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1 Polynomials

Many of the functions we will examine will be polynomials. In this Chapter we will study
them in more detail.

Definition

A real polynomial, P (x), of degree n is an expression of the form

P (x) = pnx
n + pn−1x

n−1 + pn−2x
n−2 + · · · + p2x

2 + p1x + p0

where pn �= 0, p0, p1, · · ·, pn are real and n is an integer ≥ 0.

All polynomials are defined for all real x and are continuous functions.

We are familiar with the quadratic polynomial, Q(x) = ax2 + bx + c where a �= 0. This
polynomial has degree 2.

The function f(x) =
√

x+x is not a polynomial as it has a power which is not an integer
≥ 0 and so does not satisfy the definition.

1.1 Polynomial equations and their roots

If, for a polynomial P (x), P (k) = 0 then we can say

1. x = k is a root of the equation P (x) = 0.

2. x = k is a zero of P (x).

3. k is an x-intercept of the graph of P (x).

1.1.1 Zeros of the quadratic polynomial

The quadratic polynomial equation Q(x) = ax2 + bx + c = 0 has two roots that may be:

1. real (rational or irrational) and distinct,

2. real (rational or irrational) and equal,

3. complex (not real).

We can determine which one of these we have if we use the quadratic formula

x =
−b ±

√
b2 − 4ac

2a
.

If b2 − 4ac > 0, there will be two real distinct roots.

If b2 − 4ac = 0, there will be two real equal roots.

If b2 − 4ac < 0, there will be complex roots.

We will illustrate all of these cases with examples, and will show the relationship between
the nature and number of zeros of Q(x) and the x-intercepts (if any) on the graph.
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1. Let Q(x) = x2 − 4x + 3.
We find the zeros of Q(x) by solving the
equation Q(x) = 0.

x2 − 4x + 3 = 0

(x − 1)(x − 3) = 0

Therefore x = 1 or 3.

The roots are rational (hence real) and
distinct.

2. Let Q(x) = x2 − 4x − 3.
Solving the equation Q(x) = 0 we get,

x2 − 4x − 3 = 0

x =
4 ±

√
16 + 12

2

Therefore x = 2 ±
√

7.

The roots are irrational (hence real) and
distinct.

3. Let Q(x) = x2 − 4x + 4.
Solving the equation Q(x) = 0 we get,

x2 − 4x + 4 = 0

(x − 2)2 = 0

Therefore x = 2.

The roots are rational (hence real) and
equal. Q(x) = 0 has a repeated or dou-
ble root at x = 2.

Notice that the graph turns at the dou-
ble root x = 2.
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4. Let Q(x) = x2 − 4x + 5.
Solving the equation Q(x) = 0 we get,

x2 − 4x + 5 = 0

x =
4 ±

√
16 − 20

2
Therefore x = 2 ±

√
−4.

There are no real roots. In this case the
roots are complex.

Notice that the graph does not intersect
the x-axis. That is Q(x) > 0 for all real
x. Therefore Q is positive definite.

We have given above four examples of quadratic polynomials to illustrate the relationship
between the zeros of the polynomials and their graphs.

In particular we saw that:

i. if the quadratic polynomial has two real distinct zeros, then the graph of the polyno-
mial cuts the x-axis at two distinct points;

ii. if the quadratic polynomial has a real double (or repeated) zero, then the graph sits
on the x-axis;

iii. if the quadratic polynomial has no real zeros, then the graph does not intersect the
x-axis at all.

So far, we have only considered quadratic polynomials where the coefficient of the x2

term is positive which gives us a graph which is concave up. If we consider polynomials
Q(x) = ax2 + bx + c where a < 0 then we will have a graph which is concave down.

For example, the graph of Q(x) = −(x2 − 4x + 4) is the reflection in the x-axis of the
graph of Q(x) = x2 − 4x + 4.

The graph of Q(x) = x2 − 4x + 4. The graph of Q(x) = −(x2 − 4x + 4).
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1.1.2 Zeros of cubic polynomials

A real cubic polynomial has an equation of the form

P (x) = ax3 + bx2 + cx + d

where a �= 0, a, b, c and d are real. It has 3 zeros which may be:

i. 3 real distinct zeros;

ii. 3 real zeros, all of which are equal (3 equal zeros);

iii. 3 real zeros, 2 of which are equal;

iv. 1 real zero and 2 complex zeros.

We will not discuss these here.

1.2 Factorising polynomials

So far for the most part, we have looked at polynomials which were already factorised. In
this section we will look at methods which will help us factorise polynomials with degree
> 2.

