Physics 2EE (PHYS2213)


This unit of study is designed to build on the knowledge gained in Junior Physics, to provide Electrical Engineering students with the knowledge of relevant topics of Physics at the Intermediate level, and with associated skills. Completion of the unit provides a solid foundation for further studies in Electrical Engineering and related engineering areas. The aims of this unit are linked to the generic attributes required of graduates of the University in knowledge skills, thinking skills, personal skills and attributes, and practical skills. By the end of this unit of study, students will be able to describe and apply concepts in optics, electromagnetism and basic solid state physics and technology at the Intermediate level. They will be able to use computational techniques to analyze optics problems. The modules in this unit of study are: Optics (13 lectures): The wave nature of light, optical phenomena and the interaction of light with matter: interference and diffraction effects; fundamental limits to resolution of optical instruments; polarisation; dispersion; coherence. These are presented within the context of several key optical technologies including lasers, CD/DVD players, optical fibre communication systems, gratings and Mach Zehnder modulation. Electromagnetic Properties of Matter (12 lectures): Electric and magnetic effects in materials; the combination of electric and magnetic fields to produce light and other electromagnetic waves in vacuum and matter. Solid State and Device Physics (13 lectures): Introduction to quantum mechanics, Fermi-Dirac statistics, electronic properties of solids (metal, semiconductors and insulators), doping and the semiconductor PN junction; introduction to nanotechnology; fabrication technologies, nano-imaging technologies, nanoelectronics. Computational Physics (10 sessions of 2 hours each): In a computing laboratory students use Matlab-based simulation software to conduct virtual experiments in optics, which illustrate and extend the relevant lectures. Students also gain experience in the use of computers to solve problems in physics.

Our courses that offer this unit of study

Further unit of study information


Three 1 hour lectures per week; one 2 hour computational laboratory per week for 10 weeks.


One 3 hour exam, one 1-hour computational test, assignments, computational lab work (100%)


Notes published by the School of Physics: - Physics 2EE Computational Physics Optics Notes - Physics 2EE Electromagnetic Properties of Matter Notes - Physics 2EE Solid State and Device Physics Notes Other relevant texts: see the Unit of Study outline.

Faculty/department permission required?


Unit of study rules


(PHYS1001 or PHYS1901) and (PHYS1003 or PHYS1902)

Assumed knowledge

(MATH1001 or MATH1901) and (MATH1002 or MATH1902) and (MATH1003 or MATH1903) and (MATH1005 or MATH1905)


PHYS2203 or PHYS2001 or PHYS2901 or PHYS2011 or PHYS2911 or PHYS2002 or PHYS2902 or PHYS2012 or PHYS2912

Study this unit outside a degree

Non-award/non-degree study

If you wish to undertake one or more units of study (subjects) for your own interest but not towards a degree, you may enrol in single units as a non-award student.

Cross-institutional study

If you are from another Australian tertiary institution you may be permitted to underake cross-institutional study in one or more units of study at the University of Sydney.