Matrix multiplication

Jackie Nicholas

Mathematics Learning Centre University of Sydney
(C)2010 University of Sydney

Multiplying matrices

We can multiply matrices A and B together to form the product $A B$ provided the number of columns in A equals the number of rows in B.

If $A=\left[\begin{array}{lll}4 & -1 & 3 \\ 1 & -2 & 9\end{array}\right]$ and $B=\left[\begin{array}{rr}0 & -5 \\ -1 & -4 \\ 0 & -1\end{array}\right]$
then we can define $A B$ as A has three columns and B has three rows.

Multiplying matrices

If $A=\left[\begin{array}{lll}4 & -1 & 3 \\ 1 & -2 & 9\end{array}\right]$ and $B=\left[\begin{array}{rr}0 & -5 \\ -1 & -4\end{array}\right]$
then $A B$ is not defined as A is a 2×3 matrix and B is a 2×2 matrix; the number of columns of A does not equal the number of rows of B.

On the other hand, the product $B A$ is defined as the number of columns of $B, 2$, does equal the number of rows of A.

This tells us something very important; order matters!!
In most cases $A B \neq B A$. Here $A B$ is not defined whereas $B A$ is.

How to multiply matrices

In general, if A is a $m \times n$ matrix and B is a $n \times p$ matrix, the product $A B$ will be a $m \times p$ matrix.

Let $C=A B$. It is a $m \times p$ matrix.
Recall that the entry in the i th row and j th column of C, ie the (i, j) th entry of C, is called $c_{i j}$.

The entry $c_{i j}$ is the product of the ith row of A and the j th column of B as follows:

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+a_{i 4} b_{4 j}+\cdots+a_{i n} b_{n j} .
$$

Example of multiplying matrices 1

That probably looked a bit complicated so we will go through an example.

Let $A=\left[\begin{array}{rr}0 & -5 \\ -1 & -4 \\ 6 & -2\end{array}\right]$ and $B=\left[\begin{array}{rr}0 & -1 \\ -3 & 2\end{array}\right]$
A is a 3×2 matrix and B is a 2×2, so $A B$ is defined.
If $C=A B$ is then $C=\left[\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32}\end{array}\right]$ is a 3×2 matrix.

Example of multiplying matrices 2

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]
$$

For the first entry c_{11} we multiple the first row of A with the first column of B as follows:
$\left[\begin{array}{rr}0 & -5 \\ \cdot & \cdot \\ \cdot & \cdot\end{array}\right] \times\left[\begin{array}{rr}0 & \cdot \\ -3 & \cdot\end{array}\right]=\left[\begin{array}{cc}0 \times 0+-5 \times-3 & \cdot \\ \cdot & \cdot \\ \cdot & \cdot\end{array}\right]$
ie $c_{11}=a_{11} \times b_{11}+a_{12} \times b_{21}=15$.

Example of multiplying matrices 3

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
15 & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]
$$

For the entry c_{12} we multiple the first row of A with the second column of B as follows:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0 & -5 \\
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right] \times\left[\begin{array}{cc}
\cdot & -1 \\
\cdot & 2
\end{array}\right]=\left[\begin{array}{ll}
\cdot & 0 \times-1+-5 \times 2 \\
\cdot & \cdot \\
\cdot & \\
\text { ie } c_{12}=a_{11} \times b_{12}+a_{12} \times b_{22}=-10 .
\end{array} .=\begin{array}{l}
.
\end{array}\right]}
\end{aligned}
$$

Example of multiplying matrices 4

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]
$$

For the entry c_{21} we multiple the second row of A with the first column of B as follows:

$$
\left[\begin{array}{rr}
\cdot & \cdot \\
-1 & -4 \\
\cdot & \cdot
\end{array}\right] \times\left[\begin{array}{rr}
0 & \cdot \\
-3 & \cdot
\end{array}\right]=\left[\begin{array}{cc}
-1 \times 0+-4 \times-3 & \cdot \\
\cdot & \cdot
\end{array}\right]
$$

$$
\text { ie } c_{21}=a_{21} \times b_{11}+a_{22} \times b_{21}=12
$$

Example of multiplying matrices 5

So, to multiply two matrices we systematically work out each entry in this way, starting with the first entry.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Click to see how we get the other entries.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Example of multiplying matrices 5

So, to multiply two matrices we systematically work out each entry in this way, starting with the first entry.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Click to see how we get the other entries.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Example of multiplying matrices 5

So, to multiply two matrices we systematically work out each entry in this way, starting with the first entry.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Click to see how we get the other entries.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Example of multiplying matrices 5

So, to multiply two matrices we systematically work out each entry in this way, starting with the first entry.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Click to see how we get the other entries.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Example of multiplying matrices 5

So, to multiply two matrices we systematically work out each entry in this way, starting with the first entry.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Click to see how we get the other entries.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Example of multiplying matrices 5

So, to multiply two matrices we systematically work out each entry in this way, starting with the first entry.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Click to see how we get the other entries.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Example of multiplying matrices 5

So, to multiply two matrices we systematically work out each entry in this way, starting with the first entry.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Click to see how we get the other entries.

$$
\left[\begin{array}{rr}
0 & -5 \\
-1 & -4 \\
6 & -2
\end{array}\right] \times\left[\begin{array}{rr}
0 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{rr}
15 & -10 \\
12 & -7 \\
6 & -10
\end{array}\right]
$$

Properties of matrix multiplication

Let A, B and C be matrices of dimensions for which the following expressions make sense, and let λ be a scalar. Then,

$$
\begin{aligned}
A(B C) & =(A B) C \\
A(B+C) & =A B+A C \\
(A+B) C & =A C+B C \\
\lambda(A B) & =(\lambda A) B=A(\lambda B)
\end{aligned}
$$

Note also that $0 A=0=A 0$
The 0 in the last property could mean the scalar zero or the (appropriate) zero matrix. For example,
$0\left[\begin{array}{rr}2 & -5 \\ -1 & -4 \\ 6 & -2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{rr}2 & -5 \\ -1 & -4 \\ 6 & -2\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

