Using matrix algebra in linear regression

Jackie Nicholas

Mathematics Learning Centre University of Sydney
(C)2010 University of Sydney

The regression model

Consider the linear regression model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i} \quad i=1, \cdots, n
$$

We can write model in matrix form as,

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right] \quad \text { or } Y=X \beta+\epsilon,
$$

where $Y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right], X=\left[\begin{array}{cc}1 & x_{1} \\ 1 & x_{2} \\ \vdots & \vdots \\ 1 & x_{n}\end{array}\right], \beta=\left[\begin{array}{c}\beta_{0} \\ \beta_{1}\end{array}\right]$ and $\epsilon=\left[\begin{array}{c}\epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n}\end{array}\right]$.

The ordinary least squares estimate (OLS) of β

The sample regression equation is written as:

$$
y_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}+\hat{\epsilon}_{i} \quad i=1, \cdots, n
$$

which can be written in matrix form as:

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
\hat{\beta}_{0} \\
\hat{\beta}_{1}
\end{array}\right]+\left[\begin{array}{c}
\hat{\epsilon}_{1} \\
\hat{\epsilon}_{2} \\
\vdots \\
\hat{\epsilon}_{n}
\end{array}\right]
$$

or in matrix notation as:

$$
Y=X \hat{\beta}+\hat{\epsilon} .
$$

The OLS estimate of β

The OLS estimate of β is obtained by minimising

$$
\Sigma \hat{\epsilon}_{i}^{2}=\Sigma\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}
$$

to get the normal equations (don't do this)

$$
\begin{aligned}
n \hat{\beta}_{0}+\Sigma x_{i} \hat{\beta}_{1} & =\Sigma y_{i} \\
\Sigma x_{i} \hat{\beta}_{0}+\Sigma x_{i}^{2} \hat{\beta}_{1} & =\Sigma x_{i} y_{i} .
\end{aligned}
$$

The normal equations can be written in matrix form as:
$\left[\begin{array}{cccc}1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]\left[\begin{array}{cc}1 & x_{1} \\ 1 & x_{2} \\ \vdots & \vdots \\ 1 & x_{n}\end{array}\right]\left[\begin{array}{c}\hat{\beta}_{0} \\ \hat{\beta}_{1}\end{array}\right]=\left[\begin{array}{cccc}1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$.
Check by multiplying the matrices out.

Solving the matrix equation

This is written in matrix notation as

$$
X^{\prime} X \hat{\beta}=X^{\prime} Y .
$$

As the matrix X^{\prime} is $2 \times n$ and X is $n \times 2, X^{\prime} X$ is a 2×2 matrix.
If $\left(X^{\prime} X\right)^{-1}$ exists, we can solve the matrix equation as follows:

$$
\begin{aligned}
X^{\prime} X \hat{\beta} & =X^{\prime} Y \\
\left(X^{\prime} X\right)^{-1}\left(X^{\prime} X\right) \hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
\mid \hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y .
\end{aligned}
$$

This is a fundamental result of the OLS theory using matrix notation. The result holds for a multiple linear regression model with $k-1$ explanatory variables in which case $X^{\prime} X$ is a $k \times k$ matrix.

Example from Associate Professor Tim Fisher

Let $X=\left[\begin{array}{ll}1 & 2 \\ 1 & 4 \\ 1 & 6\end{array}\right], Y=\left[\begin{array}{l}3 \\ 6 \\ 7\end{array}\right]$ with $\hat{\beta}=\left[\begin{array}{l}\hat{\beta}_{0} \\ \hat{\beta}_{1}\end{array}\right]$.
Show that $\hat{\beta}=\left[\begin{array}{l}1.3333 \\ 1.0000\end{array}\right]$.

$$
\begin{aligned}
X^{\prime} X & =\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 4 & 6
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 4 \\
1 & 6
\end{array}\right] \\
& =\left[\begin{array}{rr}
3 & 12 \\
12 & 56
\end{array}\right]
\end{aligned}
$$

$\left|X^{\prime} X\right|=3(56)-12(12)=24$, so $\left(X^{\prime} X\right)^{-1}$ exists.

Example

$$
\text { So, } \begin{aligned}
\left(X^{\prime} X\right)^{-1} & =\frac{1}{24}\left[\begin{array}{rr}
56 & -12 \\
-12 & 3
\end{array}\right] . \\
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
& =\frac{1}{24}\left[\begin{array}{rr}
56 & -12 \\
-12 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 4 & 6
\end{array}\right]\left[\begin{array}{l}
3 \\
6 \\
7
\end{array}\right] \\
& =\frac{1}{24}\left[\begin{array}{rr}
56 & -12 \\
-12 & 3
\end{array}\right]\left[\begin{array}{l}
16 \\
72
\end{array}\right] \\
& =\frac{1}{24}\left[\begin{array}{r}
32 \\
24
\end{array}\right] \\
& =\left[\begin{array}{l}
1.3333 \\
1.0000
\end{array}\right] \quad \text { as required. }
\end{aligned}
$$

