CIS Vertical Transportation Standard

The University of Sydney

Engineering & Sustainability Team
Document Control

<table>
<thead>
<tr>
<th>Document Name:</th>
<th>CIS Vertical Transportation Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document ID:</td>
<td>CIS-PLA-STD-Vertical Transportation</td>
</tr>
<tr>
<td>Document Status:</td>
<td>Final</td>
</tr>
<tr>
<td>Version No:</td>
<td>002</td>
</tr>
<tr>
<td>Author(s):</td>
<td>David Clarke</td>
</tr>
<tr>
<td>Position:</td>
<td>Services Engineer – Electrical</td>
</tr>
<tr>
<td>Signature:</td>
<td></td>
</tr>
<tr>
<td>Document Owner:</td>
<td>Engineering & Sustainability Team</td>
</tr>
<tr>
<td>Approved by:</td>
<td>Greg Robinson</td>
</tr>
<tr>
<td>Position:</td>
<td>Director of CIS</td>
</tr>
<tr>
<td>Signature:</td>
<td></td>
</tr>
<tr>
<td>Date Approved:</td>
<td>18 September 2015</td>
</tr>
<tr>
<td>Date of Issue:</td>
<td>18 September 2015</td>
</tr>
<tr>
<td>Issued by:</td>
<td>Campus Infrastructure & Services</td>
</tr>
</tbody>
</table>
Contents

1 PURPOSE ... 1
2 SCOPE .. 1
3 GLOSSARY OF TERMS .. 2
4 AUTHORITIES & RESPONSIBILITIES .. 2
5 TECHNICAL REQUIREMENTS .. 2
 5.1 GENERAL REQUIREMENTS FOR LIFTS .. 2
 5.2 LIFT PERFORMANCE .. 2
 5.3 LIFT CONTRACTOR REQUIREMENTS ... 3
 5.4 LIFT EQUIPMENT AND SERVICEABILITY ... 4
 5.5 LIFT TYPES ... 4
 5.6 LIFT DESIGN .. 5
 5.7 LIFT CAR DETAILS .. 5
 5.7.1 LIFT CAR FINISHES .. 5
 5.7.2 HAZARDOUS GOODS LIFTS ... 6
 5.7.3 PREVENTION OF ELECTROMAGNETIC INTERFERENCE 6
 5.7.4 DDA REQUIREMENTS ... 6
 5.7.5 LIFT FIXTURES .. 7
 5.8 LIFT PHONE FINAL DISTRIBUTION POINT (LIFT FDP) 8
 5.9 BUILDING CONTROL MAINTENANCE SYSTEM MONITORING 8
 5.10 ENERGY EFFICIENCY ... 9
 5.11 ASSOCIATED REQUIREMENTS ... 9
 5.12 MAINTENANCE .. 10
 5.12.1 INDEPENDENT MAINTAINABILITY ... 10
 5.12.2 DEFECTS LIABILITY PERIOD MAINTENANCE 10
 6 SHOP DRAWINGS ... 11
 7 SAFETY IN DESIGN ... 11
 8 COMMISSIONING ... 11
 8.1.1 TESTING AND COMMISSIONING REQUIREMENTS 12
 8.1.2 TRAINING .. 12
 8.1.3 CERTIFICATION ... 12
<table>
<thead>
<tr>
<th>Section Number</th>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>DOCUMENTATION & RECORDS</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>OPERATIONS</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>AUTHORISATION OF VARIATIONS</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>QUALITY CONTROL</td>
<td>14</td>
</tr>
<tr>
<td>12.1</td>
<td>DESIGN STANDARD COMPLIANCE</td>
<td>14</td>
</tr>
<tr>
<td>12.2</td>
<td>DESIGN STANDARD CERTIFICATION</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>LIFT REGISTRATION PROCESS</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>REFERENCES</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>NOTES</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>DOCUMENT AMENDMENT HISTORY</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>ATTACHMENTS</td>
<td>16</td>
</tr>
</tbody>
</table>
1 PURPOSE

The CIS Vertical Transportation Standard sets out the University of Sydney’s minimum requirements for the design, construction and maintenance of lifts. It ensures new and refurbished lifts are fit-for-purpose, made from durable good-quality materials, cost effective to operate and maintain and energy efficient.

Applicable requirements documented in Workplace Health and Safety legislation, Disability Discrimination legislation, State Environmental Planning legislation, Commonwealth and State legislation, National Construction Codes (NCC), the Building Code of Australia (BCA) and Australian and New Zealand Standards (AS/NZS) are the minimum and mandatory compliance requirements.

Where any ambiguity exists between this standard and the aforementioned mandatory requirements then:

a. the highest performance requirements must apply;
b. applicable requirements must follow this order of precedence:
 I. Workplace Health and Safety legislation;
 II. Disability Discrimination legislation;
 III. State Environmental Planning and Assessment legislation;
 IV. All other Commonwealth and State legislation;
 V. NCC and BCA;
 VI. AS/NZS;
 VII. This standard and other University standards.

2 SCOPE

This standard describes minimum requirements for design, purchase, construction, and operation and maintenance of lifts and associated plant, equipment and infrastructure for buildings and spaces owned, operated, maintained and/or managed by the University of Sydney. It applies to:

a. new building construction;
b. refurbishment projects for University-owned spaces;
c. refurbishments of spaces that form part of a broader medium-term (less than five years) programme/plan of progressive upgrades to a University-owned building;
d. refurbishment projects for long-term University-leased spaces;
e. facilities maintenance services.