1.2.1 Dividing polynomials

Suppose we have two polynomials P (x) and A(x), with the degree of P (x) ≥ the degree
of A(x), and P (x) is divided by A(x). Then

P (x)

A(x)
= Q(x) +

R(x)

A(x)
,

where Q(x) is a polynomial called the quotient and R(x) is a polynomial called the
remainder, with the degree of R(x) < degree of A(x).

We can rewrite this as
P (x) = A(x) · Q(x) + R(x).

For example: If P (x) = 2x3 +4x+3 and A(x) = x−2, then P (x) can be divided by A(x)
as follows:

2x2 + 4x + 12
x − 2 2x3 + 0x2 + 4x − 3

2x3 − 4x2

4x2 + 4x − 3
4x2 − 8x

12x − 3
12x − 24

21

The quotient is 2x2 + 4x + 12 and the remainder is 21. We have

2x3 + 4x + 3

x − 2
= 2x2 + 4x + 12 +

21

x − 2
.

This can be written as

2x3 + 4x − 3 = (x − 2)(2x2 + 4x + 12) + 21.

Note that the degree of the ”polynomial” 21 is 0.
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1.2.2 The Remainder Theorem

If the polynomial f(x) is divided by (x − a) then the remainder is f(a).

Proof:

Following the above, we can write

f(x) = A(x) · Q(x) + R(x),

where A(x) = (x − a). Since the degree of A(x) is 1, the degree of R(x) is zero. That is,
R(x) = r where r is a constant.

f(x) = (x − a)Q(x) + r where r is a constant.

f(a) = 0 · Q(a) + r

= r

So, if f(x) is divided by (x − a) then the remainder is f(a).

Example

Find the remainder when P (x) = 3x4 − x3 + 30x − 1 is divided by a. x + 1, b. 2x − 1.

Solution

a. Using the Remainder Theorem:

Remainder = P (−1)

= 3 − (−1) − 30 − 1

= −27

b.

Remainder = P (
1

2
)

= 3(
1

2
)4 − (

1

2
)3 + 30(

1

2
) − 1

=
3

16
− 1

8
+ 15 − 1

= 14
1

16

Example

When the polynomial f(x) is divided by x2 − 4, the remainder is 5x + 6. What is the
remainder when f(x) is divided by (x − 2)?

Solution

Write f(x) = (x2 − 4) · q(x) + (5x + 6). Then

Remainder = f(2)

= 0 · q(2) + 16

= 16

A consequence of the Remainder Theorem is the Factor Theorem which we state below.
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1.2.3 The Factor Theorem

If x = a is a zero of f(x), that is f(a) = 0, then (x − a) is a factor of f(x) and f(x) may
be written as

f(x) = (x − a)q(x)

for some polynomial q(x).

Also, if (x− a) and (x− b) are factors of f(x) then (x− a)(x− b) is a factor of f(x) and

f(x) = (x − a)(x − b) · Q(x)

for some polynomial Q(x).

Another useful fact about zeros of polynomials is given below for a polynomial of degree
3.

1.2.4 The cubic polynomial revisited

If a (real) polynomial

P (x) = ax3 + bx2 + cx + d,

where a �= 0, a, b, c and d are real, has exactly 3 real zeros α, β and γ, then

P (x) = a(x − α)(x − β)(x − γ) (1)

Furthermore, by expanding the right hand side of (1) and equating coefficients we get:

i.

α + β + γ = − b

a
;

ii.

αβ + αγ + βγ =
c

a
;

iii.

αβγ = −d

a
.

This result can be extended for polynomials of degree n.

Example

Let f(x) = 4x3 − 8x2 − x + 2

a. Factorise f(x).

b. Sketch the graph of y = f(x).

c. Solve f(x) ≥ 0.
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Solution

a. Consider the factors of the constant term, 2. We check to see if ±1 and ±2 are solutions
of the equation f(x) = 0 by substitution. Since f(2) = 0, we know that (x − 2) is a
factor of f(x). We use long division to determine the quotient.

4x2 − 1
x − 2 4x3 − 8x2 − x + 2

4x3 − 8x2

− x + 2
− x + 2

So,

f(x) = (x − 2)(4x2 − 1)

= (x − 2)(2x − 1)(2x + 1)

b.

The graph of f(x) = 4x3 − 8x2 − x + 2.

c. f(x) ≥ 0 when −1
2
≤ x ≤ 1

2
or x ≥ 2.

Example

Show that (x − 2) and (x − 3) are factors of P (x) = x3 − 19x + 30, and hence solve
x3 − 19x + 30 = 0.

Solution

P (2) = 8 − 38 + 30 = 0 and P (3) = 27 − 57 + 30 = 0 so (x − 2) and (x − 3) are both
factors of P (x) and (x − 2)(x − 3) = x2 − 5x + 6 is also a factor of P (x). Long division
of P (x) by x2 − 5x + 6 gives a quotient of (x + 5).

