
Modelling and Calculus

By Collin Phillips

This material has been developed as a joint project between the Mathematics Learning Centre
MLC and the Learning Centre LC at the University of Sydney. With literary and structural
contributions from Dr Janet Jones and Ms Helen Drury of the LC.
Thanks for the many useful suggestions and corrections by Dr Sue Gordon and Ms Jackie
Nicholas of the MLC and, Mr George Papadopoulos and Prof. Leon Poladian of the School
of Mathematics and Statistics. Thanks also for the feedback and proofreading of the many
students of the MLC including Dr Rukshana Yates and Ms Vanessa Kung.
This material was developed with the aid of a Teaching Improvement and Equipment Scheme
TIES Grant at the University of Sydney in 2010.

1



Contents

1 Modelling and Calculus 1 MAC 1
The interpretation and translation of natural and real world problems that are described
in words into a specification and description of the modelling problem in the language of
mathematics 4

1.1 Rates of Change and Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Identifying The Difference Between a Quantity and the Rate of Change of That Quantity 4

1.1.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 What is a Differential Equation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Description of a Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Constant Rate of Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Proportionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Description of Proportional Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Constants of Proportionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Modelling and Calculus 2 MAC 2
Understanding the concepts and ideas of differential equations and their solutions in terms
of written word descriptions of the differential equations and the concepts of solving a
differential equation. 11

2.1 Differential Equations as Questions: Various Variables . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Solution Function and Independent Variable . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Independent Variables and Dependent Variables . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Alternative Notations for Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Differential Equations as Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Differential Equations of the Form
dy

dx
= f(x) as Questions . . . . . . . . . . . . . . . . . 14

2.2.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Differential Equations of the Form
dy

dx
= g(y) as Questions . . . . . . . . . . . . . . . . . 16

2.2.4 Differential Equations of the Form
dy

dx
= f(x)g(y) as Questions . . . . . . . . . . . . . . . 17

2.2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Particular Solutions and General Solutions or Differentiating in Reverse . . . . . . . . . . . . . . 20

2.3.1 The difference between General Solutions and a Particular Solution . . . . . . . . . . . . 20

2.3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Particular Solutions and General Solutions in General . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2



3 Modelling and Calculus 3 MAC 3
Solving some differential equations by using the concepts and interpretations of a differen-
tial equation to find a solution or an answer posed by the differential equation. 25

3.1 Solving Differential Equations of the Form
dy

dx
= f(x) Using Differentiation in Reverse . . . . . . 25

3.1.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Differentiation Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Solving Differential Equations of the Form
dy

dx
= f(x) Using Integration . . . . . . . . . . . . . . 32

3.3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Checking Your Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Integration Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Solving Differential Equations of the Form
dy

dx
= f(y) . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1 Differential Equation of the Form
dy

dx
= y . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.3 Differential Equation of the Form
dy

dx
= ky . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.5 How Not to Solve a Differential Equation of the Form
dy

dx
= f(y) . . . . . . . . . . . . . . 44

4 Modelling and Calculus 4 MAC 4
Relating written word descriptions of real world physical conditions to the description of
the problem in the language of mathematics and using these descriptions to find solutions
to the physical problem. 45

4.1 Finding Conditions in Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Ten Important Steps for Solving Modelling Questions Posed in Words . . . . . . . . . . . . . . . 52

5 Answers to Selected Exercises 60

5.1 Answers to Exercises 1.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Answers to Exercises 1.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Answers to Exercises 1.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Answers to Exercises 1.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Answers to Exercises 2.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Answers to Exercises 2.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 Answers to Exercises 2.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.8 Answers to Exercises 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.9 Answers to Exercises 2.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.10 Answers to Exercises 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.11 Answers to Exercises 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.12 Answers to Exercises 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.13 Answers to Exercises 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.14 Answers to Exercises 3.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.15 Answers to Exercises 3.6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.16 Answers to Exercises 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3



Chapter 1

Modelling and Calculus 1 MAC 1
The interpretation and translation of
natural and real world problems that
are described in words into a
specification and description of the
modelling problem in the language of
mathematics

1.1 Rates of Change and Derivatives

1.1.1 Identifying The Difference Between a Quantity and the Rate of Change of
That Quantity

Imagine a block of ice put in one of your classrooms.

The block of ice will melt.

The warmer the room the quicker the ice will melt.

How do we write this as an equation?

Let us say the volume of the block of ice is given by V .

Then the rate at which the block will melt will be
dV

dt
, where t is the time.

Remember the
d

dt
represents how quickly something changes.

The rate of change of volume, in words, is represented by
dV

dt
in mathematics.

Now the temperature of the room influences how quickly the ice will melt.

The temperature does not change the volume of ice instantaneously. A hot room doesn’t mean there will be no
ice straight away.

So the temperature of the room influence
dV

dt
not V directly.
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In nature and the physical world often one quantity will influence the rate of change of another.

Here we are making the distinction between a quantity and how quickly that quantity changes. These are not
inter-changable concepts.

There may be lots of ice in a freezer. In which case the volume is large but the ice is changing very slowly.

There may be an iceberg which has drifted to a location with a warm climate in which case there is lots of ice
changing very quickly.

There may be an ice cube in a cold slushy drink in which case there is little ice changing slowly.

There may be an ice cube in a warm beer in which case there is little ice that will change rapidly.

This distinction between the amount or quantity of a substance, and the rate of change of that substance is a
critical concept for understanding modelling and calculus.

In written words expressions like rate, rate of change, speed, acceleration, how quickly, how slowly,
how fast, amongst others may indicate a derivative in mathematics.

1.1.2 Exercises

In the following sentences identify which part, or parts, of the sentence represents
dx

dt
or the derivative of a

quantity.

For each question you need to make a distinction between which part of the question describes the quantity
of something in the problem and which parts describe the rate of change of that quantity in the problem; just
as we made a distinction between the volume of ice and the rate at which the volume of ice changes in the
examples above.

1. A cold sausage is placed in an oven. The rate of increase of temperature of the sausage will depend on
how hot the oven is.

2. The rate of change of concentration of salt in a cell will depend on the difference between the concentration
of salt in the cell and in the concentration of salt in the environment.

3. The rate at which a human body produces insulin will depend on the concentration of sugars in the blood

4. How fast a car travels will depend on the rate at which fuel is being taken from the fuel tank and fed to
the engine.

5. How fast a car accelerates or changes velocity depends on the rate of change of the rate at which fuel is
being taken from the fuel tank and fed to the engine.

6. A swimming pool, which is initially full of water, is drained through a hole in the bottom of the pool.
The rate at which the depth of water drops will depend on the the pressure at the bottom of the pool and
hence will depend on the depth of water the water in the pool.

7. A ballon is filled with air and then allowed to deflate. The larger the balloon the more pressure the air
will exert. The rate of change of the volume of the balloon will depend on the diameter of the balloon.
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1.2 What is a Differential Equation?

1.2.1 Description of a Differential Equation

In nature, very often one property of a system will influence the rate of change of another property.

For instance if we place a hot pie in a warm room the rate of change of the temperature of the pie will depend
on how cold or warm the room is. If the pie is put in a freezer the pie will cool quickly. If the pie is put in a
warm room it will cool more slowly. If placed in an oven it will cool slowly or even heat up, depending on how
hot the oven is, and in this case how hot the pie is.

The rate of change of the temperature of the pie will depend on the temperature of the room.

Many, many physical, chemical, electrical, biological and other natural systems can be well modeled by rela-
tionships between one property of the system and the rate of change of another.

Many, many physical, chemical, electrical, biological and other natural systems can be well
modeled by relationships between one property of the system and the rate of change of
another.

For these reasons we need to incorporate derivatives into our equations.

A differential equation is an equation which involves a derivative of one of the variables.

1.2.2 Constant Rate of Change

If we put a hose in a swimming pool and turn the tap on full the pool will fill up.

If the tap delivers water at, let’s say, 1000 litres every hour and this rate doesn’t change then the volume of
water in the pool will change by a certain amount in any given time period.

If the volume of water in the pool is V then the rate of change of V will be constant.

In mathematics this idea is simply written as:
dV

dt
= c,

where c is a constant and t is time.

This mathematical expression has an equal sign hence it is called an equation.

The equation also involved a derivative
dV

dt
hence it is called a differential equation.

The expression
dV

dt
= c,

is an equation and has a derivative of one of the variables; hence we call it a differential
equation.

If a pool initially has 2000 litres of water in it and then has 3000 litres of water after constantly filling for 1
hour and 4000 litres of water after 2 hours and 6000 litres after 4 hours then

dV

dt
= 1000

litres

hour
,

or, for V measured in litres and t measured in hours we just write

dV

dt
= 1000.

Here the change in volume for any fixed period of time is the same. The volume changes by 1000 in any hour.
The rate of change in volume will depend on how much we turn the tap on. If we turn-off the tap a bit the rate
will decrease, but the volume will not.

The volume of water in the pool is different than the rate of increase of volume.
The rate at which the water enters the pool may be 1000 litres per hour, but the volume in the pool is never
1000 litres.
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1.2.3 Exercises

For the following worded questions identify which parts of the question represents the derivative of a quantity,
which part represents the quantity itself, which part represents the equality, and which feature of the problems
tell us what the rate of change will be.

1. A ballon fills with air such that the rate of change of volume of the balloon is equal to 2000 litres per
minute.

2. The rate of change of temperature of a cold beer is equal to the difference in temperature of the beer and
the room.

3. The rate at which a swimming pool is filled is equal to a constant times the opening in the tap.

4. A bowling ball is thrown out of an aircraft and falls such that the rate of change of the speed is increasing
by 9.8 metres per second every second. (This means that the object, which initially is not falling at all
will be falling at 9.8 metres per second after 1 second, and will be falling at 19.6 metres per second after
2 seconds etcetera.)

5. A balloon deflates such that the rate of change of volume of the balloon is equal to a constant times the
volume of the balloon. In this case as the balloon deflates there is less pressure exerted by the balloon on
the air inside.

6. The rate of change of concentration of alcohol in the blood stream of a person who has stopped drinking
is constant.

7. The change of speed of an object falling to Earth will increase at a constant rate of 9.8 metres per second
every second. (This means that if the object is dropped from rest then it will be falling at a speed of
9.8 metres per second after one second and then be falling at a speed of 19.6 metres per second after 2
seconds.)

8. The rate of change of the wind-speed (where the wind-speed is positive if it is onshore and negative if
is or offshore) in an idealized costal region will be dependent on the difference in the temperature of the
land and the ocean.

9. The rate at which a small shark population increases will equal a constant times the number of fish in
their habitat
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1.3 Proportionality

1.3.1 Description of Proportional Quantities

The diameter of a circle is always two times the radius.

For a circle of radius 1 metre the diameter is 2.

For a circle of radius 1 light year the diameter is 2 light years. A light year is how far light travels in a year (in
a vacuum). This is a pretty big circle.

Likewise there is a relationship between the distance around a circle (the circumference) and the diameter.

For a tractor wheel of diameter of 1 metre the circumference is about 3.141 . . .metres = πm.
For a ferris wheel of diameter of 10 metres the circumference is about 31.41 . . .metres = 10πm.

If a fixed change in one quantity always leads to, a not necessarily equal, but fixed
change in another we say that the two quantities are proportional.

For instance if we change the radius of a circle by 1 metre then we will change the diameter by 2 metres. If we
increase the diameter of a circle by 1 metre then we will change the circumference by 3.141 . . . m or π m.

We say that the diameter is proportional to the radius or in mathematical symbols we write

diameter ∝ radius or d ∝ r,

where d is the diameter of the circle and r is the radius.

This means that the diameter will be equal to a constant times the radius. Here

d = 2r.

Likewise the circumference is proportional to the diameter of a circle or

circumference ∝ diameter or c ∝ d,

where c is the circumference. Here the circumference is equal to a constant times the diameter, and the constant
is the most famous constant of proportionality, π. We write

c = πd

If two quantities A and B are proportional we write

A ∝ B,

which reads A is proportional to B.

If A and B are proportional then A will be equal to a non-zero constant times B or

A = k ×B,

which reads A is equal to a non zero constant k times B.



Draft Version August 2011 c©2010 University of Sydney 9

1.3.2 Exercises

Are the following quantities proportional?

1. The diameter of a sphere and the radius of a sphere.

2. The circumference of a circle and the diameter of a circle.

3. The circumference of a great circle (the largest circumference of a sphere) and the diameter of a sphere.

4. The perimeter of a square and the length of a side of a square.

5. The area of a square and the side length of a square.

6. The area of a circle and the radius of a circle.

7. The height and the corresponding weight of each person in a group of 100 students.

8. The number of people passing a maths class and the size of that maths.

9. The area of a circle and the radius-squared of the circle.

10. The volume of a cube and the volume of the biggest sphere that can just be contained in that sphere.

1.3.3 Constants of Proportionality

If A is proportional to B then

A = k ×B,

where k $= 0 is called the constant of proportionality.