Where specific applications are not explicitly covered or ambiguity exists, the intent of the design standard must be satisfied. In such cases a return design brief must be provided for review and approval by the issuer of this standard or their appointed delegate who must have relevant technical competence in the subject matter.

The standard applies to architects, planners, project managers, consultants, contractors, sub-contractors, tenants, managing agents, University staff and others involved in the design, construction, installation, operation and maintenance of existing, new and proposed University buildings and facilities.

Lift plant, equipment and services provided or specified by designers, consultants, staff and contractors must conform to this standard.
3 GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>Goods lift</td>
<td>Lift primarily designed to carry goods and passengers</td>
</tr>
<tr>
<td>Hoist</td>
<td>Device primarily designed to carry goods only</td>
</tr>
<tr>
<td>MRL</td>
<td>A machine roomless lift where all drive and control equipment is located within the lift shaft negating the need for a machine room.</td>
</tr>
<tr>
<td>“non-standard” operating conditions</td>
<td>Weather (e.g. in external applications), water (e.g. external applications, kitchens, etc), direct sunlight (e.g. glass lift shafts), excessive heat loading (e.g. glass or metal clad lift shafts) or any other adverse condition</td>
</tr>
<tr>
<td>Part 14, 15, and 16 lifts</td>
<td>Lift primarily designed to carry passengers with limited mobility and no goods</td>
</tr>
<tr>
<td>Part 3 lift</td>
<td>Lift that uses a hydraulic medium to raise and lower the lift car</td>
</tr>
<tr>
<td>Passenger lift</td>
<td>Lift primarily designed to carry passenger</td>
</tr>
<tr>
<td>VVVF</td>
<td>Variable Voltage Variable Frequency</td>
</tr>
</tbody>
</table>

4 AUTHORITIES & RESPONSIBILITIES

This standard is issued by CIS. It is approved and signed-off by the Director, CIS. The CIS Engineering and Sustainability Unit is responsible for maintaining the standard and keeping it up-to-date. The Standard must be reviewed biennially.

5 TECHNICAL REQUIREMENTS

5.1 GENERAL REQUIREMENTS FOR LIFTS

Lifts must be safe, reliable, durable, efficient, cost-effective to maintain, and comply with all NSW and national relevant codes and AS/NZS. The University requires:

a. Lifts to be easily maintained by multiple local lift maintenance contractors other than the original manufacturer;
b. Lifts to be flexible and versatile in operation;
c. Lifts of the exact same componentry to have a proven 5 year local history of reliability.

5.2 LIFT PERFORMANCE

Passenger lifts to meet the requirements of handling capacity and waiting time, depending on the lift’s expected usage and the building type, as defined by the latest version of the Transportation Systems in Buildings Guide "D", Chartered Institute of Building Services Engineers (CIBSE). The passenger lift/s must achieve the fastest floor-to-floor performance possible without unduly affecting the quality of the lift car ride. The following performance parameters must not be exceeded:
a. Passenger lifts to meet the requirements of handling capacity and waiting time, depending on the lift’s expected usage and the building type, as defined by the latest version of the Transportation Systems in Buildings Guide “D”, Chartered Institute of Building Services Engineers (CIBSE);

b. Lifts to meet the requirements for use by persons with disabilities as defined AS/NZS and current building codes;

c. Provision for safe handling of hazardous goods;

d. Lifts installed in potentially explosive areas to be appropriately certified for that area;

e. Lifts directly exposed to “non-standard” operating conditions or any other adverse condition to be appropriately protected, designed, detailed and constructed;

f. Maximum acceleration rate of 1.0 m/s²;

g. Maximum deceleration rate of 1.0 m/s²;

h. Maximum jerk rate of 1.5 m/s³;

i. Maximum lateral and vertical movement 20 milli-g (10Hz filtered A95);

j. Rated lift car speed +/- 5% (up/down, full/no load);

k. Floor levelling accuracy +/- 6mm;

l. Noise levels in a lift car in motion at must not exceed 55dB(A) taken in the middle of the lift car at approximately 1 metre above the floor;

m. Door operation noise must not be more than 60 dB(A);

n. Lift car fan noise levels must not be more than 60 dB(A);

O. Lift Car Lighting must comply with AS/NZS 1735.12:1999 Clause 10 and have a minimum of 100 lux;

p. Lift Car Emergency Lighting must comply with AS/NZS 1735.2:2001 Clause 23.25.2.9 and have of a minimum of 20 lux on each control panel.

To reduce noise and vibration, lift equipment such as hoisting machines, controller, and if appropriate, switchgear, sheave, guide shoes, door mechanism and rope hitch must be mounted on appropriate isolating pads or mountings.

5.3 LIFT CONTRACTOR REQUIREMENTS

Only a competent, well-established, lift contractor with at least 10 years local lift installation experience may install or modify lifts. The lift contractor must have proven and demonstrated experience and capability in installing and maintaining:

- similar types and sizes of lifts operating in environments similar to the University;

- lifts with the same control and drive systems operating at the University.

