CIS Asset Identification and Labelling Standard

The University of Sydney

Engineering & Sustainability Team
Document Control

<table>
<thead>
<tr>
<th>Document Name:</th>
<th>CIS Asset Identification and Labelling Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document ID:</td>
<td>CIS-PLA-STD-Asset Identification and Labelling</td>
</tr>
<tr>
<td>Document Status:</td>
<td>Final</td>
</tr>
<tr>
<td>Version No:</td>
<td>002</td>
</tr>
<tr>
<td>Author(s):</td>
<td>David Dunn</td>
</tr>
<tr>
<td>Position:</td>
<td>Services Engineer – Mechanical</td>
</tr>
<tr>
<td>Signature:</td>
<td></td>
</tr>
<tr>
<td>Document Owner:</td>
<td>Engineering & Sustainability Team</td>
</tr>
<tr>
<td>Approved by:</td>
<td>Greg Robinson</td>
</tr>
<tr>
<td>Position:</td>
<td>Director of CIS</td>
</tr>
<tr>
<td>Signature:</td>
<td></td>
</tr>
<tr>
<td>Date Approved:</td>
<td>18 September 2015</td>
</tr>
<tr>
<td>Date of Issue:</td>
<td>18 September 2015</td>
</tr>
<tr>
<td>Issued by:</td>
<td>Campus Infrastructure & Services</td>
</tr>
</tbody>
</table>
Contents

1 PURPOSE ... 1

2 SCOPE .. 1

3 GLOSSARY OF TERMS ... 2

4 AUTHORITIES & RESPONSIBILITIES ... 2

5 TECHNICAL REQUIREMENTS ... 2

5.1 SPATIAL ASSET IDENTIFICATION ... 3

5.2 ITEM COUNT ASSET IDENTIFICATION ... 5

5.3 PHYSICAL UNIQUE BAR CODE .. 6

5.4 REDUNDANT EQUIPMENT ... 7

5.5 NEW ASSETS – DATA CAPTURE .. 8

5.5.1 OVERVIEW ... 8

5.5.2 PROCEDURE ... 8

5.5.3 PROCESS FLOW ... 9

5.6 MODIFIED ASSETS – DATA CAPTURE ... 10

5.6.1 OVERVIEW ... 10

5.6.2 PROCEDURE ... 10

5.6.3 PROCESS FLOW ... 11

5.7 EXISTING ASSETS – EQUIPMENT VALIDATION .. 12

5.7.1 OVERVIEW ... 12

5.7.2 PROCEDURE ... 12

5.7.3 PROCESS FLOW ... 13

5.8 CONDITION ASSESSMENT PROCEDURE .. 14

5.8.1 OVERVIEW ... 14

5.8.2 CONDITION ASSESSMENT COLLECTION METHODOLOGY .. 14

5.8.3 TEMPLATE CONTENTS .. 14

5.8.4 CONDITION RATING ... 15

5.8.5 RECOMMENDED ACTION .. 15

5.8.6 MAINTENANCE TASK RATING .. 15

5.8.7 REPAIR COST ... 16

5.8.8 REPLACEMENT COST ... 16

5.8.9 DESCRIPTION .. 16

5.8.10 PREVENTIVE MAINTENANCE DEFINITION SECTION ... 16

5.9 TEMPLATE FOR DATA CAPTURE ... 17

5.9.1 EQUIPMENT CODE .. 17

5.9.2 BUILDING CODE ... 17

5.9.3 BUILDING NAME ... 17

5.9.4 FLOOR CODE .. 17

5.9.5 ROOM CODE .. 17

5.9.6 ASSET LOCATION ... 17

5.9.7 MANUFACTURER ... 17

5.9.8 MODEL ... 17

5.9.9 SERIAL NUMBER ... 17
1 PURPOSE

The Campus Infrastructure and Service (CIS) Asset Identification and Labelling Standard sets out the University of Sydney’s minimum requirements for the identification and labelling of assets maintained by CIS. It ensures new and refurbished assets will be identified and labelled in a systematic and consistent manner, and documented in the CIS computerised asset management system.