It is generally specified that the constant of proportionality not be equal to zero. If a constant c could be zero
then A = c×B would mean that A = 0 and A would be identically equal to zero, no matter what the value of
B. For this circumstance the value of A would not be dependent on B or the two quantities A and B would not
be dependent. Since we reasonably expect two quantities that are proportional to be dependent we generally
exclude the case of k = 0 from the definition.

Perhaps the most famous constant of proportionality is the constant π, which is about 3.141 . . . .

We know the diameter d and circumference of a circle c are proportional, or c ∝ d in this case

c = πd .

So π is the constant of proportionality between the diameter and circumference of a circle.

In fact this can be used as a definition of the important constant π.

π is the geometric constant of proportionality (for Euclidean space).

For a fixed change of say 1 metre in diameter, the circumference will change by 3.141 . . . or π metres.

If we increase the diameter of a Ferris wheel from 10 metres to 11 meters it will be 3.141 . . . metres larger around
the circumference.

In fact if we change the diameter of any Ferris wheel by 1 metre, no matter how big or small, the circumference
will change by π metres.

This is precisely why, when you pump up the tyres on a car or a bike the speedo will read slower when you are
going at exactly the same speed along the road. Or another way of saying this is that for the same reading on
the speedo “more pumped up” tyres will make the car travel faster.

If we graph the diameter of a ferris wheel with the circumference the graph will be a straight line. Every time
we increase d by one metre c will increase by π metres.
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The graph of any two proportional quantities with A on the horizontal axis B on the vertical axis, with say
A = k × B will be a straight line with gradient k. If we change A by ∆A this will lead to a change in B of
k ×∆B

1.3.4 Exercises

For each of the following sets of quantities find the constant of proportionality

1. The radius of a sphere and the diameter of a sphere.

2. The diameter of a sphere and the circumference of a great circle ( the largest circumference of a sphere).

3. The length of a side of a square and the distance around the perimeter of a square.

4. The radius of a circle and the circumference of a circle.

5. The volume of a cube and the side length cubed of the cube.

6. The volume of a sphere and the radius of a sphere cubed.

7. An inch and a millimetre.

8. A litre and a cubic metre.

9. The side length of a square and the diagonal of a square.

10. The area of a square and the area of the largest circle that can wholly be contained in that square.

11. The volume of a cube and the volume of the biggest sphere that can wholly be contained in that cube.
Hint: for d half the side length of the cube and r the radius of the sphere then r2 = d2 + 2d2.

12. What constant of proportionality would you choose for the following quantity. The number of people
passing a maths class and the size of that maths class.

13. What constant of proportionality would you choose for the following quantity. The number of people
failing a maths class and the size of that maths class.

14. The area of a circle and the radius squared of the circle.



Chapter 2

Modelling and Calculus 2 MAC 2
Understanding the concepts and ideas
of differential equations and their
solutions in terms of written word
descriptions of the differential
equations and the concepts of solving a
differential equation.

2.1 Differential Equations as Questions: Various Variables

2.1.1 Solution Function and Independent Variable

To work out what question a differential equation is asking we look at the symbol at the top of the derivative,

for
dy

dx
this is y. For

df

dt
this is f . We may want to eventually find this function. Let’s call this the solution

function.

We then look at the thing we are differentiating with respect to, or the symbol on the bottom of the derivative.

For
dy

dx
this is x. For

df

dt
this is t. Here we will call this the independent variable, because (here) we want to

find the solution function in terms of this independent variable.

Here we want to find the solution function in terms of the independent variable.

For
dy

dx
we want to find y in terms of x.

For
df

dt
we want to find f in terms of t.

2.1.2 Independent Variables and Dependent Variables

The reason that we call one variable independent and one variable a dependent variable is that they will serve
different rolls in the solution.

11
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For instance if we find y in terms of x, let’s say for instance we find y = x2 + 3x then we can change the x
variable and simply calculate the new value for y. y is dependent on x and we think of x, as being able to be
changed independently.

For the same function y = x2 + 3x if we change y it is quite an involved process to find the new value of x.
Changing y results in a more involved calculation to find x.

Even though, strictly speaking, both variable are dependent on the other, through our equation; since we can’t
change one without the other, if we change the independent variable we can simply use our formula to find the
new value of the dependent variable.

In some instances we may need to find the variable on the bottom of the derivative in terms of the variable
on the top. In this case then the roles of the variables will be reversed. Here, to start with, we stick with the
solution function on the top and the independent variable on the bottom of the derivative.

2.1.3 Alternative Notations for Differential Equations

There are many different notations for a derivative. We can write the derivative
dy

dx
as y′(x).

So for a derivative of the form X ′(t) for instance, we want to find the solution function X in terms of the
independent variable t.

For this alternative notation:

For Y ′(x) we want to find Y in terms of x.

For X ′(t) we want to find X in terms of t.

For a differential equation of the form
dy

dx
= 3x2, we want to find a solution function y as a function of x.

For a differential equation of the form X ′(t) = 20X, we want to find a solution function X as a function of t.

Example 1

For the differential equation
dy

dx
= 4x2 + 2x,

identify the solution function and the independent variable.

Solution
Here y is the solution function and x is the independent variable. We want to find y as a function of x.

Example 2

For the differential equation
f ′(z) = 2z2,

identify the solution function and the independent variable.

Solution
Here f is the solution function and z is the independent variable. We want to find f as a function of z.

Example 3

For the differential equation
X ′(t) = 15X,

identify the solution function and the independent variable.

Solution
Here X is the solution function and t is the independent variable. We want to find X as a function of t.
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2.1.4 Exercises

For the following differential equations find the solution function(s) and the independent variable.
Note: you do not need to solve the differential equations here just name the solution function and the independent
variable.

1.
dy

dx
= x

2.
dy

dx
= y

3.
dy

dx
= 3x2 + 5y2

4.
dy

dx
= x

5.
dx

dy
= y2 + 2x× y

6.
dx

dt
× x+ t = 0

7.
dx

dt
= 3x2 + 4t

8. 0 =
dz

dy
+ 2y × z

9. 3 + 7
dz

dx
+

[
dz

dx

]2
= 0

10.
1
dy

dx

+ 3y = 0

11.
dx

dt
+ y = t,

dy

dt
+ x = t2

12. X ′(t) = 4

13. X ′(t) = X(t)

14. X ′(t) + 3X(t) = t2

15. X ′(Z) + Z ×X = 0

16. Y ′(Z) + 3 = Y (Z)

17. X ′(t)−Xt = X3t2

18. X ′(t) = X − Y , Y ′(t) = Y −X + 2

19.
d2X

dt2
+

dX

dt
+X

20. X ′′(t) +X ′(t) +X(t) = 0
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2.2 Differential Equations as Questions

2.2.1 Differential Equations of the Form
dy

dx
= f(x) as Questions

With the solution function and independent variable in mind we look at the rest of the differential equation.

It is useful to think of a differential equation, not as a mathematical formula, but as asking a question in words.

Example 1

The differential equation
dy

dx
= 2x

is like asking the question:

Can you think of a function y, which is a function of x, such that when you differentiate that
function you get 2x?

Just one answer to this question is

y = x2,

or y(x) = x2. Since if you differentiate x2 you get 2x.

We could have also chosen y(x) = x2 + 1 for instance.

Example 2

The differential equation
dy

dx
= 3x2

is asking:

Can you think of a function y, which is a function of x, such that when you differentiate that
function you get 3x2?

Just one answer to that question is

y = x3.

Can you think of another?

Example 3

The differential equation
dy

dx
= 4x3 + 10x3

is asking:

Can you think of a function y, which is a function of x, such that when you differentiate that
function you get 4x3 + 10x3?
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2.2.2 Exercises

For the following differential equations write down a simple sentence in words that represents a question that
the differential equation is asking.

1.
dy

dx
= 2

2.
dy

dx
= 2x

3.
dy

dx
= sin(x)

4.
dy

dx
= 3x2

5.
dy

dx
= ex

6.
dy

dx
= x sin(x)

7.
dy

dx
+ 2x = 3

8. X ′(t) = 3t2

9. Y ′(z) = sin z + z

10. W ′(t) + sin t = 15

11.
dy

dx
× x = 3

12.
dy

dx
× sin(x) = x sin(x)

13.
dy

dx
× ex = e2x

Below are some harder questions that can be answered by extending the ideas in this section.

14.

[
dy

dx

]2
= (3x2 + 2)2

15. X ′(t) +X(t) = 3t2

16. [X ′(t)]2 +X ′(t) = 13

17.

(
dy

dx

)2

× y + sin(x) = 0

18. Z ′(Y )× Z(Y ) + 3Z(Y ) = Y 2

19. 2
dy

dx
+ 3y + sin(x) = 0

20. [X ′(t)]2 +X(t) sin t = t2
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2.2.3 Differential Equations of the Form
dy

dx
= g(y) as Questions

In all of our examples so far the right hand side has only involved independent variables. For the example above
there are only xs on the right.

But there can be solution functions on the right as well.

Example 1

For instance we can have a differential equation such as

dy

dx
= y.

This differential equation is, in essence, quite different to the others we have discussed above. The equation can
be thought of as asking the question:

Can you think of a function y, which is a function of x, such that when you differentiate that
function you get the same function that you started with?

The function y = ex has derivative
dy

dx
=

d

dx
ex = ex = y.

So y = ex is a function that has itself as its derivative.

So y = ex is just one answer to our question—what function is its own derivative.

But again this is not the only function that answers our question.

The function y = 2ex has derivative
dy

dx
=

d

dx
2ex = 2ex = y.

So y = 2ex is also a function that is its own derivative.

So y = 2ex is again just one answer to our question.

The functions y = ex and y = 2ex are answers to our question and there are many more. Other answers to the
question “can you think of a function that is its own derivative” are y = 3ex, y = 24ex, y = −351ex.

Indeed the exponential function is unique as it is the only type of function, such that when you differentiate it
you get back the same function.

The only class of functions that are their own derivatives are the exponential functions of the form y(x) = Aex.
Since

dy

dx
=

d

dx
Aex = Aex = y

that is when we differentiate Aex we get back the same function we started with.

Hence Aex is the most general answer to our question.

The exponential function is the only type of function who’s derivative is the same as the function itself.

y(x) = constant× ex is the only type of function that is its own derivative.
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Example 2

The differential equation
dy

dx
= 4y

is more complicated again. It is asking:

Can you think of a function y, which is a function of x, such that when you differentiate that
function, you get 4 times the function that you first thought of?

Just one function which answers our question is y = e4x, since here
dy

dx
=

d

dx
e4x = 4 × e4x which is 4 times

the function we first thought of. Can you think of others (Example 1 provides a hint)?

Example 3

The differential equation
dx

dt
= x2 + 2x

is asking:

Can you think of a function x, which is a function of t, such that when you differentiate that
function you get the square of the function you first thought of plus 2 times the function that you
first thought of?

The function which answers our question is x(t) =
2

ce−2t + 1
.

As we can see the solutions to differential equations get very complicated very quickly. In fact we can write
down very simple looking differential equations that do not have solutions in terms of simple functions. One
such example is f ′(x) = ex

2

. There are many more.

In fact writing down differential equation can be thought of as a way of defining many special functions. The

differential equation
dy

dx
= y can be used as a definition for the function y(x) = ex and can be used to find the

important constant e = 2.718281828 . . ..

2.2.4 Differential Equations of the Form
dy

dx
= f(x)g(y) as Questions

Example 4

The differential equation
dx

dt
= 2tx

is asking:

Can you think of a function x, which is a function of t, such that when you differentiate that
function you get 2t times the function that you first thought of?

Just one function which answers our question is x = et
2

, since here
dx

dt
=

d

dt

et
2

= 2t× et
2

which is 2t times

the function we first thought of.

Please note that you are not expected to solve these differential equations here. You should
understand how to understand what a differential equation may be asking.
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2.2.5 Exercises

1. Which question is the following differential equation asking in words?

dy

dx
= 3x2

(a) Can you think of a function such that when you differentiate that function you get 3 times the
function.

(b) Can you think of a function such that when you differentiate that function you get the square of the
function.

(c) Can you think of a function such that when you differentiate that function you get 2 times the square
of the function.

(d) Can you think of a function such that when you differentiate that function you get 3 times the square
of the function.

(e) None of the above.

(f) All of the above.

2. Which question is the following differential equation asking in words?

dy

dx
= 3y2

(a) Can you think of a function such that when you differentiate that function you get 2 times the square
of the function you first thought of .

(b) Can you think of a function such that when you differentiate that function you get 3 times the function
you first thought of .

