard to complete the
exercises, rather than refer to the solutions as soon as you are stuck.

1.2 Objectives

By the time you have completed this booklet you should:

• know what a radian is and know how to convert degrees to radians and radians to
degrees;

• know how cos, sin and tan can be defined as ratios of the sides of a right angled
triangle;

• know how to find the cos, sin and tan of π
6
, π

4
and π

2
;

• know how cos, sin and tan functions are defined for all real numbers;

• be able to sketch the graph of certain trigonometric functions;

• know how to differentiate the cos, sin and tan functions;

• understand the definition of the inverse function f−1(x) = cos−1(x).
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2 Angles and Angular Measure

An angle can be thought of as the amount of rotation required to take one straight line
to another line with a common point. Angles are often labelled with Greek letters, for
example θ. Sometimes an arrow is used to indicate the direction of the rotation. If the
arrow points in an anticlockwise direction, the angle is positive. If it points clockwise, the
angle is negative.

Angles can be measured in degrees or radians. Measurement in degrees is based on
dividing the circumference of the circle into 360 equal parts. You are probably familiar
with this method of measurement.

A complete revolution is
360◦.

A straight angle is 180◦. A right angle is 90◦.

Fractions of a degree are expressed in minutes (′) and seconds (′′). There are sixty seconds
in one minute, and sixty minutes in one degree. So an angle of 31◦17′ can be expressed
as 31 + 17

60
= 31.28◦.

The radian is a natural unit for measuring angles. We use radian measure in calculus
because it makes the derivatives of trigonometric functions simple. You should try to get
used to thinking in radians rather than degrees.

To measure an angle in radians, construct a unit circle
(radius 1) with centre at the vertex of the angle. The
radian measure of an angle AOB is defined to be the length
of the circular arc AB around the circumference.

This definition can be used to find the number of radians corresponding to one complete
revolution.
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In a complete revolution, A moves anticlockwise around
the whole circumference of the unit circle, a distance of
2π. So a complete revolution is measured as 2π radians.
That is, 2π radians corresponds to 360◦.

Fractions of a revolution correspond to angles which are fractions of 2π.

1
4

revolution 90◦

or π
2

radians

1
3

revolution 120◦

or 2π
3

radians
−1

6
revolution −60◦

or −π
3

radians

2.1 Converting from radians to degrees and degrees to radians

Since 2π radians is equal to 360◦

π radians = 180◦,

1 radian =
180

π

◦

= 57.3◦,

y radians = y × 180

π

◦
,

and similarly

1◦ =
π

180
radians,

≈ 0.017,

y◦ = y × π

180
radians.

Your calculator has a key that enters the approximate value of π.
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If you are going to do calculus, it is important to get used to thinking in terms of radian
measure. In particular, think of:

180◦ as π radians,

90◦ as
π

2
radians,

60◦ as
π

3
radians,

45◦ as
π

4
radians,

30◦ as
π

6
radians.

You should make sure you are really familiar with these.

2.2 Real numbers as radians

Any real number can be thought of as a radian measure if we express the number as a
multiple of 2π.

For example,
5π

2
= 2π × (1 +

1

4
) = 2π +

π

2
corresponds to

the arc length of 11
4

revolutions of the unit circle going
anticlockwise from A to B.

Similarly,

27 ≈ 4.297 × 2π

= 4 × 2π + 0.297 × 2π

corresponds to an arc length of 4.297 revolutions of the unit circle going anticlockwise.
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We can also think of negative numbers in terms of radians. Remember for negative radians
we measure arc length clockwise around the unit circle.

For example,
−16 ≈ −2.546 × 2π = −2 × 2π + −0.546 × 2π
corresponds to the arc length of approximately 2.546
revolutions of the unit circle going clockwise from A
to B.

We are, in effect, wrapping the positive real number line anticlockwise around the unit
circle and the negative real number line clockwise around the unit circle, starting in each
case with 0 at A, (1, 0).

By doing so we are associating each and every real number with exactly one point on the
unit circle. Real numbers that have a difference of 2π (or a multiple of 2π) correspond to
the same point on the unit circle. Using one of our previous examples, 5π

2
corresponds to

π
2

as they differ by a multiple of 2π.

2.2.1 Exercise

Write the following in both degrees and radians and represent them on a diagram.

a. 30◦ b. 1 c. 120◦

d. 3π
4

e. 2 f. 4π
3

g. 270◦ h. −1 i. −π
2

Note that we do not indicate the units when we are talking about radians.

In the rest of this booklet, we will be using radian measure only. You’ll need
to make sure that your calculator is in radian mode.
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3 Trigonometric Ratios in a Right Angled Triangle

If you have met trigonometry before, you probably learned definitions of sin θ, cos θ and
tan θ which were expressed as ratios of the sides of a right angled triangle.

These definitions are repeated here, just to remind you, but we shall go on, in the next
section, to give a much more useful definition.