The lift contractor must comply fully with all local rules, regulations, codes and practices as well as gain approval (e.g. design registration) and certification from the local lift inspectorate e.g. WorkCover prior to the lifts being offered for tender.

The tender return documents must include a copy of the Design Registration Certificate issued by a recognised WorkSafe / WorkCover Authority for each lift or type of lift proposed and a minimum of 4 local reference sites where the proposed lifts have been operating for at least 5 years must be provided for references and approval purposes. Only contractors that can provide a comprehensive reference list of lifts of the same type, control systems and drive systems installed over the past 5 years may be considered for lift installation projects at the University. Prospective lift contractors must supply information in Attachment 1.
5.4 Lift Equipment and Serviceability

Non-proprietary lift equipment with a 5 year local track record of reliable performance and a ready supply of locally available spare parts from a range of lift companies must be used. Availability of all parts must be guaranteed for a minimum of 20 years. Lift equipment includes all parts of the entire lift installation, in particular the controller and its various parts including software and hardware and any equipment required for servicing of the lift equipment.

The lift contractor must provide any proprietary equipment or components included in the proposal must be supplied complete with all and any proprietary or unique tools (i.e. manufactured only by the OEM supplier) required for the adjustment, removal or installation of such components.

Compliance with the above must include the provision of electronic test and software access tools required to allow the adjustment and resetting of any software parameters. These must be provided under the contract and must remain available as a spare part for purchase by any maintenance provider under instruction from the University of Sydney, for a minimum period of 20 years from practical completion. Such tools must be free of any electronic locks, software controls or other systems intended to lock or prevent full use of the tool after a predetermined time period.

5.5 Lift Types

All University lifts must be robust, durable and well-suited to intensive use. Only high efficiency AC gearless lifts with Variable Voltage Variable Frequency (VVVF) drives are permissible for new lift installations and full replacements. Geared machines with modern AC motors are acceptable for upgrades and modernisations after review and approval by the issuer of this standard.

The following lift types may be considered:

a. Conventional overhead lift motor room traction lifts;

Conventional overhead lift motor room traction lifts must be used for speeds exceeding 2.5m/s and must also be considered where a high rated load is required e.g. large goods lifts. MRL lifts may be considered for passenger lifts where speeds are 1 to 2.5m/s.

Lifts complying with AS/NZS 1735.14, AS/NZS1735.15 and AS/NZS 1735.16 must be key-restricted to limit access and use and clearly labelled "not for goods use".

The following lifts must not be used unless approved by the issuer of this standard:

a. Platform lifts meeting AS/NZS 1735.14 or 15 (for short rise very low use applications only)

b. Hydraulic lifts meeting AS/NZS 1735.14, AS/NZS 1735.15, AS/NZS 1735.16 and AS/NZS 1735.3

Lifts must be provided with regenerative drives where the rated speed and travel allows justifiable power generation and where no adverse power quality problems are likely. Any installation incorporating regenerative drives must also be provided with braking resistor banks to dissipate the regenerated power during periods of little or no grid demand.

The lift contractor must provide a 20 year whole-of-life cost analysis and present this to the issuer of this standard for review. The cost analysis must include an indicative cost breakdown of the whole-of-life costs showing plant, labour, power and material costs for the following items:
a. Capital Cost;
b. Comprehensive maintenance.

5.6 Lift Design

Designers must incorporate these general requirements into lift designs:

a. Lifts must be durable and easy to operate and maintain;
b. Passenger lifts must have wide doors for ease of ingress and egress;
c. Stretcher requirements of the BCA must be met where required;
d. Where a dedicated goods lift is not being provided, a clear internal height of at least 3m must be provided in the lift car;
e. Duty of the lifts must handle peak periods typically occurring at class/lecture changeover periods;
f. A dedicated goods lift designed to the appropriate class detailed in AS/NZS1735 must be considered for buildings needing specialist goods movement. Class C goods lifts must be used for heavy loading conditions;
g. Hazardous goods operating feature must be provided in at least 1 lift that operates in a laboratory, classroom or similar building;
h. All lifts must be provided with an automatic rescue device to allow the lift to travel to the nearest floor and open its doors so passengers can exit if electrical mains power is lost;
i. Access control provisions for possible future connection;
j. BMS monitoring provisions for possible future connection;
k. Access into the lift well pit/overrun must be provided;
l. All MRL lifts must have a trap door in the lift car roof in compliance with AS1735.2-2001 Clause 23.14 (a);
m. Two way lift shafting lighting switches must be provided at all landings, within the lift pit and on the car top.

5.7 Lift Car Details

Lift cars must comprise low maintenance and long term, durable finishes with scratch resistant, textured surfaces designed to minimise minor damage.