(c) Can you think of a function such that when you differentiate that function you get 3 times the square
of the function you first thought of .

(d) Can you think of a function such that when you differentiate that function you get the square of the
function you first thought of.

(e) None of the above.

3. Which question is the following differential equation asking in words?

dx

dt
= 3x2

(a) Can you think of a function such that when you differentiate that function you get 3t2

(b) Can you think of a function such that when you differentiate that function you get 3 times the function
you first thought of .

(c) Can you think of a function such that when you differentiate that function you get the square of the
function you first thought of.

(d) Can you think of a function such that when you differentiate that function you get 3 times the square
of the function you first thought of .

(e) Can you think of a function such that when you differentiate that function you get 2 times the square
of the function you first thought of .

(f) None of the above.

4. Which question is the following differential equation asking in words?

dx

dt
= 3x2 + x3

(a) Can you think of a function such that when you differentiate that function you get 3t2 + t3

(b) Can you think of a function such that when you differentiate that function you get 3 times the function
you first thought of plus that function cubed.
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(c) Can you think of a function such that when you differentiate that function you get two times the
square of the function you first thought of plus that function cubed.

(d) Can you think of a function such that when you differentiate that function you get 3 times the square
of the function you first thought of plus that function squared.

(e) Can you think of a function such that when you differentiate that function you get 3 times the square
of the function you first thought of .

(f) None of the above.

5. Match up the different differential equations with their corresponding questions, written in words.

(a) Can you think of a function such that when you differentiate that function you get 3t2 + t3

(b) Can you think of a function such that when you differentiate that function you get 2 times the function
you first thought of plus that function cubed.

(c) Can you think of a function such that when you differentiate that function you get two times the
square of the function you first thought of plus that function cubed.

(d) Can you think of a function such that when you differentiate that function you get 3 times the square
of the function you first thought of plus that function squared.

(e) Can you think of a function such that when you differentiate that function you get 3 times the square
of the function you first thought of .

(i)
df

dt
= 2f2 + f3

(ii)
dx

dt
= 4x2

(iii)
dy

dt
= 3t2 + t3

(iv)
dx

dt
= 3x2

(v)
dx

dt
= 2x+ x3
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2.3 Particular Solutions and General Solutions or Differentiating in
Reverse

2.3.1 The difference between General Solutions and a Particular Solution

For this section we will concentrate on differential equations that look like

dy

dx
= f(x),

that is equations with the derivative on the left and a function of only the independent variable on the right.

Examples of these type of differential equations are
dy

dx
= 3x2 +2x or

dy

dx
= 10x4 − sin(x), but with no solution

functions, or ys here, on the right.

Example 1

The differential equation
dy

dx
= 5 is asking; can you think of a function y(x) such that when you differentiate

that function you get 5.

Just one answer is y(x) = 5x as here
d

dx
5x = 5

If you know how to differentiate, answering these questions seems like we just need to apply the rules of
differentiation in reverse.

This process is given the name anti-differentiation.

Anti-differentiation simply means apply the rules of differentiation in reverse,
in order to solve our differential equations or answer our questions.

Seems simple so far, though there can be many answers to one question, just like the meaning of life.

Example 2

The differential equation
dy

dx
= 2x is asking; what y do we differentiate to get 2x?

We know y(x) = x2 is an answer to this question as
d

dx

x2

= 2x. So we have one solution to this differential

equation.

But if we differentiate y = x2 + 1 for instance, we also have
d

dx
(x2 + 1) = 2x. This means that y = x2 + 1 is

also a solution to our differential equation. But so is y = x2 − 1, y = x2 + 10, y = x2 − 24.3, y = x2 + 1000000,
y = x2 + π and y = x2 − π × 1000000.

There can be many solutions to just one differential equation.

If we differentiate any constant we get 0. So if we differentiate

y = x2 + any constant

we get
d

dx
(x2 + any constant) = 2x.

So there are lots of answers to our question
dy

dx
= 2x. In fact there are an infinite number of them.

The most general solution to this differential equation is y = x2 + c, where c is a constant.



Draft Version August 2011 c©2010 University of Sydney 21

The constant c, as used here, is called the constant of integration.

Since there may be lots of solutions to any one differential equation we use special names for each type.

The solution y = x2+ c is called the general solution of the differential equation
dy

dx
= 2x.

As it is the most general solution to the differential equation.

Any one of these solutions on there own, such as, y = x2, y = x2 + 100, y = x2 − π × 10000000000000000 are
all still solutions to the differential equation.

Any one of these solutions is called a particular solution to the differential equation.

y = x2 is a particular solution to the differential equation. y = x2 + 100 is also a particular solution to the
differential equation. y = x2 − π × 10000000000000000 is also a particular solution to the differential equation.

The solution y = x2 is called a particular solution of the differential equation
dy

dx
= 2x.

As it is the just one solution to the differential equation.

2.3.2 Exercises

1. For the differential equation
dy

dx
= 3x2

which of the below are particular solutions?

(a) y = x3

(b) y = x3 − 10000000

(c) y = x3 − π

(d) y = x2 + 20000000

(e) y = x3 − c

(f) None of the above.

(g) All of the above.

2. For the differential equation
dy

dx
= 4x3

which of the below are particular solutions?

(a) y = x4 + 10

(b) y = x4 + π

(c) y = x3 + c

(d) y = x3 − c

(e) y = 4x3 + c

(f) None of the above.

(g) All of the above.

3. For the differential equation
X ′(t) = sin(t)

which of the below are general solutions?

(a) X(t) = cos(t) + c

(b) X(t) = −cos(t) + 10

(c) X(t) = −cos(t) + c

(d) X(t) = cos(t) + 2d

(e) X(t) = −cos(t) + 2d

(f) None of the above.

(g) All of the above.
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2.3.3 Particular Solutions and General Solutions in General

The most general solution to a differential equation is called the general solution.

For the differential equations with only the first derivative, in these notes, the general
solution will involve a constant such as c above.

The constant c, as used here, is called the constant of integration.

Any single solution to a differential equation is called a particular solution.

The particular solution will not involve a constant of integration, such as c above.

Summary of Terminology For Differential Equations

dy

dx
= f(x) is called a differential equation. There are many other types.

y =

∫
f(x) dx is called the general solution of the differential equation. The integral will

involve a constant c say.
c is called the constant of integration.

If we evaluate c, for instance if c = 0 then y =

∫
f(x) dx, with c = 0, is called a particular

solution of the differential equation.
The process of answering a question about the derivative of a function that we are using
here is called anti-differentiation.

Example

dy

dx
= 5x2 is called a differential equation.

y =
5

3
x3 + c is called the general solution of the differential equation.

c is called the constant of integration.

If we evaluate c, for instance if c = 0 then y =
5

3
x3 is called a particular solution of the

differential equation. y =
5

3
x3 + 10 is also a particular solution.

The process we are using of answering a question about the derivative of a function is called
anti-differentiation.
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2.3.4 Exercises

The following mathematical expressions, that are labelled (a) to (f), are just part of a solution to a problem
involving a differential equation.
Match up each mathematical expression with the appropriate description in words, labelled (i) to (vi).

Please note: In general you should provide answers with descriptions of the solution in words as
well as mathematics.

As an example of how to set out solutions in words and mathematics see Ten Important Steps for Solving
Modeling Questions Posed in Words

1. For the differential equation
dy

dx
= 2x

(a)
dy

dx
= 2x

(b) y = x2 + c

(c) y = x2 + 5

(d) c

(e) c = 5

(f) y = x2

(i) Differential Equation

(ii) Particular Solution

(iii) General solution

(iv) Particular Solution

(v) Constant of Integration

(vi) Evaluation of constant of integration

2. For the differential equation
dy

dx
= 5x4

(a) c = 5

(b) y = x5 + c

(c) y = x5 + 5

(d) c

(e)
dy

dx
= 5x4

(f) y = x5 + c

(i) General solution

(ii) Particular Solution

(iii) Differential Equation

(iv) Constant of Integration

(v) General Solution

(vi) Evaluation of constant of integration

3. For the description of a differential equation, given by the following description;

“Can you think of a function such that when you differentiate that function with respect to
t you get sin(t).”

match up each mathematical expression labelled (a) to (f) with the appropriate description in words,
labelled (i) to (vi), if an appropriate description exists.

(a) X = cos(t) + c

(b) X = − cos(t)

(c)
dt

dx
= sin(t)

(d) X = − cos(t) + c

(e)
dX

dt
= sin(t)

(f) X = − cos(t) + 15

(i) General solution

(ii) Particular Solution

(iii) Differential Equation

(iv) Constant of Integration

(v) Particular Solution

(vi) Evaluation of constant of integration
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4. For the description of a differential equation, given by the following description;

“Can you think of a function such that when you differentiate that function with respect to
x you get x ex + ex.”

match up each mathematical expression labelled (a) to (f) with the appropriate description in words,
labelled (i) to (vi), if an appropriate description exists.

(a)
dy

dx
= x ex + ex + c

(b) Y = x ex + c

(c) Y = x ex − 42

(d) Y ′(x) = x ex + ex + c

(e) Y ′(x) = x ex + ex

(f) Y (x) = x ex + eπ

(i) General solution

(ii) Particular Solution

(iii) Differential Equation

(iv) Constant of Integration

(v) Particular Solution

(vi) Evaluation of constant of integration



Chapter 3

Modelling and Calculus 3 MAC 3
Solving some differential equations by
using the concepts and interpretations
of a differential equation to find a
solution or an answer posed by the
differential equation.

3.1 Solving Differential Equations of the Form
dy

dx
= f(x) Using Dif-

ferentiation in Reverse

The most important step in solving differential equations, at least at the beginning, is to understand what a
differential equation represents and what it is asking.

The second most important step in starting to solve differential equations is understanding the terminology and
notation used.

We now use these ideas to solve some simple differential equations.

Here we concentrate on differential equations of the form
dy

dx
= f(x).

For these differential equations the right hand side is always some function of x, like
dy

dx
= 2x,

dy

dx
= 3x2 etc.̇

To solve a differential equation of this form we are asked the question:

What function y, which is a function of x, has a derivative given by f(x).

If you know various derivatives this may be just a matter of, remembering derivatives, or looking up differen-
tiation tables.

Example 1

Find one solution of the differential equation

dy

dx
= cos(x).

From the differentiation tables
d

dx
sin(x) = cos(x), so a solution is y(x) = sin(x).

25
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Example 2

For the differential equation
F ′(t) = 3e3t

find one particular solution.

From the differentiation tables
d

dt
e3t = 3e3t, so a particular solution is F (t) = e3t.
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3.1.1 Exercises

By using the differentiation tables identify which one of the options are particular solution to the differential
equations.

1.
dy

dx
= 10

(a) y = 10x+ c

(b) y = 10x2

(c) y = 10x− c

(d) y = 10x− π

(e) None of the above.

2.
dy

dx
= 6x

(a) y = 6x2

(b) y = 6× x2/2 + c

(c) y = 3x2 + c

(d) y = 3x2

(e) None of the above.

3.
dy

dx
= 3× 5x4

(a) y = 3x5

(b) y = 3× x5/5

(c) y = 3× x5/5 + c

(d) None of the above.

4.
dy

dx
= 6x5

(a) y = 6x6

(b) y = 6x6 + c

(c) y = 6× x6/5

(d) y = x6 + c

(e) None of the above.

5.
dy

dx
= 10× 14x13

(a) y = 10x14 + cπ

(b) y = 10x14 + c

(c) y = 10x14 − 100000π

(d) y = 10x14

(e) all of the above

(f) none of the above.
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6.
dX

dt
= et

(a) y = ex

(b) y = ex + c

(c) y = et + c

(d) X = et + π

(e) none of the above.

7.

Y ′(x) = 5x4 + 3x2

(a) Y (x) = x5 + x3

(b) Y (x) = x5 + x3 + 42

(c) Y (x) = x5 + x3 − e42π

(d) Y (x) = x5 + x3 + c

(e) none of the above.

8.

X ′(t) =
1

t

(a) X ′(t) = ln(t)

(b) X(t) = ln(t) + c

(c) X(t) = ln(t)− e355π+ln(42)

(d) Y (x) = ln(x)− 1

(e) none of the above.

9.
dy

dx
= sec2(x)

(a) y = sec(x)

(b) y = sec2(x)

(c) y = tan(x) + c

(d) y(x) = tan(x)− 53

(e) none of the above.