3.1 Definition of sine, cosine and tangent

In a right angled triangle, the side opposite to the
right angle is called the hypotenuse. If we choose one
of the other angles and label it θ, the other sides are
often called opposite (the side opposite to θ) and ad-
jacent (the side next to θ).

For a given θ, there is a whole family of right angled triangles, that are triangles of different
sizes but are the same shape.

For each of the triangles above, the ratios of corresponding sides have the same values.

The ratio adjacent
hypotenuse has the same value for each triangle. This ratio is given a special

name, the cosine of θ or cos θ.

The ratio opposite
hypotenuse has the same value for each triangle. This ratio is the sine of θ or

sin θ.

The ratio opposite
adjacent takes the same value for each triangle. This ratio is called the tangent

of θ or tan θ.

Summarising,

cos θ =
adjacent

hypotenuse
,

sin θ =
opposite

hypotenuse
,

tan θ =
opposite

adjacent
.
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The values of these ratios can be found using a calculator. Remember, we are working in
radians so your calculator must be in radian mode.

3.1.1 Exercise

Use your calculator to evaluate the following. Where appropriate, compare your answers
with the exact values for the special trigonometric ratios given in the next section.

a. sin π
6

b. tan 1 c. cos π
3

d. tan π
4

e. sin 1.5 f. tan π
3

g. cos π
6

h. sin π
3

3.2 Some special trigonometric ratios

You will need to be familiar with the trigonometric ratios of π
6
, π

3
and π

4
.

The ratios of π
6

and π
3

are found with the aid of an equilateral triangle ABC with sides of
length 2.

� BAC is bisected by AD, and � ADC is a right angle.
Pythagoras’ theorem tells us that the length of AD =√

3.

� ACD = π
3
.

� DAC = π
6
.

cos
π

3
=

1

2
,

sin
π

3
=

√
3

2
,

tan
π

3
=

√
3.

cos
π

6
=

√
3

2
,

sin
π

6
=

1

2
,

tan
π

6
=

1√
3
.

The ratios of π
4

are found with the aid of an isosceles
right angled triangle XYZ with the two equal sides of
length 1.

Pythagoras’ theorem tells us that the hypotenuse of
the triangle has length

√
2.

cos
π

4
=

1√
2
,

sin
π

4
=

1√
2
,

tan
π

4
= 1.
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4 The Trigonometric Functions

The definitions in the previous section apply to θ between 0 and π
2
, since the angles in a

right angle triangle can never be greater than π
2
. The definitions given below are useful

in calculus, as they extend sin θ, cos θ and tan θ without restrictions on the value of θ.

4.1 The cosine function

Let’s begin with a definition of cos θ.
Consider a circle of radius 1, with centre O at the origin of
the (x, y) plane. Let A be the point on the circumference
of the circle with coordinates (1, 0). OA is a radius of the
circle with length 1. Let P be a point on the circumference
of the circle with coordinates (a, b). We can represent the
angle between OA and OP, θ, by the arc length along the
unit circle from A to P. This is the radian representation
of θ.

The cosine of θ is defined to be the x coordinate of P.

Let’s, for the moment, consider values of θ between 0 and π
2
. The cosine of θ is written

cos θ, so in the diagram above, cos θ = a. Notice that as θ increases from 0 to π
2
, cos θ

decreases from 1 to 0.

For values of θ between 0 and π
2
, this definition agrees with the definition of cos θ as the

ratio adjacent
hypotenuse of the sides of a right angled triangle.

Draw PQ perpendicular OA. In � OPQ, the hypotenuse OP has length 1, while OQ has
length a.

The ratio adjacent
hypotenuse = a = cos θ.

The definition of cos θ using the unit circle makes sense for all values of θ. For now, we
will consider values of θ between 0 and 2π.

The x coordinate of P gives the value of cos θ. When θ = π
2
, P is on the y axis, and it’s

x coordinate is zero. As θ increases beyond π
2
, P moves around the circle into the second

quadrant and therefore it’s x coordinate will be negative. When θ = π, the x coordinate
is −1.

cos θ is positive cos π
2

= 0 cos θ negative cos π = −1
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As θ increases further, P moves around into the third quadrant and its x coordinate
increases from −1 to 0. Finally as θ increases from 3π

2
to 2π the x coordinate of P

increases from 0 to 1.

cos θ is negative cos 3π
2

= 0 cos θ positive cos 2π = 1

4.1.1 Exercise

1. Use the cosine (cos) key on your calculator to complete this table. (Make sure your
calculator is in radian mode.)

θ 0 π
12

π
6

π
4

π
3

5π
12

π
2

2π
3

3π
4

cos θ

θ 5π
6

π 7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

2π

cos θ

2. Using this table plot the graph of y = cos θ for values of θ ranging from 0 to 2π.

4.2 The sine function

The sine of θ is defined using the same unit circle diagram
that we used to define the cosine.

The sine of θ is defined to be the y coordinate of
P.

The sine of θ is written as sin θ, so in the diagram above, sin θ = b.

For values of θ between 0 and π
2
, this definition agrees with the definition of sin θ as the

ratio opposite
hypotenuse of sides of a right angled triangle.