5.7.1 Lift Car Finishes

The finishes must comply with the following requirements:

a. Vandal-resistant and patterned stainless steel to side walls and lower half of rear wall;
b. Aluminium-framed silver mirror to upper half of rear wall;
c. Fixed “white” coloured laminated lift car ceiling;
d. A single 600 mm long finished stainless steel hand rail to side of lift car under auxiliary car operating panel securely fixed to sustain heavy loads. No other hand rail is required;
e. Quality LED down lights as per the CIS Lighting Standard;
f. Finished stainless steel car door, car front and skirting;
g. Durable, long-wearing, sustainable and readily replaceable floor covering which is GECA-Certified or Eco-specifier certified;
h. Car control panels - main and auxiliary must be stainless steel, satin finish and complying with AS/NZS 1735.12 and mounted in vertical alignment.
i. Car and landing buttons must be commercially available “third party supplier” items that comply with AS/NZS1735.12 and with White/Blue Illumination. Lift company standard buttons are not acceptable;
j. Car and landing indicators must be commercially available “third party supplier” items that comply with AS/NZS 1735.12. Generic lift company manufactured indicators are not acceptable;
k. The main entry level/street level landing button must be labelled by engraving “Street Level” next to the relevant floor level button in situations where the button corresponding to the main entry level/street level is not labelled “G”;
l. Goods lifts must have similar finishes with the addition of hardwood bump rails 300 mm x 20 mm thick with a durable environmentally friendly coating;
m. Lift car mirror must be omitted from goods lifts;
n. Special application goods lifts e.g. for chemicals, animals, etc must use specific fit-for-purpose durable and resistant finishes to resist exposure damage;
o. Lift key switches and locks, including the lift machine room or landing control panel must comply with the Sydney University Key Register;
p. No lift car light or fan switches to be provided in the lift car. The light and fan are to turn on and off automatically.

5.7.2 HAZARDOUS GOODS LIFTS

All and any lift that may carry hazardous goods, e.g. liquid nitrogen, must had a fully compliant Sydney University hazardous goods feature installed, ref Attachment 2.

The hazardous goods feature must be fully compliant so the every lift on campus with this feature can be provided with a user’s manual and clear instruction on its use. Even small issues such as the number of, signage on and operation of key switches must be exactly the same as the Sydney University requirements as detailed in Attachment 2.

5.7.3 PREVENTION OF ELECTROMAGNETIC INTERFERENCE

Equipment likely to be incompatible with emission levels, harmonics and power quality requirements in the building e.g. light fittings, apparatus, appliances, wiring, etc must have electromagnetic interference filtering.

5.7.4 DDA REQUIREMENTS

The minimum facilities to meet the access needs of people with disabilities include the following:

a. Minimum 600mm long handrail located adjacent to the car operating panel in compliance with the requirements of AS/NZS 1735.12 and this standard;
b. Floor dimensions not less than 1100mm wide x 1400mm deep from travels less than 12m and 1400mm wide x 1600mm deep for travels greater than 12m;
c. Lift entrance protection system complying with AS/NZS 1735.12;
d. Minimum clear door opening of 900mm wide in accordance with AS/NZS1735.12;
e. Lighting in accordance with AS/NZS1735.12;
f. Emergency lift car lighting must comply with AS 1735.2 – 2001 Clause 23.25.2.9. EN81 compliant lift car emergency lighting will not be accepted. In particular there must be a minimum of 20 lux on each control panel.
g. A hands free auto-dialing phone must be installed with the main car operating panel. The phone must be an “emFone” or equivalent. Proprietary systems will not be accepted. It must be hard wired in the lift machine room/area (not plug-in) to the 240V supply;
h. Car operating panels designed to meet AS/NZS1735.12 requirements;
i. Levelling accuracy of ± 6mm;
j. Visible, tactile and audible information on landings and within the car;
k. 3D full height lift door scanners.

5.7.5 LIFT FIXTURES

The main control panel must have the lift car number, load and an additional notice of "CIS Security Emergency Phone Number 02 9351 3333" inscribed with black infill at a height of approximately 1800 mm above floor level. There must be no traditional "Part IV" notice in the lift car.

The number of key switches in a lift car must be kept to a minimum. There must be no key switch in the lift car for lights and fan operation. These features must automatically turn off and on.

Only a minimum length 600 mm long hand rail for disabled use must be used. It must be tubular stainless steel, securely attached to the lift car wall and fully complying with AS/NZS 1735.12 as shown in the section drawing below.
The engraved emergency phone instruction shown below must be provided on the main car operating panel beside or below the button. It must be in white with a minimum font size equivalent to Arial 20 point.

![Press button for 5 seconds and await reply]

Protective curtains must be supplied for one lift (and interchangeable for the other lifts if more than one lift is installed). They must be hung on brackets and hooks supplied and installed by the lift contractor in the lift machine room or other space nominated by CIS.

5.8 LIFT PHONE FINAL DISTRIBUTION POINT (LIFT FDP)

For effective maintenance of the lift phone line, the University requires a demarcation point between the lift technician and the telephone technician, installed in the top passenger lift lobby where both trades can readily access it. The design philosophy and details for this distributor, called the Lift FDP, are given in the University of Sydney Communications Cabling Standard.

For new lifts, the designer of the lift shaft must ensure requirements for the Lift FDP are reflected in all relevant documentation packages. Architectural approval must be obtained for the appearance of the enclosure, any penetrations for conduits must be documented by the structural engineer, and the electrical designer must include the voice grade cable from the main distribution frame (MDF) to the Lift FDP on the communications cabling schematic. It may be necessary to form a recess in the concrete of the lift shaft to accommodate the enclosure elegantly.

Where existing lifts are being refurbished, a Lift FDP must be installed if not already present, and the voice grade cable to the MDF must be re-run. Old arrangements such as an existing FDP in the lift motor room, or a connection from a general independent distribution frame (IDF) or FDP, do not comply with the current requirement for a dedicated Lift FDP. To fit a Lift FDP to an existing lift shaft, a surface-mounted enclosure with surface-mounted conduits is usually necessary.