Applicable requirements documented in Australian and New Zealand Standards (AS/NZS), the Building Code of Australia (BCA), Australian National Construction Codes, Workplace Health and Safety legislation and other relevant statutory requirements are minimum compliance requirements that are considered mandatory. The minimum relevant AS/NZS documents are provided in Section 11 of this standard.

Where any ambiguity exists between this standard and the aforementioned mandatory requirements then:

a. the highest performance requirements must apply
b. applicable requirements must follow this order of precedence:
 i. Workplace Health and Safety legislation
 ii. Disability Discrimination legislation
 iii. State Environmental Planning and Assessment legislation
 iv. All other Commonwealth and State legislation
 v. NCC and BCA
 vi. AS/NZS
 vii. This standard and other University standards

2 SCOPE

This standard describes minimum requirements for the identification and labelling of assets operated and maintained in the CIS computerised asset management system. It allows the University to record information on its assets for life cycle budgeting and maintenance programs.

The standard covers asset types operated and maintained by The University which are shown in the CIS-ASSET-F001 form.

This standard covers assets of the following:

a. created during new building construction
b. created or renewed during refurbishment projects
c. renewed or replaced by facilities maintenance services

This standard applies to planners, project managers, consultants, contractors, sub-contractors, tenants, University staff and others involved in the design, construction, installation, operation and maintenance of existing, new and proposed assets.
3 GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Equipment Standard</th>
<th>University assigned number for a particular asset type. Example: Chilled Water Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset Identification Number</td>
<td>The unique identifier number for an asset (labelled “equipment Code” in the asset collection template)</td>
</tr>
<tr>
<td>Concatenated</td>
<td>The linking together of information</td>
</tr>
<tr>
<td>Virtual Bar Code</td>
<td>The Number allocated in the CIS computerised asset management system for an asset or group of assets</td>
</tr>
<tr>
<td>Alpha Numeric</td>
<td>A code/sequence of characters that is including letters & numbers</td>
</tr>
<tr>
<td>Room Bar Code</td>
<td>Bar code that identifies the Building, level & room number</td>
</tr>
<tr>
<td>CMMS</td>
<td>Computerised Asset Management System</td>
</tr>
<tr>
<td>AV</td>
<td>Asset verification</td>
</tr>
<tr>
<td>CA</td>
<td>Condition Assessment</td>
</tr>
</tbody>
</table>

4 AUTHORITIES & RESPONSIBILITIES

This design standard is issued by CIS. It is approved and signed-off by the Director CIS and the Engineering unit is responsible for reviewing and maintaining the standard and keeping it up-to-date. The standard must be reviewed and kept up-to-date at least biennially.

It is the responsibility of the contractor to supply, affix and remove labelling as described in this standard. **Attachment 1** provides the specification for the labels and text.

5 TECHNICAL REQUIREMENTS

Each asset in the CIS-ASSET-F001 Form will be identified by a unique Asset Identification Number. The Asset Identification Number will comprise of The University of Sydney Room barcode number concatenated with an Equipment Standard code and the sequential number of the Asset Type in a room.

Example:

G12-01-123-12112-01

G12-01-123 Room Barcode Number
12112 Equipment Standard Number for Detector Smoke – Point
01 Sequential Number of the Asset Type within the Room.

In addition to the Asset Identification Number, some asset types, such as mechanical plant and equipment, will also be identified by a unique barcode assigned to them by CIS. The asset types which require a unique barcode are identified in the **CIS-ASSET-F001 form**.
5.1 **Spatial Asset Identification**

Spatial barcode identification numbers must be allocated as follows:

a. Firstly, equipment located within a room (or defined area) begins with a barcode installed at the top left hand corner of the room’s main entry door jamb which identifies The University of Sydney building alphanumeric code, floor level and room number.

b. Secondly, the equipment will be given an equipment-specific Asset type code (Equipment Standard) from the **CIS-ASSET-F001** Form.

c. Thirdly, the asset will be given a sequential number depending on the number of a particular Asset type in the room.

