Linear algebra

An introduction to matrix algebra

These slides provide a quick introduction to matrices. They might be useful if you're encountering matrices for the first time and want to start working with them immediately.

- For help with some terminology associated with matrices: row, column matrices and their entries, identity, square and zero matrices, and the transpose of a matrix. Introduction to matrices (pdf, 195 KB)
- For help with matrix arithmetic such as adding and subtracting matrices $A \pm B$, multiplying them by scalars $c A$, and associated properties. Addition, subtraction and scalar multiplication (pdf, 178 KB)
- For help with multiplying two matrices $A \times B$, and the properties of matrix multiplication.
Matrix multiplication (pdf, 304KB)
- For an introduction to solving systems of linear equations using matrices: the augmented matrix and elementary row operations.
Elementary row operations (pdf, 72KB)
- For a worked example of Gaussian elimination: using elementary row operations to reduce matrix to row echelon form, and solving the system by back substitution. Using elementary row operations to solve a system of equations (pdf, 202KB)
- An overview of the inverse A^{-1} of a matrix, and how to find the inverse of a 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
The inverse matrix (pdf, 80KB)
- Using Gaussian elimination to find the inverse of an $n \times n$ matrix: a worked example of a 3×3 case.
Finding the inverse of a matrix (pdf, 84 KB)
- Using the inverse of a matrix to solve a system of linear equations.

Solving systems of linear equations using the inverse (pdf, 70 KB)

- For an introduction to determinants and finding the determinant of a matrix using row or column expansions.
Determinants (pdf, 82 KB)
- For some useful properties of determinants such as their relationships with elementary row operations, the determinants of a triangular matrices, and of a product $\operatorname{det}(A B)$. Properties of determinants (pdf, 82 KB)
- For a taste of how matrix algebra can be applied to linear regression and ordinary least squares estimates.
Using matrix algebra in linear regression (pdf, 83KB)

Audiovisual recordings

Entire playlist: Linear algebra recordings (YouTube video)

Individual videos:

- For help with interpreting and finding the vector equation of a line $\vec{r}=\overrightarrow{p_{0}}+t \vec{v}$. Vector equation of a line

