Solving systems of linear equations using the inverse

Jackie Nicholas
Mathematics Learning Centre University of Sydney
(C)2010 University of Sydney

Systems of linear equations

Matrix algebra can be used to represent systems of linear equations. Consider the following system:

$$
\begin{aligned}
3 x-2 y+4 z & =-5 \\
y+2 z & =0 \\
x+y+z & =4 .
\end{aligned}
$$

We can write this system as a matrix equation.
Let $A=\left[\begin{array}{rrr}3 & -2 & 4 \\ 0 & 1 & 2 \\ 1 & 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $C=\left[\begin{array}{r}-5 \\ 0 \\ 4\end{array}\right]$
then $\left[\begin{array}{rrr}3 & -2 & 4 \\ 0 & 1 & 2 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}-5 \\ 0 \\ 4\end{array}\right]$, ie $A X=C$.

Systems of linear equations

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
3 & -2 & 4 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right] } \\
& \uparrow {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] }
\end{aligned} \underset{\uparrow}{\left[\begin{array}{r}
-5 \\
0 \\
4
\end{array}\right]} \begin{gathered}
{\left[\begin{array}{c}
{[} \\
A
\end{array}\right.}
\end{gathered}
$$

The matrix A is made up of the coefficients of the system.
The left hand side of the matrix equation, $A X$, is a 3×1 column matrix, and when multiplied out gives:

$$
\left[\begin{array}{r}
3 x+(-2) y+4 z \\
0 x+1 y+2 z \\
1 x+1 y+1 z
\end{array}\right]=\left[\begin{array}{r}
3 x-2 y+4 z \\
y+2 z \\
x+y+z
\end{array}\right]=\left[\begin{array}{r}
-5 \\
0 \\
4
\end{array}\right] .
$$

Equating rows, we get back our system of equations again.

Solving the matrix equation

If A is a square matrix and has an inverse, A^{-1}, then we can solve the system of equations as follows:

$$
\begin{aligned}
A X & =C & & \\
A^{-1}(A X) & =A^{-1} C & & \text { multiplying on the left by } A^{-1} \\
\left(A^{-1} A\right)(X) & =A^{-1} C & & \text { using associativity } \\
I X & =A^{-1} C & & A^{-1} A=I \\
X & =A^{-1} C & &
\end{aligned}
$$

Provided we have A^{-1} we can solve any system of n linear equations with n unknowns in this manner; the difficulty is finding A^{-1} if it exists.

We will see how this works for a simple example next.

Example

Solve the following system of equations:

$$
\begin{aligned}
& 3 x+y=13 \\
& x+2 y=1
\end{aligned}
$$

We can write this as $\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}13 \\ 1\end{array}\right]$, ie $A X=C$ where $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right]$.
$|A|=\left|\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right|=3(2)-1(1)=5$ so A^{-1} exists, and
$A^{-1}=\frac{1}{5}\left[\begin{array}{rr}2 & -1 \\ -1 & 3\end{array}\right]=\left[\begin{array}{rr}\frac{2}{5} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{3}{5}\end{array}\right]$.

Example continued

Recall, that if $A X=C$ and A^{-1} exists then $X=A^{-1} C$.
So for our example $\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}13 \\ 1\end{array}\right]$

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{rr}
\frac{2}{5} & -\frac{1}{5} \\
-\frac{1}{5} & \frac{3}{5}
\end{array}\right]\left[\begin{array}{r}
13 \\
1
\end{array}\right] \\
& =\left[\begin{array}{r}
\frac{25}{5} \\
-\frac{10}{5}
\end{array}\right] \\
& =\left[\begin{array}{r}
5 \\
-2
\end{array}\right]
\end{aligned}
$$

so $x=5$, and $y=-2$.