10.
dX

dt
= 2t sec2(t2)

(a) X(t) = tan(t2)

(b) X = tan(t2)− 51π

(c) X = tan(t2) + 100000000000000000000000000000

(d) X = tan(t2) + 0

(e) none of the above.
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3.2 Differentiation Tables

No. General Rule Example 1 Example 2 Example 3

(1)
d

dx
(of any constant c) = 0

d

dx
1 = 0

d

dx
10 = 0

d

dx
π × 1000000001 = 0

(2)
d

dx
x = 1

d

dt
t = 1

d

dz
z = 1

(3)
d

dx
x2 = 2x

d

dt
t2 = 2t

d

df
f2 = 2f

(4)
d

dx
x3 = 3x2 d

dt
t3 = 3t2

d

du
u3 = 3u2

(5)
d

dx
xn = nxn−1 d

dx
x4 = 4x3 d

dx
x−1 = −1x−2 = − 1

x2

d

dx
x16 = 16x15

(6)
d

dx
cf(x) = c× df(x)

dx

d

dx
10x = 10×1 = 10

d

dx
2x2 = 2× 2x = 4x

d

dx
πx0.3 = π × 0.3x−0.7

(7)
d

dx
ex = ex

d

dt
et = et

d

du
eu = eu

d

dz
π × ez = π × ez

(8)
d

dx
eax = aeax

d

dt
e3t = 3e3t

d

du
e10u = 10e10u

d

dz
e−2.3z = −2.3e−2.3z

(9)
d

dx
ef(x) = ef(x)

d

dx
f(x) = f ′(x)ef(x)

d

dx
ex

2

= 2xex
2 d

dx
e2x

3

= 6x2e2x
3 d

du
eπu

−6

= −6πu−7eπu
−6

(10)
d

dx
ln(x) =

1

x

d

dt
3 ln(t) = 3× 1

t

d

dw
π ln(w) =

π

w

(11)
d

dx
ln(f(x)) =

1

f(x)

d

dx
f(x) =

f ′(x)

f(x)

d

dx
ln(x2) =

1

x2
× 2x

d

dx
ln(5x4) =

1

5x4
× 20x3 d

dx
3 ln(πx−6) =

3

πx−6
×−6πx−7
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Differentiation Tables Continued

No. General Rule Examples

(12)
d

dx
sin(x) = cos(x)

d

dt
sin(t) = cos(t)

d

dx
355 sin(x) = 355 cos(x)

d

dz
− π2 sin(z) = −π2 cos(z)

(13)

d

dx
sin( f(x) ) = cos( f(x) )× d

dx
f(x)

= cos( f(x) ) f ′(x)

d

dx
sin(2x) = cos(2x)× 2

d

dx
sin(5x2 − 4x) = cos(5x2 − 4x)×(10x− 4)

d

dx
24 sin(e3x) = 24 cos(e3x)× 3e3x

(14)
d

dx
cos(x) = − sin(x)

d

dx
24 cos(x) = −24 sin(x)

d

dz
(−3π5 cos(z)) = 3π5 sin(z)

d

df
πe5 cos(f) = −πe5 sin(f)

(15)

d

dx
cos( f(x) ) = − sin( f(x) )× d

dx
f(x)

= − sin( f(x) ) f ′(x)

d

dx
cos(2x) = − sin(2x)× 2

d

dx
cos(−4x3 + 3x2 − 5x) = − sin(−4x3 + 3x2 − 5x)× (−12x2 + 6x− 5)

d

dx
24 cos(e−πx) = −24 sin(e−πx)×−πe−πx = 24πe−πx sin(e−πx)
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Differentiation Tables Continued

No. General Rule Examples

(16)
d

dx
tan(x) = sec2(x)

d

dx
tan(t) = sec2(t)

d

dx
42 tan(x) = 42 sec2(x)

d

dz
4π2 tan(z) = 4π2 sec2(z)

(17)

d

dx
tan( f(x) ) = sec2( f(x) )× d

dx
f(x)

= sec2( f(x) )f ′(x)

d

dx
tan(x3) = sec2(x3)× 3x2

d

dx
tan(4x3 − 3x+ 2) = sec2(4x3 − 3x+ 2)× (12x2 − 3)

d

dx
− 5692π2 tan(e53πx) = −5692π2 sec2(e53πx)× 53πe53πx
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3.3 Solving Differential Equations of the Form
dy

dx
= f(x) Using In-

tegration

A differential equation of the form
dy

dx
= f(x) may be solved by using differentiation in reverse that is by

anti-differentiation by asking:

What function y(x) can be differentiated to give f(x)?

But we can also try to solve this type of equation by using integration.

We can “undo” the
d

dx
on the left by integrating. If the function on the right, that is f(x) can be integrated

(over the interval of x) then we can find a solution to the differential equation.

We start with the differential equation
dy

dx
= f(x).

We then integrate both sides of the equation with respect to the independent variable, here x.

Given certain conditions if we performing the same operation to both sides of the equation then the two sides
of the equation will remain equal. This is analogous to multiplying both sides of an equation by 2, or taking
the square of both sides of the equation. So long as we perform precisely the same operation to both sides of
the equation the equality remains valid.

You must always integrate both sides of the equation with respect to the same variable.

∫
dy

dx
dx =

∫
f(x) dx.

Giving the solution;

y =

∫
f(x) dx.

For this special case then we can use integration or integration tables to find a solution for the differential
equation.

Example 1

Question

Find the general solution to the differential equation

dy

dx
= x2

Answer

Step 1 Integrate both sides of the differential equation with respect to the independent variable x,
∫

dy

dx
dx =

∫
x2 dx

Step 2 perform the integration,

y =

∫
x2 dx

=
1

3
x3 + c,

where c is a constant.

Step 3 State the answer in words and mathematics.

The general solution is

y =
1

3
x3 + c.
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Example 2

Question

Find the general solution to the differential equation

dX

dt
=

−2t

3− t2

Answer

Step 1 Integrate both sides of the differential equation with respect to the independent variable t,
∫

dX

dt
dt =

∫ −2t

3− t2
dt

Step 2 perform the integration,

X(t) =

∫ −2t

3− t2
dt

= ln |3− t2|+ c,

where c is a constant.

Note: here we are using the rule that says if we have a function on the bottom of
a fraction and the derivative of that function on the top then the integral of that
fraction is the natural log of the absolute value of that function or in the language of
mathematics :

∫
f ′(x)

f(x)
dx = ln(|f(x)|) + c

So for our integral we need the −2t on the top to use this rule.

Step 3 State the answer in words and mathematics.

The general solution is
X(t) = ln |3− t2|+ c,

where c is a constant.

In General:

To solve a differential equation of the form
dy

dx
= F (x) we may be able to find the integral

of F (x). Lets say
∫
F (x) dx = f(x) + c . The steps are:

Step 1 Integrate both sides of the differential equation
∫

dy

dx
dx =

∫
F (x) dx

Step 2 perform the integration,

y =

∫
F (x) dx

= f(x) + c,

where c is a constant.

Step 3 State the answer in words and mathematics.

The general solution is
y = f(x) + c.
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3.3.1 Exercises

By integrating both sides of the differential equations below, find the most general solutions. The integration
tables may be useful for finding the integrals.
Note for each of these exercises you should set out the solution indicating in words what you
are doing at each stage. The explanation of what you are doing in words is often awarded marks in an
examination.

1.
dy

dx
= 3x3

2.
dy

dx
= 2

3.
dy

dx
= 5x6 − 16x3

4.
dy

dx
= πx2

5.
dy

dx
= cos(x)

6.
dy

dx
= e5x

7.
dy

dx
= 2x+ cos(x)

8.
dy

dx
= cos(3x)

9.
dy

dx
= cos(x2)× 2x

10.
dy

dx
= ex

2

× 2x

11.
dy

dx
=

1

x5
× 5x4 + sin(3x5)× 15x4
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3.4 Checking Your Solution

We can always check if a solution is correct by substituting the solution or answer into the differential equation
(d.e.) and differentiating.

Example 1

To check the answer y =
1

3
x3 + c to the differential equation

dy

dx
= x2 we simply substitute the answer into the

differential equation.

Check

Left hand side of d.e. is
d

dx
y =

d

dx

(
1

3
x3 + c

)

=
1

3
× 3x2 +

d

dx
c

= x2 + 0

= x2

= Right hand side of d.e.

So our solution works when we put it back into the differential equation.

You should always check your answer by substituting the solution back into the differential equation.
When answering questions in an exam it may be best to leave this step until the end, if time permits.

If you are ever asked to verify or check if a solution satisfies a differential equation
simply substitute the solution into the differential equation and show that it is satisfied.
In many instances this will be much simpler than solving the differential equation.
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3.4.1 Exercises

For each of the solutions below verify that the solution satisfies the differential equation
Note you are only required to substitute the solution into the equation and show that is works.

1. Solution y(x) =
3

4
x4, differential equation

dy

dx
= 3x3.

2. Solution y(x) = 2x+ c , differential equation
dy

dx
= 2

3. Solution y(x) =
5

7
x7 − 16

4
x4, differential equation

dy

dx
= 5x6 − 16x3

4. Solution y(x) = π
x3

3
+ c, differential equation

dy

dx
= πx2

5. Solution y(x) = sin(x) + 3, differential equation
dy

dx
= cos(x)

6. Solution y(x) =
1

5
e5x, differential equation

dy

dx
= e5x

7. Solution y(x) =
x2

2
+ sin(x), differential equation

dy

dx
= x+ cos(x)

8. Solution y(x) =
1

3
sin(3x), differential equation

dy

dx
= cos(3x)

9. Solution y(x) = sin(x2)− π, differential equation
dy

dx
= cos(x2)× 2x

10. Solution y(x) = ex
2

+ c, differential equation
dy

dx
= ex

2

× 2x

11. Solution y(x) = x5 cos(15x4), differential equation
dy

dx
= 5x4 cos(15x4)− 60x8 sin(15x4)
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3.5 Integration Tables

No. General Rule Example 1 Example 2

(1)

∫
kdx = kx+ c

∫
2dx = 2x+ c

∫
10πdx = 10πx+ c

(2)

∫
kxdx = k

x2

2
+ c

∫
3xdx = 3

x2

2
+ c

∫
− 5xdx = −5

x2

2
+ c

(3)

∫
kx2dx = k

x3

3
+ c

∫
− 4x2dx = −4

x3

3
+ c

∫
πx2dx = π

x3

3
+ c

(4)

∫
kxndx = k

xn+1

n+ 1
+ c n $= −1

∫
2x3dx = 2

x4

4
+ c

∫
πx−5dx = π

x−4

−4
+ c = − π

4x4
+ c

∫
1

x2
dx =

∫
x−2dx =

x−1

−1
+ c = − 1

x
+ c

(5)

∫
kf(x)dx = k

∫
f(x)dx

∫
5x16dx = 5

∫
x16dx = 5

x17

17
+ c

∫
− π2

214
x5πdx = − π2

214

∫
x5πdx = − π2

214

x5π+1

5π + 1
+ c

(6)

∫
1

x
dx = ln(|x|) + c interval of integration not across x = 0

∫
5× 1

x
dx = 5 ln(|x|) + c

∫
− 10

x
dx = −10 ln(|x|) + c

(7)

∫
f ′(x)

f(x)
dx = ln(|f(x)|) + c interval of integration not across f(x) = 0

∫
2x

x2
dx = ln(|x2|) + c

∫
30x5

5x6
dx = ln(|5x6|) + c

∫
cos(x)

sin(x)
dx = ln(| sin(x)|) + c

∫
15e5x

3e5x
dx = ln(|3e5x|) + c
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Integration Tables Continued

No. General Rule Example 1 Example 2

(8)

∫
cos(x)dx = sin(x) + c

∫
cos(t)dt = sin(t) + c

∫
π2 cos(t)dt = π2 sin(t) + c

(9)

∫
cos(kx)dx =

1

k
sin(x) + c

∫
cos(2x)dx =

1

2
sin(2x) + c

∫
cos

(
1

2
x

)
dx = 2 sin

(
1

2
x

)
+ c

(10)

∫
sin(x)dx = − cos(x) + c

∫
sin(t)dt = − cos(t) + c

∫
235 sin(t)dt = −235 cos(t) + c

(11)

∫
sin(kx)dx = −1

k
cos(kx) + c

∫
sin(πx)dx = − 1

π
cos(πx) + c

∫
sin

(
1

2
x

)
dx = −2 cos

(
1

2
x

)
+ c

(12)

∫
cos(f(x))× f ′(x)dx = sin(f(x)) + c

∫
cos(x2)× 2xdx = sin(x2) + c

∫
cos(x2+2x)×(2x+2)dx = sin(x2+2x)+c

∫
cos(5e7x)×35e7xdx = sin(5e7x) + c

(13)

∫
sin(f(x))× f ′(x) dx = − cos(f(x)) + c

∫
sin(x2)× 2x dx = − cos(x2) + c

∫
cos(x2)× 2x dx = sin(x2) + c

∫
sin(−x3)×(−3x2)dx = − cos(−x3)+c

∫
sin(ln(x))×1

x
dx = − cos(ln(x)) + c
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3.6 Solving Differential Equations of the Form
dy

dx
= f(y)

For a differential equation of the form
dy

dx
= f(x),

if we can integrate f(x) we can simple integrate both sides of the equation to find y(x). For such equations see

the section Solving Differential Equation of the Form
dy

dx
= f(x) Using Integration.

