The inverse matrix

Jackie Nicholas

Mathematics Learning Centre University of Sydney
(C)2010 University of Sydney

The identity matrix

Recall, we defined an identity matrix as a square matrix with 1 's down the main diagonal and 0's everywhere else.

So $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the 2×2 identity matrix,
$I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is the 3×3 identity matrix, and
$I_{4}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ is the 4×4 identity matrix.

Identity matrices

Identity matrices are important as they have the property that when we multiply a matrix A by the appropriate identity matrix, the product is A itself.

If A is a 2×3 matrix, then

$$
I_{2} \times A=A=A \times I_{3} .
$$

Example: If $A=\left[\begin{array}{lll}4 & -1 & 3 \\ 1 & -2 & 9\end{array}\right]$ then

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
4 & -1 & 3 \\
1 & -2 & 9
\end{array}\right]=\left[\begin{array}{lll}
4 & -1 & 3 \\
1 & -2 & 9
\end{array}\right] .
$$

Check that $A \times I_{3}=A$ for yourself.

Inverse matrices

Let A be an $n \times n$ matrix.

The inverse of a matrix A is a matrix B such that

$$
A B=B A=I_{n}
$$

If $A B=B A$ then matrix B must also be $n \times n$.
Thus only square matrices can have an inverse.

An inverse matrix is unique

If A is a square $n \times n$ matrix which has an inverse, the inverse is unique.

Notation
The inverse of a matrix A, if it exists, is denoted by A^{-1} SO

$$
A A^{-1}=A^{-1} A=1 .
$$

Note, not all square matrices have inverses.

The inverse of a 2×2 matrix

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a 2×2 matrix.
We define the determinant of A as

$$
\operatorname{det} A=|A|=a d-b c
$$

The matrix A has an inverse A^{-1} if

$$
\operatorname{det} A=|A|=a d-b c \neq 0
$$

in which case

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Examples

Let $A=\left[\begin{array}{ll}0 & -5 \\ 1 & -4\end{array}\right]$, then $\operatorname{det} A=0-(-5)(1)=5 \neq 0$
so the inverse A^{-1} exists.

$$
A^{-1}=\frac{1}{5}\left[\begin{array}{ll}
-4 & 5 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{ll}
-\frac{4}{5} & 1 \\
-\frac{1}{5} & 0
\end{array}\right] .
$$

Let $B=\left[\begin{array}{ll}2 & -6 \\ 1 & -3\end{array}\right]$, then $\operatorname{det} B=2(-3)-(-6)(1)=0$.
So B is not invertible, ie B^{-1} does not exist.