In the right angled triangle OQP, the hypotenuse OP has length 1 while PQ has length b.

The ratio opposite
hypotenuse = b

1
= sin θ.

This definition of sin θ using the unit circle extends to all values of θ. Here, we will
consider values of θ between 0 and 2π.
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As P moves anticlockwise around the circle from A to B, θ increases from 0 to π
2
. When

P is at A, sin θ = 0, and when P is at B, sin θ = 1. So as θ increases from 0 to π
2
, sin θ

increases from 0 to 1. The largest value of sin θ is 1.

As θ increases beyond π
2
, sin θ decreases and equals zero when θ = π. As θ increases

beyond π, sin θ becomes negative.

sin θ is positive sin π
2

= 1 sin θ positive sin π = 0

sin θ is negative sin 3π
2

= −1 sin θ negative sin 2π = 0

4.2.1 Exercise

1. Use the sin key on your calculator to complete this table. Make sure your calculator
is in radian mode.

θ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

sin θ

θ 2 2.4 2.8 3.2 3.6 4.0 4.6 5.4 6.2

sin θ

2. Plot the graph of the y = sin θ using the table in the previous exercise.

4.3 The tangent function

We can define the tangent of θ, written tan θ, in terms of sin θ and cos θ.

tan θ =
sin θ

cos θ
.

Using this definition we can work out tan θ for values of θ between 0 and 2π. You will
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be asked to do this in Exercise 3.3. In particular, we know from this definition that tan θ
is not defined when cos θ = 0. This occurs when θ = π

2
or θ = 3π

2
.

When 0 < θ < π
2

this definition agrees with the definition of tan θ as the ratio opposite
adjacent

of the sides of a right angled triangle.

As before, consider the unit circle with points O, A and P
as shown. Drop a perpendicular from the point P to OA
which intersects OA at Q. As before P has coordinates
(a, b) and Q coordinates (a, 0).

opposite

adjacent
=

PQ

OQ
(in triangle OPQ)

=
b

a

=
sin θ

cos θ
= tan θ.

If you try to find tan π
2

using your calculator, you will get an error message. Look at the
definition. The tangent of π

2
is not defined as cos π

2
= 0. For values of θ near π

2
, tan θ is

very large. Try putting some values in your calculator. (eg π
2
≈ 1.570796. Try tan(1.57),

tan(1.5707), tan(1.57079).)

4.3.1 Exercise

1. Use the tan key on your calculator to complete this table. Make sure your calculator
is in radian mode.

θ 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.50 1.65 2 2.4

tan θ

θ 2.8 3.2 3.6 4.0 4.4 4.6 4.65 4.78 5.0 5.6 6.0 6.28

tan θ

2. Use the table above to graph tan θ.
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Your graph should look like this for values of θ between 0 and π.

Notice that there is a vertical asymptote
at θ = π

2
. This is because tan θ is not

defined at θ = π
2
. You will find another

vertical asymptote at θ = 3π
2

. When θ =
0 or π, tan θ = 0. For θ greater than 0
and less than π

2
, tan θ is positive. For

values of θ greater than π
2

and less than
π, tan θ is negative.

4.4 Extending the domain

The definitions of sine, cosine and tangent can be extended to all real values of θ in the
following way.

5π

2
= 2π +

π

2
corresponds to the arc length of 11

4
revolu-

tions around the unit circle going anticlockwise from A to
B.
Since B has coordinates (0, 1) we can use the previous
definitions to get:

sin 5π
2

= 1,

cos 5π
2

= 0,

tan 5π
2

is undefined.

Similarly,

−16 ≈ −2.546 × 2π

= −2 × 2π + −0.546 × 2π,

sin(−16) ≈ sin(−0.546 × 2π)

≈ 0.29,

cos(−16) ≈ −0.96,

tan(−16) ≈ −0.30.
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4.4.1 Exercise

Evaluate the following trig functions giving exact answers where you are able.

1. sin 15π
2

2. tan 13π
6

3. cos 15 4. tan −14π
3

5. sin 23π
6

Notice

The values of sine and cosine functions repeat after every interval of length 2π. Since
the real numbers x, x + 2π, x − 2π, x + 4π, x − 4π etc differ by a multiple of 2π, they
correspond to the same point on the unit circle. So, sinx = sin(x + 2π) = sin(x − 2π) =
sin(x + 4π) = sin(x − 4π) etc. We can see the effect of this in the functions below and
will discuss it further in the next chapter.

The tangent function repeats after every interval of length π.
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5 Graphs of Trigonometric Functions

In this section we use our knowledge of the graphs y = sin x and y = cos x to sketch the
graphs of more complex trigonometric functions.

Let’s look first at some important features of these two graphs.

The shape of each graph is repeated after every interval of length 2π.

This makes sense when we think of the way we have defined sin and cos using the unit
circle.

We say that these functions are periodic with period 2π.

The sin and cos functions are the most famous examples of a class of functions called
periodic functions.