Alternatively, if the right hand side of the differential equation involves y, as we are considering here, the
differential equation is asking essentially quite a different question.

3.6.1 Differential Equation of the Form
dy

dx
= y

For instance, the differential equation:
dy

dx
= y

is asking the question:

Can you think of a function y, which is a function of x, such that if we differentiate that function
we get back the the function we first thought of?

In other words,
dy

dx
= y is asking what function is the same function when you differentiate it.

One answer is y = ex since

d

dx
y =

d

dx
ex = ex = y = the original function.

The function y(x) = ex is a special function because it is, its own derivative.

But there are others.

What about y = 2ex. Using the differentiation rules;

d

dx
y =

d

dx
2ex = 2

d

dx
ex = 2ex = y = the original function.

So y = 2ex is also its own derivative. In fact any function of the form y = Aex, where A is a constant, will have
a derivative equal to the function we first started with as;

d

dx
y =

d

dx
Aex = A

d

dx
ex = Aex = y = the original function.

In fact a constant times the exponential function are the only functions with this property.

The functions y(x) = Aex, where A is a constant, are the only functions that are their own derivatives.

So y(x) = Aex is the general solution to the differential equation
dy

dx
= y.
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3.6.2 Exercises

1. Write down three particular solutions for the differential equation

dy

dx
= y

2. Write down a sentence in words that describes what the following differential equation is asking in math-
ematics

dX

dt
= X

3. Write down three particular solutions to the differential equation and hence the equivalent worded question
in Question 2.

4. Use your answers to Question 3 to write down a general solution to the differential equation on Question 2.

5. Check your general solution in Question 4 by substituting your answer into the differential equation

dX

dt
= X

6. Write down three particular solutions and the general solution to

Z ′(y) = Z(y)
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3.6.3 Differential Equation of the Form
dy

dx
= ky

The differential equation
dy

dx
= 2y is asking the question:

What function y when you differentiate it gives twice the original function?

Such a function is y(x) = e2x. Since

d

dx
y =

d

dx
e2x = 2e2x = 2× y = twice the original function.

Another function that satisfies this is y = 10e2x. Here

d

dx
y =

d

dx
10e2x = 10

d

dx
e2x = 10× 2e2x = 2× 10e2x = 2× y = twice the original function.

That is, y = 10e2x a function, such that when we differentiate it, we get back two times the function we first
started with.

In fact any function of the form y(x) = Ae2x will have the derivative equal to twice the function we first started

with. And these are the only functions where
dy

dx
= 2y. Hence

The functions y(x) = Ae2x, where A is a constant, are the only function with their derivatives equal
to twice the original functions.

Indeed if we differentiate y = ekx, the derivative will be k times the original function;

d

dx
y =

d

dx
ekx =

d

dx
ekx = k × ekx = k × y = k times the original function.

And finally any function of the form y(x) = Aekx will have its derivative equal to k times the original function;

d

dx
y =

d

dx
Aekx = A

d

dx
ekx = Ak × ekx = k ×Aekx = k × y = k times the original function.

The functions y(x) = Aekx, where A is a constant, are the only function, such that their derivatives
are k times the original function.

So y(x) = Aekx is the general solution to the differential equation
dy

dx
= ky.

Example

Find the general solution of the differential equation
dy

dx
= 15y.

Here we want a function who’s derivative is 15 times the original function. Such a function is y(x) = e15x. So
y(x) = e15x is just one particular solution to the differential equation. But this is not the only function that
has its derivative equal to 15 times y. Any function of the form y = Ae15x will have its derivative equal to 15
times the original function. And since we are asked for the general solution we need to give the most general
answer.

So y(x) = Ae15x is the general solution of the differential equation
dy

dx
= 15y.

Obviously we could just remember a formula for the general solution to this differential equation but it is far
more important to understand why something is a general solution, and what this means.

dy

dx
= 15y is a differential equation.

y(x) = e15x is just one particular solution to the differential equation
dy

dx
= 15y.

y(x) = Ae15x, where A is a constant, is the general solution to the differential equation
dy

dx
= 15y.
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3.6.4 Exercises

For the following questions the differentiation tables may be useful.

1. Which function when you differentiate it gives twice the original function?

(a) y = ex

(b) y = 2e2x

(c) y = e2t

(d) X = 2e2t

(e) none of the above.

2. Which of the functions answers the question:

Which function y when you differentiate it gives negative the original function?

(a) y = ex

(b) y = −ex

(c) y = e−t

(d) X = −e−t

(e) none of the above.

3. Match up each of the questions with its differential equation.

For this question you need to know/remember that the second derivative of y with respect to x is given

by
d2y

dx2
. Likewise, by extension, the fourth derivative of y with respect to x is given by

d4y

dx4
.

(a) Which function, when you differentiate it gives the same function?

(b) Which function has a derivative which is twice the original function?

(c) Which function is 5 times its derivative?

(d) Which function is one fifth times its derivative?

(e) Which function, when you differentiate it twice, gives minus the original function?

(f) Which function, when you differentiate it 4 times, gives back the original function?

(i)
d2y

dx2
= −y

(ii)
d4y

dx4
= y

(iii)
dy

dx
= 5y

(iv)
dy

dx
= y

(v)
dy

dx
= 2y

(vi)
dy

dx
=

1

5
y
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4. Match each question written in words labelled (a) to (f) to its differential equation labelled (i) to (vi).

(a) Which function, when you differentiate gives five times the original function?

(b) Which function, when you differentiate it give negative two times the original function?

(c) Which function when you differentiate it and add the original function gives you zero?

(d) Which function when you differentiate it and add three times the original function gives you zero?

(e) Which function when you differentiate it and subtract π times the original function gives you zero?

(f) Which function when you differentiate it and add it to π times the original function gives you zero?

(i)
dy

dx
= −3y

(ii)
dy

dx
= −2y

(iii)
dy

dx
= −y

(iv)
dy

dx
= −πy

(v)
dy

dx
= 5y

(vi)
dy

dx
= πy
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3.6.5 How Not to Solve a Differential Equation of the Form
dy

dx
= f(y)

If the differential equation is of the form
dy

dx
= f(x) and we can integrate f(x) then we can find a solution by

simply integrating both sides of the equation.

If, on the other hand, the differential equation has a function of y on the right hand side we can’t just integrate.

If the differential equation is of the form
dy

dx
= f(y) we can not just integrate both sides of the

equation to find the solution.

Example (of why we cant just integrate both sides of
dy

dx
= f(y) )

Lets say we have
dy

dx
= y.

We know that the general solution to this equation is y(x) = Aex.

We can try to integrate both sides of this equation with respect to x,

You must always integrate both sides of the equation with respect to the same variable.

which will give, ∫
dy

dx
dx =

∫
y dx.

A common mistake is then to incorrectly integrate the right hand side to give y × x+ c.

But we can not integrate y with respect to x unless we know what y is, in terms of x.

For instance if we knew that y(x) = Aex then we could happily substitute this into the equation to give;
∫

dy

dx
dx =

∫
y dx =

∫
Aex dx = Aex + c giving y = Aex + c.

For c = 0 this does give us the correct answer y(x) = Aex, which is it’s own derivative. But sadly we have to
know the original solution beforehand in order to solve the differential equation using this method.

We also note here that another, perhaps less common, mistake is to simplify the integral

∫
y dx by incorrectly

integrating with respect to y instead of x. That is we should not integrate

∫
y dx to get

y2

2
. Here we see that

the dx is indeed very important in an integral.

The dx in the integral is called the differential and determines what the we are integrating with respect to.

The dx in an integral such as

∫
f(x) dx is called the differential.

The differential dx determines what we are integrating with respect to; in this case x.

Here we see how important the differential is in an integral. For instance the integral

∫
y(x) dx cannot be

performed unless we know y(x), that is y as a function of x. On the other hand

∫
y dy can be found to be

y2

2
as here we are integrating with respect to y.

The differential such as dx should never ever, ever be left off of an integral.

Initially these can be common mistakes in solving equations that involve
dy

dx
and y. If these errors could be

eliminated from many students exams these students would score more highly.

To solve the type of differential equation (
dy

dx
= f(y)) you can try to use the method of separation of variables.



Chapter 4

Modelling and Calculus 4 MAC 4
Relating written word descriptions of
real world physical conditions to the
description of the problem in the
language of mathematics and using
these descriptions to find solutions to
the physical problem.

4.1 Finding Conditions in Questions

Often the environment and history of a problem will help to find a solution.

And so when a question is asked in words or mathematics we may have to interpret that question, and the
words and mathematics, into mathematics that we can use to find a solution.

There are a number of ways that a question can give us information about the physical situation or ask us for
an answer. Some of these are:

Type 1 Initial Condition The question may state certain conditions that have existed in the past, or at the
beginning of the problem.

Type 2 Boundary Condition The question may tell us that one physical quantity has a value when another
physical quantity has another value.

Type 3 Condition of Rate at a given time The question may tell us the value of a rate of change at a
certain time.

Type 4 Condition of Rate The question may tell us the value of a rate of change when another physical
quantity has another value.

Type 5 The question may ask us to find a physical quantity at a given time.

Type 6 The question may ask us to find a physical quantity when another quantity has a certain value.

Type 7 Common Sense Conditions We need to use some of our real world experience to place conditions
on the variables. We don’t want volumes or distances to take negative values. Or we may not want an
answer of 3.14 people in a population.

45
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Example 1

Question

A diving pool is the shape of a cube. This diving pool is drained for maintenance. The height of the water is
given by H in metres. The pool drains at a rate proportional to H + c, where c is constant. Here then the
differential equation is given by;

dH

dt
= −kH +A,

where t is time measured in hours. The constant of proportionality is −k and A = −kc. Why are the constants
chosen in this way? Initially the water in the pool is 3 metres. After one hour the height of the water has
droped to 2.5 metres. After two hours the height of the water is changing at a rate of 0.5 metres per hour.

1. Find the height of the water after three hours.

2. Find the time that it takes for all the water to drain out of the pool.

Answer

For this question the height of the water is changing with time. The height of the water H is the dependent
variable; the height is the solution function. The time, in hours, is the independent variable. We want to find
H as a function of t.

The sentence

“ Initially the water in the pool is 3 metres.”

tells us what H was at the beginning. If we take t = 0 when the pool starts to drain then initially means at
t = 0.

If we take time t equals zero at the beginning of the process then initially means t = 0.

This is called an initial condition and it is a condition of Type 1 above.

The sentence

“ After one hour the height of the water has droped to 2.5 metres.”

tells us the height after one hour; it tells us H = 2.5 at or when t = 1.

The words after or at or when may tell us the value of one quantity when another
quantity has another value.

This is sometimes called a boundary condition and it is a condition of Type 2 above.

The sentence

“ After two hours the height of the water is changing at a rate of 0.5 metres per hour.”

tells us the rate of change of the height after two hours. This tells us
dH

dt
= 0.5 at t = 2.

The combination of words rate or rate of change together with after or at or when may tell us the derivative
at a time t

The words rate or rate of change together with after or at or when may tell us
dy

dt
at t = something.
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This is a condition of rate and it is a condition of Type 3 above.

If the question said:

“ The height of the water was changing at a rate of 0.5 metres per hour when the water was
2 metres high.”

This is telling us the rate of change of one quantity when the quantity has a given value. Here
dH

dt
= 0.5 when

H = 2.

The words rate or rate of change together with when may tell us
dy

dt
at y = something.

This is a condition of type 4.

The question asks us to:

“ Find the height of the water after three hours.”

Which is asking us to find H when t = 3.

This is a question of Type 5 above.

The question also asks us to:

“ Find the time that it takes for all the water to drain out of the pool.”

Which is asking us to find the time t when the pool has emptied, that is when H = 0.

This is a question of Type 6 above.

Example 2

Question

A partially full swimming pool is being filled by a water source, where the rate at which the water is entering
the pool is decreasing with time. The height H in metres of water in the pool is given by;

dH

dt
= k

√
t,

where t is the time in hours after 11:00 am on a Thursday. If the pool initially satisfied H(0) = 1.5 and later
the pool is filling at a rate given by H ′(4) = 6.

Find

1. The constant of integration.

2. The constant of proportionality.

3. H(4).

4. H ′(9).
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Answer

For this question again the height of the water is changing with time. The height of the waterH is the dependent
variable; the height is the solution function. The time, in hours, is the independent variable. We want to find
H as a function of t.

We are told the differential equation
dH

dt
= k

√
t. This equation is in the form

dy

dx
= f(x) and we can simply

integrate both sides with respect to t.