5.9 BUILDING CONTROL MAINTENANCE SYSTEM MONITORING

The lifts must provide connection to the Building Control Management System (BCMS) monitor the following functions:

a. Lift fail to start;
b. Lift on Fire Service;
c. Alarm button pressed;
d. Stop button pressed;
e. Lift on Independent Service;
f. Hazardous Good Service.

Inputs from the lifts to indicate status and fault information to the BCMS must be by voltage free relay contacts rated at 240V AC 1A resistive load.
The lift contractor must supply and install all cable and conduit between terminal strips in an interface box adjacent to the lift machine room, or in the top floor lift lobby, and the lift controller for the transfer of signals between the systems.

5.10 ENERGY EFFICIENCY

Best practice energy efficiency features must be incorporated into lifts, including but not limited to:

a. Use of quality LED luminaires according to the CIS lighting Standard;
b. The lift controller must incorporate a standby power feature allowing shut of power to all car lights, car indicators and lift control panels etc. to reduce standby energy consumption. The period of inactivity before standby mode is activated must be initially set to 2 minutes and be easily adjustable on site between 2 and 15 minutes. The standby power feature must not be activated when the lift is in a special operation mode (exclusive, fire, etc) or if the lift is in a failed start or fault condition;
c. Variable frequency AC permanent magnet motor drives;
d. Drives must have a regenerative capability where the rated speed and travel provide justifiable power generation. This is preferable for lifts with a rated speed of up to 2.5 mps and mandatory for lift of higher speed.

5.11 ASSOCIATED REQUIREMENTS

All lifts must include these requirements:

a. If fitted with roller guides, spring tension rollers guides with a diameter of at least 150 mm;
b. If fitted with slipper guides, have effective devices to safely contain any oil from the guide rails and prevent oil draining onto the lift pit floor, guides and brackets, under the lift car or on to the lift car;
c. Lift car access control reader, including all wiring between the lift car and a point near the lift machine room or lift controller;
d. A lift car CCTV camera, including all wiring (including 240 Volt supply) between the lift car and a point near the lift machine room or lift controller. The camera must comply with relevant requirements in the CIS Security Services Standard;
e. 300 mm x 300 mm x 300 mm dry sump with a chequer plate steel cover. The sump must not interfere with the lift equipment or personnel. The pit floor must be graded to the sump;
f. Mains supply cables must not have any interposing switches or circuit breakers installed between the lift main switch in the building’s main switch board and the lift circuit breaker in the lift machine room or control cabinet;
g. All cabling (including low voltage and shaft lighting) in the lift machine room, lift pit, top of car, etc. must be mechanically protected in rigid conduit (flexible conduit must not be used except on movable or vibration affected equipment) or ducting or some other protection as approved by the issuer of this Standard;
h. Stick-on labels must not be used in the lift car or landings. All lift car and landing signage must be engraved.
5.12 MAINTENANCE

Requirements for independent and supported maintenance are provided below.

5.12.1 INDEPENDENT MAINTAINABILITY

All new lift equipment must be repaired, serviced and maintained, in accordance with the minimum requirements of:

a. Designers;
b. Suppliers;
c. Manufacturers;
d. Installers;
e. Operation and Maintenance Manuals.

The lift contractor must provide any proprietary equipment or components included in the proposal and must be supplied complete with all and any proprietary or unique tools (i.e. manufactured only by the OEM supplier) required for the adjustment, removal or installation of such components. This includes but is not limited to the following.

a. external devices;
b. spare parts;
c. tools;
d. instruments;
e. codes;
f. passwords;
g. keys;
h. locks;
i. cards;
j. reactivation sequences;
k. software;
l. information and intellectual property.

Compliance with the above must include the provision of electronic test and software access tools required to allow the adjustment and resetting of any software parameters. These must be provided under the contract and must remain available as a spare part for purchase by any maintenance provider under instruction from the University of Sydney, for a minimum period of 20 years from practical completion. Such tools must be free of any electronic locks, software controls or other systems intended to lock or prevent full use of the tool after a predetermined time period.

Under no circumstance should the University or its maintenance contractor be required to pay and/or enter into contractual arrangements with the designer, supplier, manufacturer or installer of the lift equipment in order to, perform repair, service or maintain the lift equipment.

5.12.2 DEFECTS LIABILITY PERIOD MAINTENANCE

A regular comprehensive maintenance and breakdown service must be provided during the Defects Liabilities Period (DLP). DLP maintenance must conform to the conditions and maintenance performance parameters set by the University of Sydney’s current campus wide maintenance agreement.
6 SHOP DRAWINGS

The Contractor must submit the following shop drawings, document and samples for the approval of CIS Electrical Services Engineer prior to commencement of installation:

 a. Proposed vertical transportation drawings (1:100 scale) and electrical schematic diagrams;
 b. Short-circuit and Overcurrent protection calculations by POWERCAD with digital printouts and selection of switchgears;
 c. Technical catalogue and documents for electrical installation, power and equipment;
 d. Compliance certifications from accredited qualified Vertical Transportation Consulting Engineer;
 e. Sample of all proposed electrical installation, power and equipment.