Functions with the property that f(x) = f(x + a) for all x are called periodic
functions. Such a function is said to have period a.

This means that the function repeats itself after every interval of length a.

Note that you can have periodic functions that are not trigonometric functions. For
example, the function below is periodic with period 2.
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The values of the functions y = sin x and y = cos x oscillate between −1 and 1. We say
that y = sin x and y = cos x have amplitude 1. A general definition for the amplitude of
any periodic function is:

The amplitude of a periodic function is half the distance between its minimum
and maximum values.

Also, the functions y = sin x and y = cos x oscillate about the x-axis. We refer to the
x-axis as the mean level of these functions, or say that they have a mean level of 0.

We notice that the graphs of sinx and cos x have the same shape. The graph of sin x looks
like the graph of cos x shifted to the right by π

2
units. We say that the phase difference

between the two functions is π
2
.

Other trigonometric functions can be obtained by modifying the graphs of sinx and cos x.

5.1 Changing the amplitude

Consider the graph of the function y = 2 sin x.

The graph of y = 2 sin x has the same period as y = sin x but has been stretched in the y
direction by a factor of 2. That is, for every value of x the y value for y = 2 sin x is twice
the y value for y = sin x.

So, the amplitude of the function y = 2 sin x is 2. Its period is 2π.

In general we can say that the amplitude of the function y = a sin x is a, since in this case
y = a sin x oscillates between −a and a.

What happens if a is negative? See the solution to number 3 of the following exercise.

5.1.1 Exercise

Sketch the graphs of the following functions.

1. y = 3 cos x

2. y = 1
2
sin x

3. y = −3 cos x



x

0 π

1

−1

2π−π−2π

y = cos 2x

y = cos x

y

0 π

1

−1

2π−π 3π 4π

y = cos x

y

x

y = cos 1/2x

Mathematics Learning Centre, University of Sydney 16

5.2 Changing the period

Let’s consider the graph of y = cos 2x.

To sketch the graph of y = cos 2x, first think about some specific points. We will look at
the points where the function y = cos x equals 0 or ±1.

cos x = 1 when x = 0, so cos 2x = 1 when 2x = 0, ie x = 0.

cos x = 0 when x = π
2
, so cos 2x = 0 when 2x = π

2
, ie x = π

4
.

cos x = −1 when x = π, so cos 2x = −1 when 2x = π, ie x = π
2
.

cos x = 0 when x = 3π
2

, so cos 2x = 0 when 2x = 3π
2

, ie x = 3π
4

.

cos x = 1 when x = 2π, so cos 2x = 1 when 2x = 2π, ie x = π.

As we see from the graph, the function y = cos 2x has a period of π. The function still
oscillates between the values −1 and 1, so its amplitude is 1.

Now, let’s consider the function y = cos 1
2
x. Again we will sketch the graph by looking at

the points where y = cos x equals 0 or ±1.

cos x = 1 when x = 0, so cos 1
2
x = 1 when 1

2
x = 0, ie x = 0.

cos x = 0 when x = π
2
, so cos 1

2
x = 0 when 1

2
x = π

2
, ie x = π.

cos x = −1 when x = π, so cos 1
2
x = −1 when 1

2
x = π, ie x = 2π.

cos x = 0 when x = 3π
2

, so cos 1
2
x = 0 when 1

2
x = 3π

2
, ie x = 3π.

cos x = 1 when x = 2π, so cos 1
2
x = 1 when 1

2
x = 2π, ie x = 4π.



y

x

0 π /ω

1

−1

2π/ω−π/ω−2π/ω

y = cos   xω
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In this case our modified function y = cos 1
2
x has period 4π. It’s amplitude is 1.

What happens if we take the function y = cos ωx where ω > 0?

cos x = 1 when x = 0, so cos ωx = 1 when ωx = 0, ie x = 0.

cos x = 0 when x = π
2
, so cos ωx = 0 when ωx = π

2
, ie x = π

2ω
.

cos x = −1 when x = π, so cos ωx = −1 when ωx = π, ie x = π
ω
.

cos x = 0 when x = 3π
2

, so cos ωx = 0 when ωx = 3π
2

, ie x = 3π
2ω

.

cos x = 1 when x = 2π, so cos ωx = 1 when ωx = 2π, ie x = 2π
ω

.

In general, if we take the function y = cos ωx where ω > 0, the period of the function is
2π
ω

.

What happens if we have a function like y = cos(−2x)? See the solution to number 3 of
the following exercise.

5.2.1 Exercise

Sketch the graphs of the following functions. Give the amplitude and period of each
function.

1. y = cos 1
2
x

2. y = 2 sin x
4

3. y = cos(−2x)

4. y = sin(−2x)

5. y = 3 sin πx

6. y = −1
2
sin 2πx

7. Find the equation of a sin or cos function which has amplitude 4 and period 2.



1

x

0 π 2π−π−2π

y

2

2

x

2

0 π 2π−π−2π

y

-2
y = cos x – 2
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5.3 Changing the mean level

We saw above that the functions y = sin x and y = cos x both oscillate about the x-axis
which is sometimes refered to as the mean level for y = sin x and y = cos x.