You must always integrate both sides of the equation with respect to the same variable.

∫
dH

dt
dt =

∫
k
√
tdt = k

∫ √
tdt = k

∫
t1/2dt.

So the general solution of the differential equation is

H(t) = k
t3/2

3/2
+ c = k

2

3
t3/2 + c

The statement

“ the pool initially satisfied H(0) = 1.5”

tells us what H was at the beginning. This time the question gives us the initial height as an equation. If
we take t = 0 when the pool starts to fill then initially means at t = 0. Here the initial height is given as an
equation. H(0) = 1.5 means that when the independent variable, here t, is zero then H is 1.5. Another way of
writing this equation is H(t = 0) = 1.5. Yet another way is to simply say when t = 0 H = 1.5. You need to
know all these forms of expressing a condition.

In general, for a function y(x), the statement y(a) = b means that when x = a then y = b.

This is called an initial condition and it is a condition of Type 1 above.

We can use this initial condition H(0) = 1.5 to find the constant of integration. Substituting into the differential

equation we get 1.5 = k
2

3
t3/2 + c = c. Hence the constant of integration c = 1.5.

The answer to part 1 of the question is then: The constant of integration is 1.5

The general solution is then H(t) = k
2

3
t3/2 + 1.5

The statement

“ later the pool is filling at a rate given by H ′(4) = 6”

tells us H ′ at a given time. This time the question gives us the rate of change of height as an equation. The
equation H ′(4) = 6 tells us that at t = 4, H ′(t) = 6 or at t = 4, H ′ = 6. Another way of writing this is to say

that at t = 4 we have
dH

dt
= 6. This is telling us that after 4 hours the rate at of change of height of the water

in the pool is 6 metres per hour. You need to know all these forms of expressing this condition.

In general, for a function y(x), the statement y′(a) = b means that when x = a then y′(x) = b.
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This is called a condition of rate and it is a condition of Type 3 above.

Since this condition tells us something about the rate of change of H or H ′, to use this condition we need to
firstly find an equation for H ′. Differentiating the general solution for H gives

dH

dt
=

d

dt

(
k
2

3
t3/2 + 1.5

)
= k

2

3

3

2
t3/2−1 = k t1/2.

A much easier way of finding the derivative is to simply use the differential equation.
dH

dt
= k

√
t.

Substituting t = 4 into our equation for the derivative gives H ′(4) = k
√
4 = 6. Dividing both sides of this

equation by 2 gives k = 3

The answer to part 2 of the question is then: The constant of proportionality is 3.

Substituting for k gives the general solution as H(t) = 3
2

3
t3/2 + 1.5 = 2 t3/2 + 1.5.

Part 3 of the question is asking for H(4) which is asking us to evaluate H at t = 4. To do this we simply
substitute t = 4 into our general solution. Giving

H(t = 4) = H(4) = 2× 43/2 + 1.5 = 2× 8 + 1.5 = 17.5.

The answer to part 3 is H(4) = 17.5

Part 4 of the question is asking for H ′(9) which is asking us to evaluate H ′(t) at t = 9, that is
dH

dt
at t = 9. To

do this we need to find the derivative of H. To do this we could differentiate H(t) viz.;

dH

dt
=

d

dt

(
2 t3/2 + 1.5

)
= 3 t1/2 = 3

√
t.

Alternatively we can simply use the differential equation: The differential equation is

dH

dt
= k

√
t substituting for k gives = 3

√
t

This gives us the derivative directly, without solving the differential equation by integration and then differen-
tiating it again.

To find H ′(9) then we simply substitute t = 9 into our our formula for
dH

dt
. Giving

dH

dt t=9
= H ′(9) = 3

√
9 = 3× 3 = 9

The answer to part 4 is H ′(9) = 9.
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4.1.1 Exercises

For the following questions, a set of conditions are given in words and mathematics.

For each part (a), (b), (c). . . write the condition as a set of mathematical equations (for example when t = 0
H = 15).

Note for these questions you do not need to find the constant of integration (c say) or the constant of propor-
tionality (k say).

Note also that each part (a), (b), (c). . . may give you a different value for the constant of integration and/or
constant of proportionality.

1. During a period of no rain the height H of a river, in metres, drops according to the equation;

dH

dt
= −0.15H,

where t is measured in hours after the rain stops.

(a) Initially the height of the river is 15 metres.

(b) One hour after the rain stops the height of the river is 13.5 metres.

(c) When the rain first stops falling the height of the river is 24 metres.

(d) Two days after the rain first stops falling the height of the river is 12.7 metres.

(e) At the time when the rain stops falling the height is 1550 mm.

(f) Three days after the rain first stops falling the height of the river is 2440 mm.

(g) H(24) = 7.

(h) H(0) = 15.3.

Note: Only one of these conditions will be needed to find the constant of integration in the general solution
and thus find the particular solution.

2. The amount of medication in a patients body M , measured in milligrams, is given by the differential
equation;

dM

dt
= −kM,

where t is the time after the medication is administered, measured in minutes, and k is a constant.

(a) 150 milligrams of medication are administered.

(b) 150 minutes after the medication is given the amount in the blood is 45 mg

(c) Initially 250 milligrams of medication are given.

(d) Two days after the medication is given the amount in the blood is 17 mg.

(e) The rate of change of medication in the body is 12 mg/min when the amount of medication is 175
mg.

(f) Five hours after the medication is administered the rate of change of medication is 2 mg/min.

(g) One hour after the medication is given the rate of change of medication is given by 12.5 mg/min.

(h) M(0) = 15.3.

(i) M ′(60) = 3.

(j) M ′(360) = 3.5.

(k) M(60) = 145.

Note: You may need only two such conditions to find the constant of proportionality k, and the constant
of integration in the general solution and thus find the particular solution.
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3. The number of fish in a fishery holding pond, will increase at a rate proportional to the number of fish in
the holding pond. The larger the population the quicker the fish will bread. This population is also being
used as source of food such that fish are being removed at a constant cull rate R say. The number of fish
in the population P measured in thousands of fish will be governed by the differential equation;

dP

dt
= kP −R,

where t is the time after the holding pond is first established, measured in hours, and k is the reproduction
rate constant.

(a) Initially the holding pond is stocked with 2.34 thousand fish.

(b) 3.5 hours after the holding pond is first established the fish population is 1324 fish.

(c) Initially the rate of change of fish in the population will be 2000 fish per hour.

(d) Two days after the holding pond is first established the fish population is decreasing at a rate of 0.524
thousand fish per hour.

(e) The rate of at which fish are being removed from the pond is (a constant) 500 fish per hour.

(f) 24 days 6 hours after establishing the holding pond there are no fish left.

(g) One day after establishment there are 22564 fish in the holding pond.

(h) P (24) = 1000.

(i) P ′(0) = 2.

(j) P ′(24) = 2.0.

(k) P (150) = 0.

Note: You may need only three such conditions to find; the production rate constant k, the cull rate
constant R, and the constant of integration to find the particular solution from the general solution.
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4.2 Ten Important Steps for Solving Modelling Questions Posed in
Words

Here we work through an example showing how to identify the important information in the question or problem.
We identify the key words or phrases in the question that provide us with information about the model and key
words that provide us with information about physical environment, information about what has happened in
the past, and what is being asked in the question.

We also identify important steps in the solution of the problem and provide guidelines for how the solution
should be set out; including the wording that should be used in your solution.

There are other ways to solve every problem and the solution provided is just an example of how the answer
may be set out.

Many answers to modeling and calculus problems will use some or all of the steps shown. Many answers to
these modeling problems will use the steps shown and many more. They are a good place to start when learning
modelling and differential equations.

Example

A hot pie is taken straight from the microwave, and put in a cold room that is at zero degrees Celsius.

The pie cools at a rate proportional to the temperature of the pie.

If the pie is initially at 86◦C and takes 152 minutes to cool to half the temperature (in ◦C )

(i) Find the general solution to this problem.

(ii) Find the particular solution to this problem.

(iii) What temperature will the pie be after 10 hours?

(iv) How long does it take for the pie to be edible at 23◦C or below?

This example has 10 important steps for solving a modelling question.

Step 1 Identify the variables in the question and give them names and units.

(a) From the question identify what will change.

Here the temperature is changing as time changes.

(b) Give this a name or symbol.

Let the temperature of the pie be T .

(c) Decide what this is measured in.

T is measures in ◦C (from the question).

(d) What does T change with?

Temperature changes over time.

(e) Decide what this is measured in?

Time is measured in minutes (from the question).

Here T is the dependent variable. We want to find the temperature as a function of time. So T is the
solution function and t is the independent variable.
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We want to find T (Temperature in ◦C) as a function of t (in minutes).
We want T = T (t).

Step 2 From the question use the wording to put together a differential equation for T and t.

From the question Rate here means
d

dt

The rate of change of temperature will be
dT

dt
If the rate is proportional to the temperature then

dT

dt
∝ T or

dT

dt
= KT,

where K is some constant.

Now, as indicated in the question, the pie cools at a rate proportional to the temperature of the
pie. This means that the temperature of the pie will decrease quicker the hotter the pie is.
If the pie is cooling then the rate of change of T will be negative.
Really hot pies’ temperatures will decrease quickly. Pies that are just a little warm will still cool down

but their temperature will decrease more slowly. Really hot pies will have a large negative
dT

dt
Warm pies

will still have a negative
dT

dt
but this will be less negative, indicating the temperature is still decreasing

but less rapidly.

Since the pie is cooling the temperature will be decreasing so
dT

dt
will be negative. So we have:

dT

dt
= − kT,

where k here will be a positive constant (k = −K).

k is the constant of proportionality.

k should not be confused with the constant of integration that is will be introduced when we integrate
the differential equation.

The differential equation is then
dT

dt
= − kT

We note here that if the room was not at a constant temperature of 0◦C then the pie would cool at a
rate proportional to the difference between the temperature of the pie and the room.

If TRoom is the temperature of the room (held constant) then the differential
equation for Newton law of cooling is

dT

dt
= − k(T − TRoom)
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Step 3 Pose the differential equation as a mathematical question in words.
This step can help understand what the problem is asking and what the differential equation represents

The differential equation is
dT

dt
= −kT

The differential equation is asking

Can you think of a function T which is a function of t such that when you differentiate that
function you get k times the original function?

Step 4 Find the general solution of the differential equation.

Use your knowledge of; differentiation backwards (anti-differentiation), or integration, or separation of
variables, or another technique to solve the differential equation.

The function y(x) = e−kx has derivative
d

dx
y =

d

dx
e−kx = −ke−kx = −k × e−kx = −k × y(x).

So we know that the derivative of this function is −k times the original function, and hence the function
will solve the differential equation.

So T (t) = e−kt is a solution to the differential equation.

In general any function T (t) = Ae−kt, where A is a constant, will solve the differential equation
dT

dt
= −kT .

Hence T (t) = Ae−kt is the general solution to the differential equation.

Hence T (t) = Ae−kt is the general solution to the differential equation.

Dont get the constants mixed up here

k is the constant of proportionality.
It comes from constructing the differential equation from the question.

A is the constant of integration.
It comes from integrating, or using anti-differentiation to find the general

solution of the differential equation.

This answers part (i) of the question.
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Step 5 From the question, pick out any information in words that will allow you to find the constants in our
general solution.

The general solution
T (t) = Ae−kt

has two constants (k and A), and we will need two sets of conditions from the question to find them.

The question says

“The pie is initially at 86◦C”.

Here initial means when we start to measure time.

So this tells us that at t = 0, T = 86.

The question also says

“. . . and takes 152 minutes to cool to half the temperature”.

So after 152 minutes the temperature will be 43◦C or T = 43.
So at t = 152, T = 43.

At t = 0 T = 86 is called an initial condition.

At t = 152, T = 43 is sometimes called a boundary condition.

Step 6 Use the boundary and initial conditions from the question to find a particular solution.

Substitute t = 0 and T = 86 into T (t) = Ae−kt gives:

86 = Ce−k×0 = Ae0 = A× 1 = A

Hence A = 86.

We then substitute this value of A back into our general solution to find the particular solution.

You must substitute the value of the constant of integration back into the
general solution to find the particular solution.

State the particular solution

The particular solution is then T (t) = 86e−kt.

This answers part (ii) of the question.



Draft Version August 2011 c©2010 University of Sydney 56

Step 7 Use the condition in the question to find the constant of proportionality.

We now use the second condition to find k.
Substituting t = 152 and T = 43 into the particular solution. We get

T (152) = 43 = 86e−k×152.

To find k we:

÷ both sides by 86
43

86
= e−k×152

To get k out of the power take ln of both sides ln

(
43

86

)
= ln

(
e−k×152

)
= −k × 152

÷ both sides by −152
1

−152
ln

(
43

86

)
=

−k × 152

−152
= k

Work out the value of k on the calculator k ≈ 0.00456

Substitute this k = 0.00456 into the particular solution T = e−kt, and state the answer.

