The University of Sydney

Solving inequalities

Jackie Nicholas
Jacquie Hargreaves
Janet Hunter

(c)2006 University of Sydney

1 Solving inequalities

In these nots we will look at solving inequalities using both algebraic and graphical techniques.

Sometimes it is easier to use an algebraic method and sometimes a graphical one. For the following examples we will use both, as this allows us to make the connections between the algebra and the graphs.

Algebraic method

1. Solve $3-2 x \geq 1$.

This is a linear inequality.
Remember to reverse the inequality sign when multiplying or dividing by a negative number.

$$
\begin{aligned}
3-2 x & \geq 1 \\
-2 x & \geq-2 \\
x & \leq 1
\end{aligned}
$$

2. Solve $x^{2}-4 x+3<0$.

This is a quadratic inequality. Factorise and use a number line.

$$
\begin{aligned}
x^{2}-4 x+3 & <0 \\
(x-3)(x-1) & <0
\end{aligned}
$$

The critical values are 1 and 3 , which divide the number line into three intervals. We take points in each interval to determine the sign of the inequality; eg use $x=0$, $x=2$ and $x=4$ as test values.

Graphical method

When is the line $y=3-2 x$ above or on the horizontal line $y=1$? From the graph, we see that this is true for $x \leq 1$.

Let $y=x^{2}-4 x+3$.

When does the parabola have negative y-values? OR When is the parabola under the x-axis? From the graph, we see that this happens when $1<x<3$.

Thus, the solution is $1<x<3$.
3. Solve $\frac{1}{x-4} \leq 1$.

There is a variable in the denominator. Remember that a denominator can never be zero, so in this case $x \neq 4$.
First multiply by the square of the denominator

$$
\begin{aligned}
x-4 & \leq(x-4)^{2}, x \neq 4 \\
x-4 & \leq x^{2}-8 x+16 \\
0 & \leq x^{2}-9 x+20 \\
0 & \leq(x-4)(x-5)
\end{aligned}
$$

Mark the critical values on the number line and test $x=0, x=4.5$ and $x=6$.

Therefore, $x<4$ or $x \geq 5$.
4. Solve $x-3<\frac{10}{x}$.

Consider $x-3=\frac{10}{x}, \quad x \neq 0$.
Multiply by x we get

$$
\begin{aligned}
x^{2}-3 x & =10 \\
x^{2}-3 x-10 & =0 \\
(x-5)(x+2) & =0
\end{aligned}
$$

Therefore, the critical values are $-2,0$ and 5 which divide the number line into four intervals. We can use $x=-3, x=-1, x=1$ and $x=6$ as test values in the inequality. The points $x=-3$ and $x=1$ satisfy the inequality, so the solution is $x<-2$ or $0<x<5$.
(Notice that we had to include 0 as one of our critical values.)

Let $y=\frac{1}{x-4}$.

$y=\frac{1}{x-4}$ is not defined for $x=4$. It is a hyperbola with vertical asymptote at $x=4$. To solve our inequality we need to find the values of x for which the hyperbola lies on or under the line $y=1$. $(5,1)$ is the point of intersection. So, from the graph we see that $\frac{1}{x-4} \leq 1$ when $x<4$ or $x \geq 5$.

Sketch $y=x-3$ and then $y=\frac{10}{x}$. Note that second of these functions is not defined for $x=0$.

For what values of x does the line lie under the hyperbola? From the graph, we see that this happens when $x<-2$ or $0<x<5$.

Example

Sketch the graph of $y=|2 x-6|$.
Hence, where possible,
a. Solve
i. $|2 x-6|=2 x$
ii. $|2 x-6|>2 x$
iii. $|2 x-6|=x+3$
iv. $|2 x-6|<x+3$
v. $|2 x-6|=x-3$
b. Determine the values of k for which $|2 x-6|=x+k$ has exactly two solutions.