We can change the mean level of the function by adding or subtracting a constant. For
example, adding the constant 2 to y = cos x gives us y = cos x + 2 and has the effect of
shifting the whole graph up by 2 units. So, the mean level of y = cos x + 2 is 2.

Similarly, we can shift the graph of y = cos x down by two units. In this case, we have
y = cos x − 2, and this function has mean level −2.

In general, if d > 0, the function y = cos x + d looks like the function y = cos x shifted
up by d units. If d > 0, then the function y = cos x − d looks like the function y = cos x
shifted down by d units. If d < 0, say d = −2, the function y = cos x + d = cos x + (−2)
can be writen as y = cos x − 2 so again looks like the function y = cos x shifted down by
2 units.

5.3.1 Exercise

Sketch the graphs of the following functions.

1. y = sin 2x + 3

2. y = 2 cos πx − 1

3. Find a cos or sin function which has amplitude 2, period 1, and mean level −1.



y = sin (x -       )π/4
y

x

0 π 2π−π−2π

y = sin x

π/4

y = sin (x +       )π/4
y

x

0 π 2π−π−2π

y = sin x π/4
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5.4 Changing the phase

Consider the function y = sin(x − π
4
).

To sketch the graph of y = sin(x − π
4
) we again use the points at which y = sin x is 0 or

±1.

sin x = 0 when x = 0, so sin(x − π
4
) = 0 when x − π

4
= 0, ie x = 0 + π

4
= π

4
.

sin x = 1 when x = π
2
, so sin(x − π

4
) = 1 when x − π

4
= π

2
, ie x = π

2
+ π

4
= 3π

4
.

sin x = 0 when x = π, so sin(x − π
4
) = 0 when x − π

4
= π, ie x = π + π

4
= 5π

4
.

sin x = −1 when x = 3π
2

, so sin(x − π
4
) = −1 when x − π

4
= 3π

2
, ie x = 3π

2
+ π

4
= 7π

4
.

sin x = 0 when x = 2π, so sin(x − π
4
) = 0 when x − π

4
= 2π, ie x = 2π + π

4
= 9π

4
.

The graph of y = sin(x− π
4
) looks like the graph of y = sin x shifted π

4
units to the right.

We say that there has been a phase shift to the right by π
4
.

Now consider the function y = sin(x + π
4
).

sin x = 0 when x = 0, so sin(x + π
4
) = 0 when x + π

4
= 0, ie x = 0 − π

4
= −π

4
.

sin x = 1 when x = π
2
, so sin(x + π

4
) = 1 when x + π

4
= π

2
, ie x = π

2
− π

4
= π

4
.

sin x = 0 when x = π, so sin(x + π
4
) = 0 when x + π

4
= π, ie x = π − π

4
= 3π

4
.

sin x = −1 when x = 3π
2

, so sin(x + π
4
) = −1 when x + π

4
= 3π

2
, ie x = 3π

2
− π

4
= 5π

4
.

sin x = 0 when x = 2π, so sin(x + π
4
) = 0 when x + π

4
= 2π, ie x = 2π − π

4
= 7π

4
.



y = sin (x - c)  for c>0
y

x

0 π 2π−π−2π

y = sin x

c

y

x

0 π 2π−π−2π

y = sin x c
y = sin (x + c)  for  c>0
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The graph of y = sin(x + π
4
) looks like the graph of y = sin x shifted π

4
units to the left.

More generally, the graph of y = sin(x − c) where c > 0 can be drawn by shifting the
graph of y = sin x to the right by c units.

Similarly, the graph of y = sin(x + c) where c > 0 can be drawn by shifting the graph of
y = sin x to the left by c units.

What happens to y = sin(x − c) if c < 0? Consider, for example, what happens when
c = −π

4
. In this case we can write x − −π

4
= x + π

4
. So, y = sin(x − −π

4
) = sin(x + π

4
) and

we have a shift to the left by π
4

units as before.

5.4.1 Exercise

Sketch the graphs of the following functions.

1. y = cos(x − π
2
)

2. y = sin 2(x + π
2
) (Hint: For this one you’ll need to think about the period as well.)

3. y = 3 cos(x + π)

4. y = −3 cos(x + π) + 2 (Hint: Use the previous exercise.)

5. Find a sin or cos function that has amplitude 2, period π, and for which f(0) = 2.
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6 Derivatives of Trigonometric Functions

This Chapter assumes you have a knowledge of differential calculus. If you have not
studied differential calculus before, go on to the next chapter.

6.1 The calculus of trigonometric functions

When differentiating all trigonometric functions there are two things that we need to
remember.

d

dx
sin x = cos x

d

dx
cos x = − sin x.

Of course all the rules of differentiation apply to the trigonometric functions. Thus we can
use the product, quotient and chain rules to differentiate combinations of trigonometric
functions.