7 SAFETY IN DESIGN

The contractor must consider risk during the design. A design safety report must be submitted to the relevant CIS Project Manager for every design project. Contractors must confirm, so far as it is reasonable practicable (SFAIRP), that the structure is without risks to health and safety.

Design risks must be considered for the asset lifecycle covering construction, operational and maintenance, refurbishments and decommissioning.

The design safety report must include the following:

 a. Description of design element;
 b. Description of potential risks and hazards associated with the design element;
 c. A low/medium/high risk assessment considering likelihood and consequence;
 d. Proposed measures to eliminate risks where practicable;
 e. Control measures to mitigate and manage design risks;
 f. Nominating responsibilities for managing the design risks.

This may be provided as a design risk register where appropriate and must include results of any calculations, testing and analysis etc.

8 COMMISSIONING

An independent commissioning agent not involved with the design or construction of the project must test, verify and certify that the lifts meet or exceed the required performance criteria of this standard. This will apply to transformational projects.

Detailed testing and commissioning requirements must be specified for each project by the consultant/designer.

Detailed testing and commissioning records must be provided for critical lift systems and equipment as appropriate. All such records must be witnessed and verified by the project consultant/designer.

Minimum lift commissioning requirements are provided in following sections.
8.1.1 TESTING AND COMMISSIONING REQUIREMENTS

Detailed testing and commissioning requirements must be specified for each lift by the consultant/designer and include all statutory requirements. Testing and commissioning records must be provided for each lift and each component as appropriate. All such records must be witnessed and verified by the project consultant/designer.

8.1.2 TRAINING

Training must be provided to the issuer of this standard and nominated user’s after completion of the testing and commissioning. It must include the operation of the lift and its controls, keys and locks, cleaning of all finishes, operation in an emergency, hanging/cleaning/storage of protective curtains, etc.

8.1.3 CERTIFICATION

A Safe-to-Operate Certificate must be provided prior to any lift going into service.

9 DOCUMENTATION & RECORDS

On completion of the installation a complete set of as-installed documentation is to be provided to the issuer of this standard.

The following design documents must be provided:

a. Lift layouts;
b. Lift car interiors;
c. Lift landing entrances;
d. Lift car and landing faceplate details;
e. Lift labels, notices and signage;
f. Project specifications check sheets for each major component detailing each lift plant and equipment item that needs to be checked, tested and verified during the installation process;
g. CIS Project Design Certification Form, CIS-PROJ-F001;
h. Return Brief defining the systems proposed and any deviations from this specification;
i. Applications to Supply authorities, and their responses;
j. Designer’s statutory compliance certificates;
k. Complete the Design & Construct checklist using the CIS Design & Construct Vertical Transportation Checklist Form (CIS-ENG-F009).

The following documents must be provided at practical completion:

a. Completed project specification check sheets for lift plant and equipment verified by the project consultant/designer, including the rectification of identified defects including:
 i. Ride quality results
 ii. Dorr open and close times
 iii. Door dwell times
 iv. Floor levelling accuracy
 v. Acceleration and deceleration rates
 vi. Jerk rate
 vii. Contract speed
viii. Flight times (door open to door open) for one, two and four floor runs
ix. Power consumption
b. Operation and Maintenance manuals;
c. Commissioning records;
d. Product Manufacturer specific information;
e. System schematics;
f. Complete As-built workshop drawings;
g. Electrical and wiring diagrams;
h. Lift functionality and operation description;
i. Plant registration documentation;
j. Hazard and risk assessment provided by lift contactor;
k. Work Cover registration;
l. Installers Statutory certificates;
m. Safe-to-Operate certification.

10 OPERATIONS

Consultants/designers must include detailed requirements for operation and maintenance manuals in the project specification. These include but are not limited to the lift system description, operation procedures, testing and commissioning records, maintenance instructions, product support information and recovery protocols for any computer related systems. Operation and maintenance manuals are to include instructions on how to use or apply tools, instruments, passwords, keys, cards, spare parts and intellectual property, etc. Contractors must provide these to the satisfaction of the consultant/designer. Providing a collection of manufacturers’ brochures and catalogues is not acceptable.

Contractors must submit loose leaf log book designed for recording operational and maintenance activities including materials used, test results, comments for future maintenance actions and notes covering asset condition. Completed log book pages recording the operational and maintenance activities undertaken for Practical completion and during the defects liability period must also be provided.

Facilities Maintenance must establish, document and implement procedures for lift plant and equipment operation and maintenance to ensure lifts are fit-for-purpose and provide secure, efficient, safe and reliable vertical transport.

11 AUTHORIZATION OF VARIATIONS

Project managers, consultants, contractors, commissioning agents and facilities maintenance personnel must ensure compliance with these requirements is achieved.

Variations to this standard must only be considered where:

a. the University Standard's requirement cannot physically or technically be achieved;
b. the alternative solution delivers demonstrated and proven superior performance for the same capital and life cycle cost or better.

Consultants and contractors must identify and justify requirements of the standard that do not apply to the project or which need to be varied and these which must be approved by the issuer of this standard. Formal requests for all variations to this Standard must be submitted using the CIS Request
Dispensation from Standard Form (CIS-ENG-F001). The issuer of this standard or their delegated authority must review and consider requirements of stakeholders from clients, projects and facilities management before deciding whether to approve variations. Their formal sign-off is required for acceptance of any non-compliances and departures from this standard’s requirements.

