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The regression model

Consider the linear regression model:
Yi = Bo + B1x + € I=1--,n

We can write model in matrix form as,
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The ordinary least squares estimate (OLS) of 3

The sample regression equation is written as:

Vi =Bo+Bixi +& r=1--,n

which can be written in matrix form as:
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or in matrix notation as:



The OLS estimate of B

The OLS estimate of 3 is obtained by minimising

Zé,-2 = Z(y, - Bo - ,BAlXi)Q

to get the normal equations (don't do this)

nBo + Ixifr = 2y
ZX,‘ﬁAQ—FZX?ﬁAl = ZX,'y,'.

The normal equations can be written in matrix form as:
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Check by multiplying the matrices out.



Solving the matrix equation

This is written in matrix notation as
X'XB=XY.
As the matrix X' is 2 x nand X is n x 2, X' X is a 2 x 2 matrix.

If (X'X)~! exists, we can solve the matrix equation as follows:
X'XB = XY
X' X)HXX)B = (XX)XY
1B = XXXy

A

B = (XX)X'Y.
This is a fundamental result of the OLS theory using matrix
notation. The result holds for a multiple linear regression model

with k — 1 explanatory variables in which case X' X is a k x k
matrix.



Example from Associate Professor Tim Fisher
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X' X| = 3(56) — 12(12) = 24, so (X' X)™! exists.
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So, (X'X)™t =2 {

6 = XX) XY
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as required.
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