For example, tan x =
sin x

cos x
, so we can use the quotient rule to calculate the derivative.

f(x) = tan x =
sin x

cos x

f ′(x) =
cos x.(cos x) − sin x.(− sin x)

(cos x)2

=
cos2 x + sin2 x

cos x
=

1

cos2 x
(since cos2 x + sin2 x = 1)

= sec2 x.

Note also that
cos2 x + sin2 x

cos2 x
=

cos2 x

cos2 x
+

sin2 x

cos2 x
= 1 + tan2 x

so it is also true that
d

dx
tan x = sec2 x = 1 + tan2 x.

Example

Differentiate f(x) = sin2 x.

Solution

f(x) = sin2 x is just another way of writing f(x) = (sin x)2. This is a composite function,
with the outside function being (·)2 and the inside function being sin x. By the chain rule,
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f ′(x) = 2(sin x)1 × cos x = 2 sin x cos x. Alternatively, setting u = sin x we get f(u) = u2

and
df(x)

dx
=

df(u)

du
× du

dx
= 2u × du

dx
= 2 sin x cos x.

Example

Differentiate g(z) = cos(3z2 + 2z + 1).

Solution

Again we should recognise this as a composite function, with the outside function being
cos(·) and the inside function being 3z2 + 2z + 1. By the chain rule

g′(z) = − sin(3z2 + 2z + 1) × (6z + 2) = −(6z + 2) sin(3z2 + 2z + 1).

Example

Differentiate f(t) =
et

sin t
.

Solution

By the quotient rule

f ′(t) =
et sin t − et cos t

sin2 t
=

et(sin t − cos t)

sin2 t
.

Example

Use the quotient rule or the composite function rule to find the derivatives of cotx, sec x,
and cosec x.

Solution

These functions are defined as follows:

cot x =
cos x

sin x

sec x =
1

cos x

csc x =
1

sin x
.

By the quotient rule
d cot x

dx
=

− sin2 x − cos2 x

sin2 x
=

−1

sin2 x
.

Using the composite function rule

d sec x

dx
=

d(cos x)−1

dx
= −(cos x)−2 × (− sin x) =

sin x

cos2 x
.

d csc x

dx
=

d(sin x)−1

dx
= −(sin x)−2 × cos x = − cos x

sin2 x
.

6.1.1 Exercise

Differentiate the following:

1. cos 3x 2. sin(4x + 5) 3. sin3 x 4. sin x cos x 5. x2 sin x

6. cos(x2 + 1) 7.
sin x

x
8. sin

1

x
9. tan(

√
x) 10.

1

x
sin

1

x



x

0 π

1

−1

2π−π−2π
x

cos

x

0 π

1

−1

2π−π−2π
x

cos

1

−1

cos

x

x

0 π
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7 A Brief Look at Inverse Trigonometric Functions

Before we define the inverse trigonometric functions we need to think about exactly what
we mean by a function.

A function f from a set of elements A to a set of elements B is a rule that
assigns to each element x in A exactly one element f(x) in B.

y = sin x, y = cos x and y = tan x are functions in the sense of this definition with A and
B being sets of real numbers.

Let’s look at the function y = cos x. As you can see, whatever value we choose for x,
there is only ever one accompanying value for y. For example, when x = −π

2
, y = 0.

Now lets consider the following question. Suppose we have cosx = 0.5 and we want to
find the value of x.

As you can see from the diagram above, there are (infinitely) many values of x for which
y = cos x = 0.5. Indeed, there are infinitely many solutions to the equation cosx = a
where −1 ≤ a ≤ 1. (There are no solutions if a is outside this interval.)

If we want an interval for x where there is only one solution to cosx = a for −1 ≤ a ≤ 1,
then we can choose the interval from 0 to π. We could also choose the interval π ≤ x ≤ 2π
or many others. It is a mathematical convention to choose 0 ≤ x ≤ π.



– 1

x

1–1 0

π/2

π f   (x)
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In the interval from 0 to π, we can find a unique solution to the equation cosx = a where
a is in the interval −1 ≤ a ≤ 1. We write this solution as x = cos−1 a. Another way of
saying this is that x is the number in the interval 0 ≤ x ≤ π whose cosine is a.

Now that we have found an interval of x for which there is only one solution of the equation
cos x = a where −1 ≤ a ≤ 1, we can define an inverse function for cos x.

7.1 Definition of the inverse cosine function

We will describe an inverse function for cos x where 0 ≤ x ≤ π.

For −1 ≤ x ≤ 1, f−1(x) = cos−1(x) is the number in the interval 0 to π whose
cosine is x.

So, we have:

cos−1(−1) = π since cos π = −1,

cos−1( 1√
2
) = π

4
since cos π

4
= 1√

2
,

cos−1(0) = π
2

since cos π
2

= 0,

cos−1(1) = 0 since cos 0 = 1.

Provided we take the function cos x where 0 ≤ x ≤ 1, we can define an inverse function
f−1(x) = cos−1(x). This function is defined for x in the interval −1 ≤ x ≤ 1, and is
sketched below.