An example is shown below.

Spatial Asset Identifier for the first smoke detector in room 123 on level 1 of building G12

<table>
<thead>
<tr>
<th>Spatial Barcode</th>
<th>The Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Code</td>
<td>G 1 2</td>
</tr>
<tr>
<td>Level Code</td>
<td>0 1</td>
</tr>
<tr>
<td>Room Code</td>
<td>1 2 3</td>
</tr>
<tr>
<td>Equipment</td>
<td>1 2 1 1 2</td>
</tr>
<tr>
<td>Asset Number</td>
<td>0 1</td>
</tr>
<tr>
<td>Location</td>
<td>First smoke detector</td>
</tr>
<tr>
<td></td>
<td>in room G12-01-123</td>
</tr>
</tbody>
</table>

The asset number is allocated in sequential order in a clockwise direction from the main entry door where the bar code is located, and then front to back. Location of the equipment is reinforced by referring to the CAD drawing for the room, CAD drawings can be obtained from the project manager.

The equipment can then be easily identified by:

a. Noting the location of the bar code on the left hand side door jamb of the main entry door

b. Where equipment is attached to the wall all equipment will be identified in a clockwise direction

c. Where equipment is attached to the ceiling the equipment will be identified in a clockwise direction starting from the front and the closest asset to where the room barcode asset label is affixed. (If there is more than one entrance only one entrance will have the bar label), then front to back.

A typical example of the process logic is shown in **Figure 1**.
Figure 1: Spatial Asset Identification
5.2 Item Count Asset Identification

Lighting virtual barcode identification numbers must be allocated as follows:

a. Firstly, for a specific type of Asset located within a room (or defined area), the Asset Identification Number begins with the Room Barcode Number installed at the top left hand corner of the room’s main entry door jam. This number provides the unique University of Sydney building alphanumeric code, floor level and room number.

b. Secondly, the specific asset type will be given an equipment-specific Equipment Standard code from the CIS-ASSET-F001 Form.

c. Thirdly, the asset types will be given a number depending on the total number of the specific light types in the room.

An example is shown below.

Spatial Asset Identifier for a “T5 Single” in room 123 on level 1 of building G12

<table>
<thead>
<tr>
<th>Building Code</th>
<th>Level Code</th>
<th>Room Code</th>
<th>Equipment Standard</th>
<th>Asset Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1 2</td>
<td>0 1</td>
<td>1 2 3</td>
<td>1 4 5 0 0</td>
<td>0 4</td>
</tr>
</tbody>
</table>

The Services Building
Level one
Room 123
Fluro Surface T12 600mm Single
Count of asset room

A typical example of the process logic is shown in Figure 2.
5.3 PHYSICAL UNIQUE BAR CODE

Physical Unique barcode identification numbers must be allocated as follows:

a. Barcodes must be affixed next to the manufacturer name plate. Where manufacturer name plate is not accessible or available, the barcode must be affixed in an easily accessible and visible position on the asset.

b. Barcode is not to be affixed to any part of the asset that could be replaced such as a filter, isolator or to an equipment base plate.

c. The asset types which require a Physical Unique barcode are defined in the CIS-ASSET-F001 Form.

d. Contractor must provide the Project manager with the number of Physical Unique Barcodes required and for which Equipment Standards (asset types) they are to be applied.

e. Project manager will provide the physical bar code numbering sequence.
f. The label specification must match standard labels as per Attachment 1, Text is to match text specification.

g. Table 1 below outlines Bar code ranges to the services they are applied to where a particular asset requires a bar code.