The particular solution for the conditions described in the problem is

T (t) = 86e−0.00456t

This answers part (ii) of the question with the constant of proportionality evaluated.
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Step 8 From the wording of the question work out what the question is asking in mathematics.

Part (iii) of the question asks:

What will be the temperature of the pie after 10 hours?

Since we are using t measured in minutes we must change 10 hours to minutes.
To do this we use the unit conversion factor. Here we want to convert hours to minutes, and we know

1 hour is equivalent to 60 minutes. So here our unit conversion factor is
60minute

1 hour
.

To change the units of a quantity from unit1 to unit2, where we know that A unit1 is equivalent
to B unit2 we multiply by the unit conversion factor given by;

unit conversion factor =
B Unit2
A Unit1

Examples

The unit conversion factor for converting minutes into hours
1 hour

60minute

The unit conversion factor for converting metres into kilometres is
1 kilometre

1000metre

The unit conversion factor for converting degrees into radians is
2π radian

360 degree

The unit conversion factor for converting radians into degrees is
360 degree

2π radian
.

The length of time 60 minutes is equivalent to 1 hour so our unit conversion factor
60minutes

1 hour
is equal

to 1. As an equation;

unit conversion factor =
60minutes

1 hour
= 1

Hence if we multiply any quantity by the appropriate unit conversion factor this is equivalent to
multiplying that quantity by unity. As we know multiplying a quantity by unity does not change the
amount of that quantity.

Multiplying a quantity by the appropriate unit conversion factor does not change the amount
of the quantity under consideration only the units in which the quantity is expressed.

In this instance to express our 10 hours in minutes we have;

10 hour = 10 hour× 60minute

1 hour
= 600minute.

Be careful to change all units to the units of the variables here T and t.
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Step 9 Calculate the answer in mathematics.

Substituting t = 600 into T (t) = 86e−0.00456×t

gives

T = 86e−0.00456×600

= 86e−2.736

= 86× 0.064829

= 5.5753

Step 10 State the answer in words including units.

If you just give T = 5.5753 this provides little information who doesn’t know all of your working.

Is this the temperature or does T mean time? It could mean after 5.57 hours to an outsider.

State the answer in words including units.

The pie will cool to 5.5753◦C after 10 hours.

This answers part (iii) of the question.
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We now answer part (iv) of the question. To do this we work through Step 8, Step 9 and Step 10 again as
we did for part for part (iii).

Step 8 for part (iv) From the wording of the question work out what the question is asking in mathematics.

Part (iv) of the question asks:

How long does it take for the pie to be edible at 23◦C or below?

Since we are measuring time from t = 0 when the pie is taken from the oven. We want to find the time t
(in minutes) when the temperature T had dropped to 23◦C (which is already in ◦C).

We want t when T = 23.

Always check the units when information is given in the question and
when you are stating an answer.

Step 9 Calculate the answer in mathematics.

Substituting T = 23 into T (t) = 86e−0.00456×t

gives

23 = 86e−0.00456×t

We need to get t on its own. To do this we:

÷ both sides by 86
23

86
= e−0.00456×t

To get t out of the power take ln of both sides ln

(
23

86

)
= ln

(
e−0.00456×t

)
= −0.00456× t

÷ both sides by −0.00456
1

−0.00456
ln

(
23

86

)
=

−1.318853

−0.00456
= t

Work out the value of t on the calculator t ≈ 289.22

Step 10 State the answer in words including units.

Giving the answer in words allows someone who is unfamiliar with your choice of symbols or units to
understand your answer.
T , t, x or y means little to someone who doesn’t know the mathematics. Also an outsider will not know
which units you have chosen.

State the answer in words including units.

The time for the pie to cool to 23◦C is 289.22 minutes.

This answers part (iv) of the question.



Chapter 5

Answers to Selected Exercises

5.1 Answers to Exercises 1.1.2

Question 1

The rate of increase of temperature of the sausage may be represented by
dT

dt
, where T is the temperature of

the sausage.

Question 2

The rate of change of concentration of salt may be represented by
dS

dt
, where S is the concentration of salt.

Question 3

The rate at which a human body produces insulin may be represented by
dI

dt
, where I is the insulin in the body.

Question 4

The rate at which fuel is taken from the fuel tank and fed into the engine may be represented by
dF

dt
where F

is the total volume of fuel being taken from the fuel tank and fed to the engine.

If the same amount of fuel is being fed to the engine per unit time the car will stay traveling at the same speed;

that is if
dF

dt
is constant then the speed of the car will remain the same.

Here there is another rate in the question. How fast the car is traveling may be represented by the rate at which

the car changes its distance along a road; which may be represented by
dD

dt
, where D represents the distance

of the car along the road.

Question 5

The rate at which
dF

dt
changes will then be represented by

d

dt

dF

dt
.

If the rate at which fuel is fed into the engine is simply represented by R then the rate of change of the rate at

which fuel is fed to the engine will be represented by
dR

dt
.

The acceleration of the car is also represented by a derivative, it is the rate of change of velocity. So acceleration

is given by
dv

dt
, where here the velocity v is the velocity along a straight road. More generally velocity in any

direction is written as a vector v though here we will stick with scalar quantities.

Even the velocity is a derivative. The velocity v here is the rate of change of displacement along a (here) straight

road. And is written as
dD

dt
in the language of mathematics, where D is the distance along the straight road.

Question 6

60
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The rate at which the depth of water drops in the pool may be represented by
dD

dt
, where D represents the

depth of water in the swimming pool. If the rate at which the depth of water drops is dependent on the depth

of water then
dD

dt
will depend on D. Another way of saying this is that

dD

dt
will be some function of D. Or

dD

dt
= f(D); but more about this in the next section.

Question 7

The rate of change of the volume of the balloon may be represented in the language of mathematics as
dV

dt
this mathematical expression represents the rate of change of a quantity and the quantity itself will be V the
volume of the balloon. If the rate of decrease of volume of the balloon is dependent on the diameter D say then

we can write in mathematics
dV

dt
= f(D). But again we will explain this more thoroughly in the next section.

5.2 Answers to Exercises 1.2.3

Question 1

the rate of change of volume of the balloon is the derivative
dV

dt
.

the of volume of the balloon is the quantity V .

is equal to represents the equality or =.

2000 litres per minute tells us the rate of change.

The differential equation may be given by
dV

dt
= 2000 you do not have to give this to answer the question.

Question 2

The rate of change of temperature of a cold beer is the derivative
dT

dt
.

the temperature of a cold beer is the quantity T .

is equal to represents the equality or =.

the difference in temperature of the room and the beer tells us the rate of change.

The differential equation may be given by
dT

dt
= R − B you do not have to give this to answer the

question.

Question 3

The rate at which a swimming pool is filled is the derivative
dV

dt
.

the volume of water in the pool is the quantity V .

is equal to represents the equality or =.

a constant times the opening in the tap tells us the rate of change.

The differential equation may be given by
dV

dt
= constant × Openingtap you do not have to give this to

answer the question.

Question 4

the rate of change of the speed is the derivative
dv

dt
.

the speed of the bowling ball (downwards) is the quantity v.

is increasing by represents the equality or =.

9.8 metres per second every second tells us the rate of change.
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The differential equation may be given by
dv

dt
= 9.8 you do not have to give this to answer the question.

Question 5

the rate of change of volume of the balloon is the derivative
dV

dt
.

the volume of the balloon is the quantity V .

is equal to represents the equality or =.

a constant times the volume of the balloon tells us the rate of change.

The differential equation may be given by
dV

dt
= constant× V , here the constant will be negative you do not

have to give this to answer the question.

Question 6

The rate of change of concentration of alcohol in the blood stream of a person is the derivative
dC

dt
.

the concentration of alcohol in the blood stream of a person is the quantity C.

is constant tells us about the equality = (as well as other things).

is constant also tells us the rate of change.

The differential equation may be given by
dC

dt
= constant, here the constant will be negative as C decreases

you do not have to give this to answer the question.

Question 7

The change of speed of an object falling to Earth will increase at a constant rate is another way of

describing the derivative
dS

dt
.

the speed of an object falling to Earth (taken as downwards) is the quantity S.

will increase at a constant rate tells us about the equality = (as well as other things).

will increase at a constant rate also tells us the rate of change.

The differential equation may be given by
dS

dt
= 9.8, you do not have to give this to answer the question.

Question 8

The rate of change of the wind-speed describes the derivative
dw

dt
.

the the wind-speed (where the wind-speed is positive if it is onshore and negative if is or offshore)
is the quantity w.

will be dependent on tells us about the equality = (as well as other things).

the difference in the temperature of the land and the ocean tells us the rate of change.

The differential equation may be given by
dw

dt
= f(Tland − Tocean), here the constant will be negative as C

decreases you do not have to give this to answer the question.

Question 9

the rate at which a small shark population increases describes the derivative as well as other thing

(increases)
dP

dt
.

shark population is the quantity P .

will equal tells us about the equality =.

a constant times the number of fish in their habitat tells us the rate of change.

The differential equation may be given by
dP

dt
= constant × F , here the constant will be positive as P will

increase the larger F you do not have to give this to answer the question.
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5.3 Answers to Exercises 1.3.2

Question 1

Yes, diameter = 2× radius

Question 2

Yes, circumference = π × diameter

Question 3

Yes, circumference = π × diameter

Question 4

Yes, perimeter = 4× side-length

Question 5

No, area = side-length2 = 1 × side-length2. There is a constant 1 in the equation but the squared ( 2) in the
equation means the two quantities are not proportional.

Question 6

No, area = π × radius2. Even though there is the constant π in the equation the squared ( 2) in the equation
means the two quantities are not proportional.

Question 7

Generally the height of a person and the weight of a person are not proportional. Even though a taller person
may be heavier and a short person on average will be lighter there is no hard and fast single equation which
relates the heigh and weight of people. If these two quantities were always proportional we could predict the
weight of a person from their height, which in general we cannot.

Question 8

Again, generally speaking the size of a class will not determine how many people pass that class. If there is a
very good year in a class with many hardworking students then a larger proportion should pass that class.

Question 9

Yes, area = π × radius2. Note here the area and radius2 are related only the constant π.

Question 10

The side length of a cube s that (just) contains a sphere of radius r will be s = 2×
√
3r. So the volume of the

sphere Vsphere will be Vsphere =
4

3
πr3 and the volume of the cube Vcube will be Vcube = (2

√
3r)3 = 8× 3

√
3r3.

Hence

Vcube = 24
√
3r3 = 24

√
3
3

4π

4

3
πr3 = 24

√
3
3

4π
Vsphere =

18
√
3

π
Vsphere.

So the volumes of the cube and the sphere are related by Vcube =
18

√
3

π
Vsphere so they are indeed proportional.
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5.4 Answers to Exercises 1.3.4

Question 1

radius =
1

2
diameter, so the constant of proportionality is

1

2
.

Question 2

diameter =
1

π
circumference, so the constant of proportionality is

1

π
.

Question 3

side-length =
1

4
perimeter, so the constant of proportionality is

1

4
.

Question 4

radius =
1

2π
circumference, so the constant of proportionality is

1

2π
.

Question 5

volumecube = 1× side-length3, so the constant of proportionality is 1.

Question 6

volumesphere =
4

3
πradius3, so the constant of proportionality is

4

3
π.

Question 7

An inch is defined to be inch = 24.5millimetre exactly, so the constant of proportionality is 24.5.

Question 8

A litre is defined to be 100 mm cubed. That is it is the volume contained in a cube that is 10 cms by 10 cms
by 10 cms.
This means there are 10× 10× 10 litres in a cubic metre.

In other words 1000 litres = 1cubic metre or 1 litres =
1

1000
cubic metre, so the constant of proportionality is

0.001.

Question 9

side-length =
1√
2
diagonal, so the constant of proportionality is

1√
2
.

Question 10

areacircle = πradius2 and areasquare = (2radius)2. Hence areasquare =
4

π
areacircle, so the constant of proportionality

is
4

π
.

Question 11

The side length of a cube s that (just) contains a sphere of radius r will be s = 2×
√
3r. So the volume of the

sphere Vsphere will be Vsphere =
4

3
πr3 and the volume of the cube Vcube will be Vcube = (2

√
3r)3 = 8× 3

√
3r3.

Hence

Vcube = 24
√
3r3 = 24

√
3
3

4π

4

3
πr3 = 24

√
3
3

4π
Vsphere =

18
√
3

π
Vsphere.

So the volumes of the cube and the sphere are related by Vcube =
18
√
3

π
Vsphere and the constant of proportionality

is
18
√
3

π
.