Inverse functions for sin x where −π
2

≤ x ≤ π
2
, and tan x where −π

2
< x < π

2
can be defined

in a similar way.

For a more detailed discussion of inverse functions see the Mathematics Learning Centre
booklet: Functions.
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7.1.1 Exercise

1. The inverse function, f−1(x) = sin−1(x), is defined for the function f(x) = sin x where
−π
2

≤ x ≤ π
2
. Complete the following table of values.

sin−1( ) = since sin −π
2

= −1,

sin−1( ) = since sin −π
4

= − 1√
2
,

sin−1( ) = since sin 0 = 0,

sin−1( ) = since sin π
3

=
√

3
2

,

sin−1( ) = since sin π
2

= 1.

2. Sketch the function f−1(x) = sin−1(x) using the values in the previous exercise.
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8 Solutions to Exercises

Exercise 2.2.1

a. 30◦ or π
6

radians b. 1 radian or 57.3◦ c. 120◦ or 2π
3

radians

d. 3π
4

radians or 135◦ e. 2 radians or 114.6◦ f. 4π
3

radians or 240◦

g. 270◦ or 3π
2

radians h. −1 radians or −57.3◦ i. −π
2

radians or −90◦

Exercise 3.1.1

a. sin π
6

= 0.5 b. tan 1 = 1.557 c. cos π
3

= 0.5 d. tan π
4

= 1

e. sin 1.5 = 0.997 f. tan π
3

= 1.732 g. cos π
6

= 0.866 h. sin π
3

= 0.866

Exercise 4.1.1

1.

θ 0 π
12

π
6

π
4

π
3

5π
12

π
2

2π
3

3π
4

cos θ 1 0.97 0.87 0.71 0.5 0.26 0 −0.5 −0.71

θ 5π
6

π 7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

2π

cos θ −0.87 −1 −0.87 −0.71 −0.5 0 0.5 0.71 1



0

-1 .00

1.00

cos

 π  2π

θ

θ

0

-1 .00

1.00

θ

θsin

 π  2π
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2.

Exercise 4.2.1

1.

θ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

sin θ 0 0.20 0.39 0.56 0.72 0.84 0.93 0.99 1.00

θ 2 2.4 2.8 3.2 3.6 4.0 4.6 5.4 6.5

sin θ 0.91 0.68 0.33 −0.06 −0.44 −0.76 −0.99 −0.77 −0.083

2.

Exercise 4.3.1

1.

θ 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

tan θ 0 0.20 0.42 0.68 1.03 1.56 2.57 5.80

θ 1.50 1.65 2 2.4 2.8 3.2 3.6 4.0

tan θ 14.10 −12.60 −2.19 −0.92 −0.36 0.06 0.49 1.16

θ 4.4 4.6 4.65 4.78 5.0 5.6 6.0 6.28

tan θ 3.10 8.86 16.01 −14.77 −3.38 −0.81 −0.29 −0.00



0

-10 .0

10.0

θtan

 π  2π

θ

0

-2 .00

2.00

 -2π  -π  π  2π

x

y
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2.

Exercise 4.4.1

1. sin 15π
2

= sin 3π
2

= −1 since 15π
2

and 3π
2

differ by 6π = 3 × 2π.

2. tan 13π
6

= tan π
6

= 1√
3
.

3. cos 15 = −0.76.

4. tan−14π
3

= tan−2π
3

= tan 4π
3

= tan π
3

=
√

3.

5. sin 23π
3

= sin 5π
3

= sin−π
3

= −
√

3
2

.

Exercise 5.1.1

1. y = 3cosx

The amplitude of this function is 3.



0

-1 .00

1.00

y

 -2π  -π  π  2π

x

0

-2 .00

2.00

 -2π  -π  π  2π

x

y

0

-1 .00

1.00

y

 π  2π  3π  4π

x
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2. y = 1
2
sin x

The amplitude of this function is 1
2
.

3. y = −3 cos x

The amplitude of this function is 3. Notice that it is just the graph of y = 3 cos x (in
dots) reflected in the x-axis.

Exercise 5.2.1

1. y = cos 1
2
x

This function has period 4π and amplitude 1.



0

-2 .00

2.00

  -5π  -4π  -3π  -2π  -π  π  2π  3π  4π  5π  

x

y

0

-1 .00

1.00

 -2π  -π  π  2π

x

y

0

-1 .00

1.00

 -2π  -π  π  2π

x

y
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2. y = 2 sin x
4

This function has period 8π and amplitude 2.

3. y = cos(−2x)

This function has period π and amplitude 1. Notice that this function looks like
y = cos 2x. The cosine function is an even function, so, cos(−2x) = cos 2x for all
values of x.

4. y = sin(−2x)

This function has period π and amplitude 1. Notice that this function is a reflection of
y = sin 2x in the x-axis. The sine function is an odd function, so, sin(−2x) = − sin 2x
for all values of x.