12 QUALITY CONTROL

12.1 DESIGN STANDARD COMPLIANCE

Compliance with requirements of this standard must be checked throughout the design, construction and commissioning phases of projects by CIS’ services consultant. Any issues or deviations from this standard must be reviewed and approved in writing by the author of this standard.

Competent CIS consultants and representatives must check compliance with this standard during design reviews and formal site inspections. Any non-conformances with requirements of this standard must be documented and provided to the CIS Project Manager for issue to contractors and their consultants.

Project Managers must maintain a formal register of non-conformances and manage close out of outstanding non-conformances. Contractors and their consultants issued with non-conformances must take appropriate corrective actions. The CIS Project Manager must ensure:

a. proposed corrective actions are implemented
b. close out of non-conformances in relation to this standard is formally approved and signed off by the author of the standard or their delegate

12.2 DESIGN STANDARD CERTIFICATION

Contractors and their consultants must certify compliance to the design standard by completing and submitting the CIS Project Design Certification Form (CIS-PROJ-F001) to the CIS Project Manager at each of the following project phases:

c. Design and Documentation;
d. Tender;
e. Construction.

Notwithstanding CIS’ internal quality control processes, contractors and their consultants must implement their own robust quality assurance and control procedures to ensure compliance with requirements of this standard.

13 LIFT REGISTRATION PROCESS

At the completion of any lift project and prior to handover of the lift to CIS the Lift Contractor must provide the CIS Project Manager with a partially completed WorkCover Plant Registration form including the technical information of the lift. The following process must be competed:

a. CIS Project Manager will complete the WorkCover Plant Registration form including Details of the Applicant (CIS Director);
b. CIS project manager will complete the payment of the registration for new and refurbished lifts;

c. CIS Project Manager must log a service request to the CIS Lock Smith prior to PC to change over the project keys and lift bi-lock;

d. At the completion of the lift installation the Lift Contractor must provide a ‘Safe to Operate’ certificate to the CIS Project Manager;

e. CIS Project Manager must submit the completed WorkCover Plant Registration form to WorkCover, together with the ‘Safe to Operate’ certificate and must pay the registration fee;

f. WorkCover will issue a Certificate of Registration (6-8 weeks) to the Applicant. The Applicant will forward the Certificate of Registration to the Divisional Manager for Facilities Management and Services (FMS);

g. The Divisional Manager for FMS or his delegate are responsible for the lift registrations;

h. FMS must use a single birthday for all lift registrations (12 November) and register lifts annually. Some lifts may be registered earlier in the year but must be re-registered again on the 12 November;

i. FMS must pay all appropriate ongoing fees for lift registrations once the first year has been paid by the relevant CIS Project Manager.

Once the registration is received, the CIS Project Manager will submit the registration to FMS as part of the PC handover.

14 REFERENCES

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS1735</td>
<td>Lifts, Escalators and Moving Walks (including full compliance with AS1735.12)</td>
</tr>
<tr>
<td>BCA</td>
<td>Building Code of Australia, specifically Section J energy efficiency</td>
</tr>
<tr>
<td>Chartered Institute of Building Services Engineers (CIBSE)</td>
<td>Buildings Guide “D”</td>
</tr>
<tr>
<td>University Communications Cabling Standard</td>
<td>Telephone Wiring Supplement of the standard</td>
</tr>
<tr>
<td>CIS Security Services Standard</td>
<td></td>
</tr>
<tr>
<td>CIS Essential Fire Safety Measures Standards</td>
<td></td>
</tr>
<tr>
<td>CIS Documentation Standards</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workcover requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Health Authority Requirements</td>
</tr>
<tr>
<td>State Fire Brigade requirements</td>
</tr>
<tr>
<td>All Local Council regulations</td>
</tr>
<tr>
<td>Electricity Safety (Installations) Regulation</td>
</tr>
</tbody>
</table>

15 NOTES

N/A
16 DOCUMENT AMENDMENT HISTORY

<table>
<thead>
<tr>
<th>Revision</th>
<th>Amendment</th>
<th>Commencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>First Issue</td>
<td>16 August 2013</td>
</tr>
<tr>
<td>002</td>
<td>Second Issue - Amendments</td>
<td>18 September 2015</td>
</tr>
</tbody>
</table>

- Clause 5.2 now includes some items moved from clause 5.1;
- Clause 5.3 now includes a reference to tender return documents required to be submitted to CIS;
- Clause 5.4 includes details of the proprietary equipment or components required for submissions and electronic test and software compliance;
- Clause 5.5 includes details on regenerative drives;
- Clause 5.6 includes hazardous goods, BMS monitoring and trap door references;
- Clause 5.7.1 includes reference to car and landing indicators, key switches and locks and automatic light and fan within the lift car;
- Clause 5.7.4 includes Emergency lift car lighting compliance, hands free auto-dialling phone and full height lift door scanners;
- Clause 5.10 includes a standby power feature;
- Supported Maintainability clause deleted from Rev 001;
- Shop drawing clause 6 added,
- Safety in Design clause 7 added;
- Lift Registration process clause 13 added;

New Forms added to the website;

- CIS Design & Construct Electrical Services Checklist Form (CIS-ENG-F009).