TABLE 1: SERVICE BAR CODES

<table>
<thead>
<tr>
<th>Number Range</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Million</td>
<td>Mechanical</td>
</tr>
<tr>
<td>3 Million</td>
<td>Electrical</td>
</tr>
<tr>
<td>4 Million</td>
<td>Fire</td>
</tr>
<tr>
<td>5 Million</td>
<td>Hydraulics</td>
</tr>
<tr>
<td>7 Million</td>
<td>Lift</td>
</tr>
<tr>
<td>8 Million</td>
<td>Roof</td>
</tr>
</tbody>
</table>

5.4 **RENDANT EQUIPMENT**

Equipment made redundant which is left in-place must be labelled as redundant. Note that equipment that is left in place and is redundant must have had its related CIS design standard services dispensation form approved before this section applies. Contractors must ensure all redundant equipment not removed is labelled as redundant as shown below.

The label specification must match standard labels as per Attachment 1, Text is to match text specification.
5.5 **NEW ASSETS – DATA CAPTURE**

5.5.1 **OVERVIEW**

This section sets out the procedure for the capture of information for new assets installed in areas owned and/or operated by The University of Sydney. This section details the procedure and process flow for describing previously unrecorded assets.

5.5.2 **PROCEDURE**

In keeping with the Asset Management Procedures of The University of Sydney, whenever a new asset is installed in a building or area owned and/or operated by The University, the asset must be assigned an Asset Identification Number, and its details recorded in the CIS Computerised Asset Management System.

For each new asset, the Building and Room Number in which it is installed must be recorded. This number is integral to the Asset Identification Number.

The process and requirements for asset numbering and labelling are contained in the **CIS Asset Identification and Labelling Standard**.

Some assets will require a Unique Barcode Number. The **CIS-ASSET-P001** form contains a list of Equipment Standards, and identifies those which require a Unique Barcode Number. To obtain the required Barcode Number, those responsible for the installation of the new asset are required to contact the Project Manager and inform them of the number of Unique Barcode Numbers required, and to which assets they will be applied.

The captured data for all new assets must be compiled into standard upload files for processing and upload to the CIS Computerised Asset Management System.
5.5.3 PROCESS FLOW

START

Identify Existing USyd CMMS

Does data exist for this asset?

No

New Asset

Yes

See Modified or Existing Asset Process Flow

Identify Room Location

Identify Equipment Standard

Does Equipment Require Unique Barcode?

No

Contact Project Manager With Number of Unique Barcodes Required

Obtain Barcode Numbering Sequence from Project Manager

Fit Unique Barcode to Equipment

Carry out asset Condition Assessment

Prepare Upload files for the computerised maintenance management system

End
5.6 MODIFIED ASSETS – DATA CAPTURE

5.6.1 OVERVIEW

This section sets out the policy and procedure for the capture of information for modified assets installed in areas owned and/or operated by The University of Sydney. This section details the procedure and process flow for describing modified assets.

5.6.2 PROCEDURE

In keeping with the Asset Management Procedures of The University of Sydney, whenever an asset is modified or replaced, the details for the Asset must be updated in the CIS Computerised Asset Management System.

When an asset is replaced, the details for the new asset must be collected in accordance with the New Asset Procedure outlined in this standard. Following data collection, the asset being replaced must be identified in the Computerised Asset Management System, and the asset details updated to note the asset has been decommissioned and replaced with a new asset. The record for the replaced asset must be updated to reflect its decommissioned status, or removed from the system.