1.00 2.00 3.00-1 .00-2 .00-3 .00

-2 .00

2.00

x

y

1.00 2.00 3.00-1 .00-2 .00-3 .00

-1 .00

1.00

x

y

1.00 2.00 3.00-1 .00-2 .00-3 .00

-2 .00

-4 .00

2.00

4.00

x

y
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5. y = 3 sin πx

This function has period 2 and amplitude 3.

6. y = −1
2
sin 2πx

This function has period 1 and amplitude 1
2
.

7. y = 4 cos πx (solid line) or y = 4 sin πx (in dashes). There are many other solutions.



0

2.00

4.00

 -2π  -π  π  2π
x

y

2.00 4.00 6.00-2 .00-4 .00-6 .00

-2 .00

-4 .00

x

y

1.00 2.00 3.00-1 .00-2 .00-3 .00

-2 .00

-4 .00

y

Mathematics Learning Centre, University of Sydney 32

Exercise 5.3.1

1. y = sin 2x + 3

This function has amplitude 1, period π and mean level 3.

2. y = 2 cos πx − 1

This function has amplitude 2, period 2 and mean level −1.

3. y = 2 cos 2πx − 1 (solid line) or y = 2 sin 2πx − 1 (in dashes) or many others.



0

-2 .00

2.00

x

y

 -2π  -π  π  2π

0

-2 .00

2.00

x

y

 -2π  -π  π  2π

0

-2 .00

2.00

 -2π  -π  π  2π
x

y
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Exercise 5.4.1

1. y = cos(x − π
2
)

The function y = cos x (in dots) has been shifted to the right by π
2

units. Notice that
this function looks like y = sin x.

2. y = sin 2(x + π
2
)

The period of this function is π. The function y = sin 2x (in dots) has been shifted
to the left by π

2
units.

3. y = 3 cos(x + π)

This function has period 2π and amplitude 3. The function y = 3 cos x (in dots) has
been shifted to the left by π units.



0

2.00

4.00

x

y

 -2π  -π  π  2π

0

-2 .00

2.00

4.00

x

y

 -2π  -π  π  2π
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4. y = −3 cos(x + π) + 2

This function has period 2π and amplitude 3. The function 3 cos(x+π) (see prevoius
exercise) has been reflected in the x-axis and shifted up by 2 units.

5. y = 2 sin 2x + 2 (in dashes) or y = 2 cos 2x (solid line) or many others.

Exercise 6.1.1

1.
d

dx
(cos 3x) = −3 sin 3x.

2.
d

dx
(sin(4x + 5)) = 4 cos(4x + 5).

3.
d

dx
(sin3 x) = 3 sin2 x cos x.

4.
d

dx
(sin x cos x) = sin x(− sin x) + cos x(cos x) = cos2 x − sin2 x.

5.
d

dx
(x2 sin x) = x2 cos x + 2x sin x.

6.
d

dx
(cos(x2 + 1)) = − sin(x2 + 1)(2x) = −2x sin(x2 + 1).



1.00-1 .00

-1 .00

1.00

x

y
π/2

−π/2
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7.
d

dx
(
sin x

x
) =

x cos x − sin x

x2
.

8.
d

dx
(sin

1

x
) = (cos

1

x
)(−x−2) =

cos 1
x

x2
.

9.
d

dx
(tan(

√
x)) = (sec2(

√
x))(

1

2
x− 1

2 ) =
sec2

√
x

2
√

x
.

10.
d

dx
(
1

x
sin

1

x
) =

1

x
(cos

1

x
)(−x−2) + (sin

1

x
)(−x−2) = − 1

x3
(cos

1

x
+ x sin

1

x
).

Exercise 7.1.1

1. sin−1(−1) = −π
2

since sin −π
2

= −1

sin−1(− 1√
2
) = −π

4
since sin −π

4
= − 1√

2

sin−1(0) = 0 since sin 0 = 0

sin−1(
√

3
2

) = π
3

since sin π
3

=
√

3
2

sin−1(1) = π
2

since sin π
2

= 1

2. f−1(x) = sin−1(x)



CRICOS 00026A
ABN 15 211 513 464

Produced by UPS, the University of Sydney, January 2010.  
The University reserves the right to make alterations to any information 
contained within this publication without notice. 

MatheMatics 
Learning centre

Mathematics Learning centre
t +61 2 9351 4061
F +61 2 9351 5797
e mlc.enquiries@sydney.edu.au
sydney.edu.au/mlc 

Mathematics Learning Centre.indd   2 28/01/10   12:03 PM



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
     Shift: none
     Normalise (advanced option): 'improved'
      

        
     32
            
       D:20100128145552
       841.8898
       a4
       Blank
       595.2756
          

     Tall
     1
     0
     Full
     760
     389
    
     None
     Down
     22.6772
     0.0000
            
                
         Both
         AllDoc
              

       CurrentAVDoc
          

     Uniform
     76.5354
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     0
     2
     1
     2
      

   1
  

 HistoryList_V1
 qi2base