17 ATTACHMENTS

ATTACHMENT 1
LIFT CONTRACTOR REFERENCES

ATTACHMENT 2
HAZARDOUS GOODS SERVICE

ATTACHMENT 3
DESIGN AND CONSTRUCT CHECKLIST FOR CONSULTANTS (CIS-ENG-009)
ATTACHMENT 1 LIFT CONTRACTOR REFERENCES

<table>
<thead>
<tr>
<th>Building Address</th>
<th>Year Installed</th>
<th>Manufacturer</th>
<th>Client Name</th>
<th>Drive system</th>
<th>Control system</th>
<th>Maintenance Contractor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ATTACHMENT 2 HAZARDOUS GOODS SERVICE

All landing button panels (LOP) for the goods lift will be provided with a three position key operated switch labelled “HAZARDOUS GOODS OPERATION” with the positions labelled as follows:

![Diagram of switch positions]

The lock will be spring return to the “OFF” position from both other positions.

In addition to normal switches, there will be a two position switch in the car operating panel (COP) labelled “HAZARDOUS GOODS OPERATION”. The two positions will be labelled “OFF” and “ON” and the key can be withdrawn in either position.

The key switches in both the COP and the LOP will be of the Bi-Lock type.

- When the hazardous goods service (HGS) key switch is in the “OFF” position the designated lift will operate normally and where applicable as part of a lift group.
- The attendant turns the key switch in the landing operating panel (LOP) clockwise from the “OFF” to the “CALL LIFT” position.
- An in car announcement is made.
 1. “Please exit at the next stop, this lift is required for special service”. Note, this audio announcement will repeat approximately every 10 seconds
 2. An illuminated flashing sign in the lift COP will light “Special service operation”
- Hall call response is inhibited
- The lift will travel to answer the next registered lift car call in its direction of travel, the doors will open, all other lift car calls will be cancelled and new lift car calls will not be accepted. All passengers are expected to leave the lift car. The doors will close and the lift travel directly to answer the HSG key switch. If the lift is idle it will immediately travel directly in answer to the HSG key switch.
- The lift will travel (non Stop) to the “calling” floor (at which the HGS switch is selected.)
- Open its doors.
- The lift will remain at that floor with the doors open.
- The attendant will remove the key switch from the landing fixture in the “OFF” position.
- The lift will remain “captive” in the HGS mode of operation for 60 seconds. If the process does not proceed to the next stage, the lift will return to normal service.
- The HGS car operating panel (COP) key switch is turned to the “ON” position.
- The goods are loaded.
- The key is inserted into the hall switch and turned counter clockwise to the “CLOSE DOORS” position. The doors close and the key returns to the central “OFF” position and withdrawn.
- The attendant travels via other lift or stairs, to the “destination” floor.
- The attendant then turns the HGS key switch in the LOP to the “CALL LIFT” position at the “destination” floor.
- The lift travels to the “destination” floor.
- The doors open.
- The goods are removed.
- The key is removed from the “destination” landing HGS key switch.
- The COP HGS key switch is returned to the “OFF” position.
- The key is removed.
- The lift doorway scanners are fully operational before the doors close.

CIS Vertical Transportation Standard - Final
CIS-PLA-STD-Vertical Transportation 002
Date of Issue: 18 September 2015
n. The lift returns to normal service.

The **HGS** mode of operation will not initiate if:
- a. The Hall or Car Fire Service is operated. (**HFS & CFS**)
- b. The lift is in Inspection mode. (**INS**)
- c. The lift is on Independent Service. (**INDS**)

Selection of the **Hall Fire Service** mode while the lift is on **HGS** will return the lift to a designated floor for unloading.

If the **HFS** mode is selected while the lift is on **HGS**, there will be an announcement in the lift car, advising the attendant (passenger) to abandon the use of the lift and exit the lift before the doors close and the lift returns to the designated floor.
ATTACHMENT 3 DESIGN AND CONSTRUCT CHECKLIST FOR CONSULTANTS (CIS-ENG-F009)

Design and Construct List

The following is a list of vertical transportation documents which CIS require the building service consultant and contractors to provide as part of their package.

This is a guide for the consultant/contractor to ensure they meet minimum design components in all projects. These documents will be reviewed by the relevant CIS Services Engineer or their delegate during the design phases. This list does not alleviate the building services consultant’s responsibility to design to the online CIS Design standards.

<table>
<thead>
<tr>
<th>Item Required</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
<th>Phase 5</th>
<th>Phase 6</th>
<th>Compliance Achieved</th>
<th>Building Services Consultant Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan Layouts Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes / No or N/A</td>
<td></td>
</tr>
<tr>
<td>Lift System Performance Calculations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes / No or N/A</td>
<td></td>
</tr>
<tr>
<td>Specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes / No or N/A</td>
<td></td>
</tr>
<tr>
<td>Supply of statutory design certifications and certification of compliance to the University standards and other relevant standards.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes / No or N/A</td>
<td></td>
</tr>
<tr>
<td>Safety in Design Documentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes / No or N/A</td>
<td></td>
</tr>
<tr>
<td>Asset List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes / No or N/A</td>
<td></td>
</tr>
<tr>
<td>Inspection, testing and maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes / No or N/A</td>
<td></td>
</tr>
</tbody>
</table>