Where an asset has been modified, the new details for the asset must be collected in accordance with the data capture template. These updated details must uploaded to the Computerised Asset Management System.
5.6.3 PROCESS FLOW

1. Identify Existing USyd CMMS
2. Does data exist for this asset?
 - Yes: Identify Asset in Computerised Asset Management System
 - No: New Asset
3. Has the Asset been Modified?
 - No: Update Asset Details as Required
 - Yes: Has the Asset been Replaced?
 - No: Collect Details of Replacement Asset following Procedure for New Assets
 - Yes: Identify Replaced Asset in Computerised Asset Management System
4. Carry out asset Condition Assessment
5. Prepare Upload files for the computerised maintenance management system
6. End
5.7 **EXISTING ASSETS – EQUIPMENT VALIDATION**

5.7.1 **OVERVIEW**

This section sets out the policy and procedure for the capture of information for existing assets installed in areas owned and/or operated by The University of Sydney.

5.7.2 **PROCEDURE**

In keeping with the Asset Management Policies of The University of Sydney, each asset installed in a building or area owned and/or operated by The University, must be assigned an Asset Identification Number, and its details recorded in the CIS Computerised Asset Management System. The purpose of an Equipment Validation is to ensure validity of the equipment records in the Computerised Asset Management System for The University of Sydney facilities and to facilitate accurate planning of maintenance work.

The Equipment Validation is also fundamental to the development of Asset Management processes such as:

a. Life-cycle cost modelling to ensure the model uses actual installed equipment rather than historical records
b. Development of maintenance strategies
c. Identifying equipment subject to statutory/legislative requirements that has not previously been captured

The equipment validation method for existing assets requires the export of the existing data to allow for validation. It is recommended an initial “desk-top” validation occurs, where equipment which is known to be decommissioned are removed from the data to be used during the site-work portion of the equipment validation process.

The existing data is then formatted to match the data capture template, and the physical process of validating the existence of the equipment can begin.

The template requires:

a. identification of the equipment that was the subject of the work
b. confirming the Computerised Maintenance Management System (CMMS) equipment details are correct; and
c. describing previously unrecorded equipment

The assessor must have considerable experience in the operation and maintenance of the type of equipment being assessed to ensure valid inputs.

The equipment can only be inspected if it is safe to do so and the assessor must follow all site and state regulations regarding safety and isolation procedures. This process is for visual validation only. During the equipment validation, any additional information deemed important, e.g. manufacturer and model information etc., which is missing from the records for the existing equipment must be collected.

The captured data for all existing assets must be compiled into standard upload files for processing and upload to the CIS Computerised Asset Management System.
5.7.3 PROCESS FLOW

START

Identify Existing USyd CMMS

Does data exist for this asset? Yes → Identify Existing Asset

No → Does data exist for this asset? Yes → New Asset

No → Has the Asset been Modified? Yes → See Modified Asset Procedure

No → Has the Asset been Replaced? Yes → See Modified Asset Procedure

No → Collect Asset Details in Data Collection Template

Carry out asset Condition Assessment

Prepare Upload files for the computerised maintenance management system

End

New Asset

Yes → See New Asset Procedure

No → Identify Existing Asset

Collect Asset Details in Data Collection Template
5.8 CONDITION ASSESSMENT PROCEDURE

5.8.1 OVERVIEW

This procedure sets out the requirements for conducting a condition assessment (CA) of equipment. The purpose of this CA is to undertake a parameter based visual inspection of equipment condition. The Condition Assessment is useful for the equipment management processes such as:

a. life-cycle cost modelling to ensure the model uses actual data rather than nominal life predictions
b. development of risk based Equipment Management Plans

5.8.2 CONDITION ASSESSMENT COLLECTION METHODOLOGY

There are two stages to the Condition Assessment (CA) process:

1. Equipment validation – to ensure the equipment is accurately recorded in the site asset management system (This CA procedure follows the Equipment Validation process in Section 5.7 above.)
2. Equipment CA – an assessment of the condition and environment of the equipment (This is a visual assessment process only. If more intrusive CA is required, the appropriate work management procedures must be followed)

5.8.3 TEMPLATE CONTENTS

Table 2 is an example of a Condition Assessment table.

Note that fields other than those referred to below are to be completed during the Equipment Verification process defined in Section 5 above.