Question 12
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Many students would choose 100 % of the students to pass the class, if this were the case

no. of students passing the class = no. of students in the class.

So here the constant of proportionality would be 1.

Even if many students would choose all to pass, in order for “passing” the maths class to be worthy of some
recognition, many students may agree that just enrolling should not be sufficient to pass.

Question 13

If we choose only 10 % of students to fail a maths class then

no. of students failing the class =
10

100
no. of students in the class =

1

10
no. of students in the class,

in this case the constant of proportionality would be 0.1.

If everyone passed the class then

no. of students failing the class = 0 = 0× no. of students failing the class.

We may be tempted to conclude that the constant of proportionality is 0. However the constant of propor-
tionality is common defined to exclude 0. Under such a definition, in this case of everyone passing, the two
quantities would be determined to be not proportional.

Question 14

area = π × radius2, so the constant of proportionality is π.

5.5 Answers to Exercises 2.1.4

Question 1

Solution function is y. The independent variable is x.

Question 2

Solution function is y. The independent variable is x.

Question 3

Solution function is y. The independent variable is x.

Question 4

Solution function is y. The independent variable is x.

Question 5

Solution function is x. The independent variable is y.

Question 6

Solution function is x. The independent variable is t.

Question 7

Solution function is x. The independent variable is t.

Question 8

Solution function is z. The independent variable is y.

Question 9

Solution function is z. The independent variable is x.

Question 10

There are two possible answers to this question.
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As the equation stands or multiplying throughout by
dy

dx
to give 1 + 3y

dy

dx
= 0 gives the solution function as y

and the independent variable is x.

Alternatively and just as correctly we could use the property that for well behaved functions y(x),
1
dy

dx

=
dx

dy
.

We can then rearrange the differential equation to be
dx

dy
+ 3y = 0 in which case the solution function is x and

the independent variable would be y.

Question 11

Solution functions are x and y. The independent variable is t.

Question 12

Solution function is X. The independent variable is t.

Question 13

Solution function is X. The independent variable is t.

Question 14

Solution function is X. The independent variable is t.

Question 15

Solution function is X. The independent variable is Z.

Question 16

Solution function is Y . The independent variable is Z.

Question 17

Solution function is X. The independent variable is t.

Question 18

Solution functions are X and Y . The independent variable is t.

Question 19

Solution function is X. The independent variable is t.

Question 20

Solution function is X. The independent variable is t.

5.6 Answers to Exercises 2.2.2

Question 1

Can you think of a function y, which is a function of x, such that when you differentiate that function you get
2.

Question 2

Can you think of a function y, which is a function of x, such that when you differentiate that function you get
2x.

Question 3

Can you think of a function y, which is a function of x, such that when you differentiate that function you get
sin(x).

Question 4

Can you think of a function y, which is a function of x, such that when you differentiate that function you get
3x2.
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Question 5

Can you think of a function y, which is a function of x, such that when you differentiate that function you get
ex.

Question 6

Can you think of a function y, which is a function of x, such that when you differentiate that function you get
x sin(x).

Question 7

Can you think of a function y, which is a function of x, such that when you differentiate that function and add
2x you get 3.

Question 8

Can you think of a function X, which is a function of t, such that when you differentiate that function you get
3t2.

Question 9

Can you think of a function Y , which is a function of z, such that when you differentiate that function you get
sin(z) + z.

Question 10

Can you think of a function W , which is a function of t, such that when you differentiate that function and add
sin(t) to it you get 15.

Question 11

Can you think of a function y, which is a function of x, such that when you differentiate that function and then
multiply the derivative by x you get 3.

Question 12

Can you think of a function y, which is a function of x, such that when you differentiate that function and then
multiply the derivative by sin(x) you get x sin(x).

Question 13

Can you think of a function y, which is a function of x, such that when you differentiate that function and then
multiply the derivative by ex you get e2x.

Question 14

Can you think of a function y, which is a function of x, such that when you differentiate that function and then
multiply the derivative by itself (that is square it) you get (3x2 + 2)2.

Question 15

Can you think of a function X, which is a function of t, such that when you differentiate that function and add
the function you get 3t2.

Question 16

Can you think of a function X, which is a function of t, such that when you differentiate that function and then
multiply the derivative by itself (that is square it) and then add the derivative of the function you get 13.

Question 17

Can you think of a function y, which is a function of x, such that when you differentiate that function and
then multiply the derivative by itself (that is square it) and then multiply the square of the derivative by the
function and then add sin(x) you get 0.

Question 18

Can you think of a function Z, which is a function of Y , such that when you differentiate that function and
then multiply the derivative by the function and then add 3 times the function you get Y 2.

Question 19

Can you think of a function y, which is a function of x, such that when you multiply the derivative of that
function by 2, add 3 times the function and then add sin(x) you get 0.

Question 20

Can you think of a function X, which is a function of t, such that when you differentiate that function and then
multiply the derivative by itself (that is square it) and then add the function times sin(t) you get t2.
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5.7 Answers to Exercises 2.2.5

Question 1 (e).

Question 2 (c).

Question 3 (d).

Question 4 (f).

Question 5 (a) represents (iii), (b) represents (v), (c) represents (i), (d) represents (ii), (e) represents (iv).

5.8 Answers to Exercises 2.3.2

Question 1 (a), (b), (c), (d).

Question 2 (a), (b).

Question 3 (c), (e). The answer (e) qualifies as a solution as; if d is a constant then 2d will also be a constant.
The constant d in part (d) corresponds to c/2 in the general solution of part (c).

5.9 Answers to Exercises 2.3.4

Question 1 (a) (i), (b) (iii), (c) (ii), (d) (v), (e) (vi), (f) (ii).

Question 2 (a) (vi), (b) (i), (c) (ii), (d) (iv), (e) (iii), (f) (i).

Question 3 (a) matches none of the descriptions, (b) (ii), (c) matches none of the descriptions, (d) (i), (e) (iii),
(f) (ii).

Question 4 (a) matches none of the descriptions, (b) (i), (c) (ii), (d) matches none of the descriptions, (e) (iii),
(f) (ii).

5.10 Answers to Exercises 3.1.1

Question 1 (b), (d).

Question 2 (d).

Question 3 (a).

Question 4 (e).

Question 5 (c), (d).

Question 6 (d).

Question 7 (a), (b), (c).

Question 8 (c).

Question 9 (d).

Question 10 (a), (b), (c), (d).
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5.11 Answers to Exercises 3.3.1

Question 1 y(x) =
3

4
x4 + c.

Question 2 y(x) = 2x+ c.

Question 3 y(x) =
5

7
x7 − 4x4 + c.

Question 4 y(x) =
π

3
x3 + c.

Question 5 y(x) = sin(x) + c.

Question 6 y(x) =
1

5
e5x + c.

Question 7 y(x) = x2 + sin(x) + c.

Question 8 y(x) =
1

3
sin(3x) + c.

Question 9 y(x) = sin(x2) + c.

Question 10 y(x) = ex
2

+ c.

Question 11 y(x) = 5 ln(x)− cos(3x5) + c.

5.12 Answers to Exercises 3.4.1

Question 1

Left hand side of d.e. is
d

dx
y =

d

dx

(
3

4
x4

)

=
3

4
× 4x3

= 3x3

= Right hand side of d.e.

Which verifies that the function is a solution of the differential equation.

Question 2

Left hand side of d.e. is
d

dx
y =

d

dx
(2x+ c)

= 2 +
d

dx
c

= 2

= Right hand side of d.e.

Which verifies that the function is a solution of the differential equation.

Question 3

Left hand side of d.e. is
d

dx
y =

d

dx

(
5

7
x7 − 16

4
x4

)

= 5x6 − 16x3

= Right hand side of d.e.

Which verifies that the function is a solution of the differential equation.

Question 4

Left hand side of d.e. is
d

dx
y =

d

dx

(
π
x3

3
+ c

)

= πx2 +
d

dx
c

= πx2

= Right hand side of d.e.
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Which verifies that the function is a solution of the differential equation.

Question 5

Left hand side of d.e. is
d

dx
y =

d

dx
(sin(x) + 3)

= +cos(x)

= Right hand side of d.e.

Which verifies that the function is a solution of the differential equation.

Question 6

Left hand side of d.e. is
d

dx
y =

d

dx

(
1

5
e5x

)

= e5x

= Right hand side of d.e.

Which verifies that the function is a solution of the differential equation.

Question 7

Left hand side of d.e. is
d

dx
y =

d

dx

(
x2

2
+ sin(x)

)

= x+ cos(x)

= Right hand side of d.e.

Which verifies that the function is a solution of the differential equation.

Question 8

Left hand side of d.e. is
d

dx
y =

d

dx

(
1

3
sin(3x)

)

=
1

3
× cos(3x)× 3

= cos(3x)

= Right hand side of d.e.

Which verifies that the function is a solution of the differential equation.

Question 9

Left hand side of d.e. is
d

dx
y =

d

dx

(
sin(x2)− π

)

= cos(x2)× 2x+
d

dx
π

= cos(x2)× 2x

= Right hand side of d.e.

Which verifies that the function is a solution of the differential equation.

Question 10

Left hand side of d.e. is
d

dx
y =

d

dx

(
ex

2

+ c
)

= ex
2 × 2x+

d

dx
c

= ex
2 × 2x

= Right hand side of d.e.

Which verifies that the function is a solution of the differential equation.

Question 11

Left hand side of d.e. is
d

dx
y =

d

dx

(
x5 cos(15x4)

)

= 5x4 cos(15x4)− x5 sin(15x4)× 15× 4x3

= 5x4 cos(15x4)− 60x8 sin(15x4)

= Right hand side of d.e.
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Which verifies that the function is a solution of the differential equation.

5.13 Answers to Exercises 3.3.1

Question 1 y(x) =
3

4
x4 + c.

Question 2 y(x) = 2x+ c.

Question 3 y(x) =
5

7
x7 − 4x4 + c.

Question 4 y(x) =
π

3
x3 + c.

Question 5 y(x) = sin(x) + c.

Question 6 y(x) =
1

5
e5x + c.

Question 7 y(x) = x2 + sin(x) + c.

Question 8 y(x) =
1

3
sin(3x) + c.

Question 9 y(x) = sin(x2) + c.

Question 10 y(x) = ex
2

+ c.

Question 11 y(x) = 5 ln(x)− cos(3x5) + c.

5.14 Answers to Exercises 3.6.2

Question 1 y(x) = ex, y(x) = 5ex, y(x) = −153πex, as examples. There are many more.

Question 2 Can you think of a function X, which is a function of t, such that when you differentiate that
function you get the same function you first thought of.

Question 3 X(t) = et, X(t) = 5et, X(t) = −153πet, as examples.

Question 4 X(t) = Aet, for A constant.

Question 6 Particular solutions Z(y) = ey, Z(y) = −21ey, Z(y) = −(21eπ−e + sin(e2) − 15π3e−4)ey; general
solution Z(y) = Aey.

5.15 Answers to Exercises 3.6.4

Question 1 (b), (c), (d).

Question 2 (c), (d).

Question 3 (a) (iv), (b) (v), (c) (vi), (d) (iii), (e) (i), (f) (ii).

Question 4 (a) (v), (b) (ii), (c) (iii), (d) (i), (e) (vi), (f) (iv).
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5.16 Answers to Exercises 4.1.1

Question 1

(a) When t = 0 H = 15.

(b) When t = 1 H = 13.5.

(c) When t = 0 H = 24.

(d) When t = 48 H = 12.7.

(e) When t = 0 H = 1.55.

(f) When t = 72 H = 2.44.

(g) When t = 24 H = 7.

(h) When t = 0 H = 15.3.

Question 2

(a) When t = 0 M = 150.

(b) When t = 150 M = 45.

(c) When t = 0 M = 250.

(d) When t = 2880 M = 17.

(e) When
dM

dt
= 12 M = 175.

(f) When t = 300 M ′(t) = 2.

(g) When t = 60 M ′(t) = 12.5.

(h) When t = 0 M = 15.3.

(i) When t = 60 M ′ = 3.

(j) When t = 360
dM

dt
= 3.5.

(k) When t = 60 H = 145.

Question 3

(a) When t = 0 P = 2.34.

(b) When t = 3.5 P = 1.324.

(c) When t = 0 P ′(t) = 2.

(d) When t = 48 P ′ = −0.524.

(e) R = 0.5.

(f) When t = 582 P = 0.

(g) When t = 24 P = 22.564.

(h) When t = 24 P = 1000. Note if P is given as 1000 this must already be in units of 1000s. For P = 1000
there are 1000, 000 fish!

(i) When t = 0
dP

dt
= 2.0.

(j) When t = 24 P ′ = 2.0.

(k) When t = 150 P = 0. Or this is saying after 150 hours there are no fish left.