Solution

$$
f(x)=|2 x-6|= \begin{cases}2 x-6 & \text { for } x \geq 3 \\ -(2 x-6) & \text { for } x<3\end{cases}
$$

a. i. Mark in the graph of $y=2 x$. It is parallel to one arm of the absolute value graph. It has one point of intersection with $y=|2 x-6|=-2 x+6(x<3)$ at $x=1.5$.
ii. When is the absolute value graph above the line $y=2 x$? From the graph, when $x<1.5$.
iii. $y=x+3$ intersects $y=|2 x-6|$ twice.

To solve $|2 x-6|=x+3$, take $|2 x-6|=2 x-6=x+3$ when $x \geq 3$. This gives us the solution $x=9$. Then take $|2 x-6|=-2 x+6=x+3$ when $x<3$ which gives us the solution $x=1$.
iv. When is the absolute value graph below the line $y=x+3$?

From the graph, $1<x<9$.
v. $y=x-3$ intersects the absolute value graph at $x=3$ only.
b. k represents the y-intercept of the line $y=x+k$. When $k=-3$, there is one point of intersection. (See (a) (v) above). For $k>-3$, lines of the form $y=x+k$ will have two points of intersection. Hence $|2 x-6|=x+k$ will have two solutions for $k>-3$.

1.1 Exercises

1. Solve
a. $x^{2} \leq 4 x$
b. $\frac{4 p}{p+3} \leq 1$
c. $\frac{7}{9-x^{2}}>-1$
2. a. Sketch the graph of $y=4 x(x-3)$.
b. Hence solve $4 x(x-3) \leq 0$.
3. a. Find the points of intersection of the graphs $y=5-x$ and $y=\frac{4}{x}$.
b. On the same set of axes, sketch the graphs of $y=5-x$ and $y=\frac{4}{x}$.
c. Using part (ii), or otherwise, write down all the values of x for which

$$
5-x>\frac{4}{x}
$$

4. a. Sketch the graph of $y=2^{x}$.
b. Solve $2^{x}<\frac{1}{2}$.
c. Suppose $0<a<b$ and consider the points $\mathrm{A}\left(a, 2^{a}\right)$ and $\mathrm{B}\left(b, 2^{b}\right)$ on the graph of $y=2^{x}$. Find the coordinates of the midpoint M of the segment AB.
Explain why

$$
\frac{2^{a}+2^{b}}{2}>2^{\frac{a+b}{2}}
$$

5. a. Sketch the graphs of $y=x$ and $y=|x-5|$ on the same diagram.
b. Solve $|x-5|>x$.
c. For what values of m does $m x=|x-5|$ have exactly
i. two solutions
ii. no solutions
6. Solve $5 x^{2}-6 x-3 \leq|8 x|$.

1.2 Solutions

1. a. $0 \leq x \leq 4$
b. $-3<p \leq 1$
c. $x<-4$ or $-3<x<3$ or $x>4$
2. a. The graph of $y=4 x(x-3)$ is given below

b. From the graph we see that $4 x(x-3) \leq 0$ when $0 \leq x \leq 3$.
3. a. The graphs $y=5-x$ and $y=\frac{4}{x}$ intersect at the points $(1,4)$ and $(4,1)$.
b. The graphs of $y=5-x$ and $y=\frac{4}{x}$

c. The inequality is satisfied for $x<0$ or $1<x<4$.
4. a. The graph of $y=2^{x}$.

b. $2^{x}<\frac{1}{2}$ when $x<-1$.
c. The midpoint M of the segment AB has coordinates $\left(\frac{a+b}{2}, \frac{2^{a}+2^{b}}{2}\right)$.

Since the function $y=2^{x}$ is concave up, the y-coordinate of M is greater than $f\left(\frac{a+b}{2}\right)$. So,

$$
\frac{2^{a}+2^{b}}{2}>2^{\frac{a+b}{2}}
$$

5.
a.

b. $|x-5|>x$ for all $x<2.5$.
c. i. $\quad m x=|x-5|$ has exactly two solutions when $0<m<1$.
ii. $m x=|x-5|$ has no solutions when $-1<m<0$.
6. $-1 \leq x \leq 3$

