Computational Nanotechnology (AMME5271)

UNIT OF STUDY

This course introduces atomistic computational techniques used in modern engineering to understand phenomena and predict material properties, behaviour, structure and interactions at nano-scale. The advancement of nanotechnology and manipulation of matter at the molecular level have provided ways for developing new materials with desired properties. The miniaturization at the nanometre scale requires an understanding of material behaviour which could be much different from that of the bulk. Computational nanotechnology plays a growingly important role in understanding mechanical properties at such a small scale. The aim is to demonstrate how atomistic level simulations can be used to predict the properties of matter under various conditions of load, deformation and flow. The course covers areas mainly related to fluid as well as solid properties, whereas, the methodologies learned can be applied to diverse areas in nanotechnology such as, liquid-solid interfaces, surface engineering, nanorheology, nanotribology and biological systems. This is a course with a modern perspective for engineers who wish to keep abreast with advanced computational tools for material characterization at the atomic scale.

Our courses that offer this unit of study

Further unit of study information

Classes

Lectures: 2 hours per week; Tutorials: 3 hours per week

Assessment

Through semester assessment (100%)

Faculty/department permission required?

Yes

Study this unit outside a degree

Non-award/non-degree study

If you wish to undertake one or more units of study (subjects) for your own interest but not towards a degree, you may enrol in single units as a non-award student.

Find a non-award course for this unit of study

Cross-institutional study

If you are from another Australian tertiary institution you may be permitted to underake cross-institutional study in one or more units of study at the University of Sydney.

Find a cross-institutional course for this unit of study