So,

P (x) = x3 − 19x + 30 = (x − 2)(x − 3)(x + 5).
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Solving P (x) = 0 we get (x − 2)(x − 3)(x + 5) = 0.

That is, x = 2 or x = 3 or x = −5.

Instead of using long division we could have used the facts that

i. the polynomial cannot have more than three real zeros;

ii. the product of the zeros must be equal to −30.

Let α be the unknown root.

Then 2 · 3 ·α = −30, so that α = −5. Therefore the solution of P (x) = x3 − 19x + 30 = 0
is x = 2 or x = 3 or x = −5.

1.3 Exercises

1. When the polynomial P (x) is divided by (x− a)(x− b) the quotient is Q(x) and the
remainder is R(x).

a. Explain why R(x) is of the form mx + c where m and c are constants.

b. When a polynomial is divided by (x− 2) and (x− 3), the remainders are 4 and 9
respectively. Find the remainder when the polynomial is divided by x2 − 5x + 6.

c. When P (x) is divided by (x− a) the remainder is a2. Also, P (b) = b2. Find R(x)
when P (x) is divided by (x − a)(x − b).

2. a. Divide the polynomial f(x) = 2x4 + 13x3 + 18x2 + x − 4 by g(x) = x2 + 5x + 2.
Hence write f(x) = g(x)q(x) + r(x) where q(x) and r(x) are polynomials.

b. Show that f(x) and g(x) have no common zeros. (Hint: Assume that α is a
common zero and show by contradiction that α does not exist.)

3. For the following polynomials,

i. factorise

ii. solve P (x) = 0.

a. P (x) = x3 − x2 − 10x − 8

b. P (x) = x3 − x2 − 16x − 20

c. P (x) = x3 + 4x2 − 8

d. P (x) = x3 − x2 + x − 6

e. P (x) = 2x3 − 3x2 − 11x + 6

1.4 Solutions

1. a. Since A(x) = (x− a)(x− b) is a polynomial of degree 2, the remainder R(x) must
be a polynomial of degree < 2. So, R(x) is a polynomial of degree ≤ 1. That is,
R(x) = mx + c where m and c are constants. Note that if m = 0 the remainder
is a constant.
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b. Let P (x) = (x2 − 5x + 6)Q(x) + (mx + c) = (x − 2)(x − 3)Q(x) + (mx + c).

Then

P (2) = (0)(−1)Q(2) + (2m + c)

= 2m + c

= 4

and

P (3) = (1)(0)Q(3) + (3m + c)

= 3m + c

= 9

Solving simultaneously we get that m = 5 and c = −6. So, the remainder is
R(x) = 5x − 6.

c. Let P (x) = (x − a)(x − b)Q(x) + (mx + c).

Then

P (a) = (0)(a − b)Q(a) + (ma + c)

= am + c

= a2

and

P (b) = (b − a)(0)Q(b) + (mb + c)

= bm + c

= b2

Solving simultaneously we get that m = a + b and c = −ab provided a �= b.

So, R(x) = (a + b)x − ab.

2. a.
2x4 + 13x3 + 18x2 + x − 4 = (x2 + 5x + 2)(2x2 + 3x − 1) − 2

b. Let α be a common zero of f(x) and g(x). That is, f(α) = 0 and g(α) = 0.

Then since f(x) = g(x)q(x) + r(x) we have

f(α) = g(α)q(α) + r(α)

= (0)q(α) + r(α) since g(α) = 0

= r(α)

= 0 since f(α) = 0

But, from part b. r(x) = −2 for all values of x, so we have a contradiction.

Therefore, f(x) and g(x) do not have a common zero.

This is an example of a proof by contradiction.

3. a. i. P (x) = x3 − x2 − 10x − 8 = (x + 1)(x + 2)(x − 4)
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ii. x = −1, x = −2 and x = 4 are solutions of P (x) = 0.

b. i. P (x) = x3 − x2 − 16x − 20 = (x + 2)2(x − 5).

ii. x = −2 and x = 5 are solutions of P (x) = 0. x = −2 is a double root.

c. i. P (x) = x3+4x2−8 = (x+2)(x2+2x−4) = (x+2)(x−(−1+
√

5))(x−(−1−
√

5))

ii. x = −2, x = −1 +
√

5 and x = −1 −
√

5 are solutions of P (x) = 0.

d. i. P (x) = x3 − x2 + x − 6 = (x − 2)(x2 + x + 3). x2 + x + 3 = 0 has no real
solutions.

ii. x = 2 is the only real solution of P (x) = 0.

e. i. P (x) = 2x3 − 3x2 − 11 + 6 = (x + 2)(x − 3)(2x − 1).

ii. x = −2, x = 1
2

and x = 3 are solutions of P (x) = 0.