TABLE 2: EXAMPLE OF CONDITION ASSESSMENT TABLE

| Condition Assessment Section - Used when performing a condition assessment of an asset | | | | | |
| --- | --- | --- | --- | --- |
| Condition Rating | Priority Rating | Recommended Action | Repair Cost | Replacement Cost | Description |
| As per University condition rating table | As per University priority rating table | As per University recommended action table | Estimated cost to bring the asset back to excellent working condition | Replacement value at time of audit | Description of the condition of the asset - free text field |
5.8.4 CONDITION RATING

The condition rating follows a 1 to 5 rating system. The use of a single value must coincide with its description. The definitions are shown below. The field can only contain a single number and cannot have any additional text. The rating is the best estimate by the assessor based on a visual inspection.

TABLE 3: CONDITION RATING

<table>
<thead>
<tr>
<th>Rating</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Excellent</td>
<td>Equipment has no defects; condition and appearance are as new</td>
</tr>
<tr>
<td>4</td>
<td>Good</td>
<td>Equipment exhibits superficial wear and tear, minor defects, minor signs of deterioration to surface finishes; does not require major maintenance; no major defects exist.</td>
</tr>
<tr>
<td>3</td>
<td>Fair</td>
<td>Equipment is in average condition; deteriorated surfaces require attention; services are functional, but require attention; backlog maintenance work exists.</td>
</tr>
<tr>
<td>2</td>
<td>Poor</td>
<td>Equipment has deteriorated badly; serious structural problems; general appearance is poor with eroded protective coatings; elements are defective, services are frequently failing; and a significant number of major defects exist.</td>
</tr>
<tr>
<td>1</td>
<td>Unacceptable</td>
<td>Equipment has failed; is not operational and is unfit for occupancy or normal use.</td>
</tr>
</tbody>
</table>

5.8.5 RECOMMENDED ACTION

The Recommended Action rating follows a 1 to 5 rating system. The use of a single value must coincide with its description. The definitions are shown below. The field can only contain a single code and cannot have any additional text. This rating is we believe the best estimate based on the knowledge of the assessor on the required action rectify an issue with the asset.

TABLE 4: RECOMMENDED ACTION RATING TABLE

<table>
<thead>
<tr>
<th>Recommended Action Table</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Action</td>
<td>Asset requires no works performed</td>
</tr>
<tr>
<td>1</td>
<td>Clean</td>
<td>Asset requires cleaning</td>
</tr>
<tr>
<td>2</td>
<td>Adjust</td>
<td>Asset requires minor adjustments</td>
</tr>
<tr>
<td>3</td>
<td>Remove</td>
<td>Asset is required to be removed</td>
</tr>
<tr>
<td>4</td>
<td>Repair</td>
<td>Asset requires repairs</td>
</tr>
<tr>
<td>5</td>
<td>Replace</td>
<td>Asset requires replacement as it is past its operational lifecycle</td>
</tr>
</tbody>
</table>

5.8.6 MAINTENANCE TASK RATING

The Priority Rating Table follows a 1 to 10 rating system. The use of a single value must coincide with its description. The definitions are shown below. The field can only contain a single code and cannot have any additional text. This is the best estimate of the assessor based on knowledge of the site. The Priority Rating quantifies risk associated with the asset if it was to fail.
TABLE 5: PRIORITY RATING TABLE

<table>
<thead>
<tr>
<th>Priority Rating Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maintain</td>
</tr>
<tr>
<td>2</td>
<td>Company image</td>
</tr>
<tr>
<td>3</td>
<td>Def. Renovation</td>
</tr>
<tr>
<td>4</td>
<td>Cost Effective</td>
</tr>
<tr>
<td>5</td>
<td>Delayed Priority</td>
</tr>
<tr>
<td>6</td>
<td>Mission Support</td>
</tr>
<tr>
<td>7</td>
<td>Environ. Code</td>
</tr>
<tr>
<td>8</td>
<td>Facility Loss</td>
</tr>
<tr>
<td>9</td>
<td>Code Compliance</td>
</tr>
<tr>
<td>10</td>
<td>Life Safety</td>
</tr>
</tbody>
</table>

5.8.7 REPAIR COST

The repair cost field is used to identify the estimated cost to bring the asset back to excellent working condition.

5.8.8 REPLACEMENT COST

The replacement cost is the value at time of audit for a like for like replacement of the asset.

5.8.9 DESCRIPTION

The description field is a free text field that allows for the assessor to provide further commentary on the asset and its condition.

5.8.10 PREVENTIVE MAINTENANCE DEFINITION SECTION

The Preventative Maintenance Definition Section is used to upload assets preventative maintenance plan into the CIS Computerised Asset Management System.
5.9 **TEMPLATE FOR DATA CAPTURE**

5.9.1 **EQUIPMENT CODE**

The equipment Code Field is the location for the Unique asset ID, This would either be the spatial code or bar code.

5.9.2 **BUILDING CODE**

Building Code as per University designation.

5.9.3 **BUILDING NAME**

Building Name as per University designation

5.9.4 **FLOOR CODE**

Floor Code as per University Floor register.

5.9.5 **ROOM CODE**

Room Code as per University Room register

5.9.6 **ASSET LOCATION**

To identify location of asset, this is a free text field.

5.9.7 **MANUFACTURER**

Manufacturer of asset, this is a free text field.

5.9.8 **MODEL**

Model of asset, this is a free text field.

5.9.9 **SERIAL NUMBER**

Serial number for asset, this is a free text field.

5.9.10 **INSTALL DATE**

Date of installation of asset

5.9.11 **WARRANTY**

If the asset has a warranty state duration

5.9.12 **DESIGN LIFE**

Life cycle of the asset

5.9.13 **REMAINING LIFE**

Remaining life of the asset

5.9.14 **COMMENTS**

Free field for any additional information on the asset or relating to the asset
6 SAFETY IN DESIGN

The contractor must consider risk during the design. A design safety report must be submitted to the relevant CIS Project Manager for every design project. Contractors must confirm, within reasonable practicable (SFAIRP), that the structure is without risks to health and safety.

Design risks must be considered for the asset lifecycle covering construction, operational and maintenance, refurbishments and decommissioning.

The design safety report must include the following:
 a. Description of design element;
 b. Description of potential risks and hazards associated with the design element;
 c. A low/medium/high risk assessment considering likelihood and consequence;
 d. Proposed measures to eliminate risks where practicable;
 e. Control measures to mitigate and manage design risks;
 f. Nominating responsibilities for managing the design risks.

This may be provided as a design risk register where appropriate and must include results of any calculations, testing and analysis etc.

7 DOCUMENTATION AND RECORDS

CIS capital works projects and Facilities Management Services must document assets in Asset Registers in the format provided in the CIS-ASSET-F001 Form and uploaded in the CIS computerised asset management system.

8 AUTHORISATION OF VARIATIONS

Project managers, consultants, contractors, commissioning agents and facilities maintenance personnel must ensure compliance with these requirements is achieved.

Variations to this standard must only be considered where:

 a. The University Standard’s requirement cannot physically or technically be achieved.
 b. The alternative solution delivers demonstrated and proven superior performance.

Consultants and contractors must identify and justify requirements of the standard that do not apply to the project or which need to be varied and these must be approved by the issuer of this standard. Formal requests for all variations to this Standard must be submitted using the CIS Request Dispensation from Standard Form (CIS-ENG-F001). The issuer of this standard or their delegated authority must review and consider requirements of stakeholders from clients, projects and facilities management before deciding whether to approve variations. Their formal sign-off is required for acceptance of any non-compliances and departures from this standard’s requirements.
9 DESIGN STANDARD COMPLIANCE

Compliance with requirements of this standard must be checked throughout the design, construction and commissioning phases of projects by CIS’ services consultant. Any issues or deviations from this standard must be reviewed and approved in writing by the issuer of this standard.

Competent CIS consultants and representatives must check compliance with this standard during design reviews and formal site inspections. Any non-conformances with requirements of this standard must be documented and provided to the CIS Project Manager for issue to contractors and their consultants.

Project Managers must maintain a formal register of non-conformances and manage close out of outstanding non-conformances. Contractors and their consultants issued with non-conformances must take appropriate corrective actions. The CIS Project Manager must ensure:

a. proposed corrective actions are implemented
b. close out of non-conformances in relation to this standard is formally approved and signed off by the author of the standard or their delegate

10 DESIGN STANDARD CERTIFICATION

Contractors and their consultants must certify compliance to the design standard by completing and submitting the CIS Project Design Certification Form, CIS-PROJ-F001 to the CIS Project Manager at handover.

Notwithstanding CIS’ internal quality control processes, contractors and their consultants must implement their own robust quality assurance and control procedures to ensure compliance with requirements of this standard.

11 REFERENCES

N/A

12 NOTES

N/A

13 DOCUMENT AMENDMENT HISTORY

<table>
<thead>
<tr>
<th>Revision</th>
<th>Amendment</th>
<th>Commencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>First Issue</td>
<td>16 August 2013</td>
</tr>
<tr>
<td>002</td>
<td>• 5.5 New Assets Data Capture clause added.</td>
<td>18 September 2015</td>
</tr>
<tr>
<td></td>
<td>• 5.6 Modified Assets Data Capture clause added.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5.7 Existing Equipment Validation clause added.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5.8 Condition Assessment Procedure clause added.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5.9 Template for Data Capture clause added.</td>
<td></td>
</tr>
</tbody>
</table>
14 ATTACHMENTS

ATTACHMENT 1 ASSET LABEL SPECIFICATION

Asset Label Specs

<table>
<thead>
<tr>
<th>Size:</th>
<th>70mm x 31.5mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Code:</td>
<td>BRD710083</td>
</tr>
<tr>
<td>Description:</td>
<td>MiniMark Die-Cut Labels, Metalized Polyester B-7563 35M Length</td>
</tr>
</tbody>
</table>

Text Specs

'The University of Sydney'

<table>
<thead>
<tr>
<th>Font:</th>
<th>Arial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
<td>12</td>
</tr>
<tr>
<td>Color:</td>
<td>Black (000000)</td>
</tr>
<tr>
<td>Justification:</td>
<td>Centered</td>
</tr>
<tr>
<td>Print Area Dimensions:</td>
<td>60mm x 7.2mm</td>
</tr>
<tr>
<td>Print Area Position - Horizontal:</td>
<td>Centered</td>
</tr>
<tr>
<td>Print Area Position - Vertical:</td>
<td>3.7mm from top of label</td>
</tr>
</tbody>
</table>

Barcode and Text

<table>
<thead>
<tr>
<th>Barcode Type:</th>
<th>Code 128 Auto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcode Density:</td>
<td>10 mils</td>
</tr>
<tr>
<td>Barcode Color:</td>
<td>Black (000000)</td>
</tr>
<tr>
<td>Text Font:</td>
<td>Arial</td>
</tr>
<tr>
<td>Text Size:</td>
<td>20</td>
</tr>
<tr>
<td>Text Color:</td>
<td>Black (000000)</td>
</tr>
<tr>
<td>Justification:</td>
<td>Centred</td>
</tr>
<tr>
<td>Print Area Dimensions:</td>
<td>68mm x 14.3mm</td>
</tr>
<tr>
<td>Print Area Position - Horizontal:</td>
<td>Centred</td>
</tr>
<tr>
<td>Print Area Position - Vertical:</td>
<td>12.9 mm from top of label</td>
</tr>
</tbody>
</table>