Capacity Expansion Algorithm in Genersys – when to expect the first PCC plants in the NEM

George Grozev, Melissa James, John Page

CSIRO Ecosystem Sciences

Sydney Symposium on Carbon Capture

29th August 2011
Presentation outline

• Introduction to Genersys
• Capacity expansion algorithm
• Monte Carlo simulations
• Wind generation case study for South Australia
• Questions
Magnetic termites and self-organisation
Acknowledgments

CSIRO

Dr. John Wright - Energy Transformed Flagship
Mr. Paul Graham - Energy Transformed Flagship
Dr. David Batten - Marine and Atmospheric Research
Dr. Marcus Thatcher - Marine and Atmospheric Research
Mr. Per da Silva - Sustainable Ecosystems
Dr. Kwok Yum - Ecosystem Sciences
Dr. Chi-hsiang Wang - Ecosystem Sciences
Mr. Stuart Woodman - Mathematics, Informatics & Statistics

Mr. Geoff Lewis

Core Energy Group

Mr. Paul Taliangis
Mr. Tennyson Wickham

AGL Energy

Mr. Chrys Chandraraj
Mr. Brian Chung
Mr. Stephen Dwayhe
Ms. Tracy Lavender
Regions in the National Electricity Market

- QLD
- NSW
- VIC
- QLD-NSW
- DIRECTLINK
- VIC-NSW
- MURRAYLINK
- SA-VIC
- BASSLINK
- TAS
- SA
Introduction to Genersys

Main features:
Genersys – National Electricity & Gas Market simulator:
- Integrates gas and electricity
- Employs agent-based simulation
- Generation expansion algorithm
- Monte-Carlo framework
- Links to climate change scenarios.

Modelling challenges:
Agent-based simulation for modelling of companies’ decision process
Modelling of climate dependence of demand and supply
Modelling of investment in new generation and transmission.

Key collaborators:
Core Energy Group and
AGL Energy

Other similar tools:
EMCAS (ANL, USA), Prophet (IES), Plexos™ (Energy Exemplar)
• It enables users to run feasible scenarios of the outlook for the Australian gas and electricity sectors over a short-, mid- and long-term time horizons.

• Proper sophistication of simulation models and components linking technical, commercial and environmental aspects;

• Object-oriented and modular software architecture based on Java;

• Agent-based framework to model decision making and adaptation of companies;

• Rich user interface – easy to use, Scalable Vector Graphics (SVG) mapping, full Scenario Editor and a comprehensive Report Viewer;

• Climate-based approach linking electricity & gas demand as well as hydro and wind performance to weather parameters and climate projections;

• Functionality to account for Policy changes, MRETs and Emissions Trading.

• Flexible data import from third party (AEMO) market systems (actual vs. projection tracking) and export to Excel;
A simulation platform for electricity and gas

- Scenario Editor
- SVG Map
- Report Viewer
- Scenario XML File Format
- Simulation Engine
- History Store
- Simulation Objects
 - Electricity
 - Gas
 - Renewables
 - Policy
Gas model

Has a gas supply agreement with one or more

Gas Pipeline
- Has a reservation with one or more
- Has one or more

Gas Wholesaler
- Has a gas delivery contract with a

Gas Delivery Point
- Connects to

Gas Node
- Connects to

Gas Retailer
- Create demand at

Gas Field
- Connects to
Inter-regional coupling between climate and electricity demand

Daily climate
- NSW
- VIC
- QLD
- SA
- TAS

ELECTRICITY DEMAND MODEL
- NSW
- VIC
- QLD
- SA
- TAS

24 hr demand (30 min steps)

GLOBAL CLIMATE MODEL (DOWN-SCALLED)

Credit: Dr. Marcus Thatcher (CMAR)
Bidding models

Offer price vector

Offer quantities matrix

- Global bid selector
- Lookup bid generator
- Simple big generator
- Select bid generator
- Cost-based bidding – SRMC and LRMC
- File bid generator
- Dynamic bidding
- Energy targeting bidding
- Historical bidding
Half-hour solar output from a simulated solar generator
• Integrated algorithm
• Regional based
• Scheduled and non-scheduled (wind and solar)
• Unserved energy, price premium
• Peak, intermediate, baseload generation technologies
• Modular expansion
Price duration curve premium

- Baseload cap

- Intermediate load capacity factor

- Peaking load capacity factor
Flow chart of the capacity expansion algorithm

1. Start
2. Select region
3. Investment check required?
 - yes
 - Select technology
4. Does potential revenue exceed costs?
 - yes
 - Add technology to list of investment possibilities
5. More technologies for region?
 - yes
 - Select region
 - no
6. Any investment possibilities for region?
 - yes
 - Create new generating unit using most profitable technology
 - no
7. Any more regions?
 - yes
 - Select region
 - no
8. Finish
Capital cost of generation technologies - continued
Carbon price scenarios

![Graph showing carbon price scenarios](image)
Capacity expansion in Queensland – Scenario 1

Capacity expansion in Queensland - no carbon price

- WIND
- OCGT
- GEOTHERMAL_HSA_NSA
- GEOTHERMAL_EGS_NSA
- CCGT_CCS
- CCGT
Capacity expansion in Queensland – Scenario 2

Capacity expansion in Queensland - Core Scenario

- **WIND**
- **OCGT**
- **GEOTHERMAL_HSA_NSA**
- **GEOTHERMAL_EGS_NSA**
- **CCGT_CCS**
- **CCGT**
Capacity expansion in Queensland – Scenario 3

Capacity Expansion in Queensland – High Carbon Price

Capacity [MW]

Year: 2016 to 2040

Legend:
- WIND
- OCGT
- GEOTHERMAL_HSA_NSA
- GEOTHERMAL_EGS_NSA
- CCGT_CCS
- CCGT
Capacity expansion in NSW – Scenario 1

Capacity expansion in NSW - no carbon price

- WIND
- OCGT
- GEOTHERMAL_HSA_NSA
- GEOTHERMAL_EGS_NSA
- CCGT_CCS
- CCGT

Capacity [MW]

Year
Capacity expansion in NSW – Scenario 2

Capacity expansion in NSW - Core Scenario

- **WIND**
- **OCGT**
- **GEOThermal_HSA_NSA**
- **GEOThermal_EGS_NSA**
- **CCGT_CCS**
- **CCGT**
Capacity expansion in NSW – Scenario 3

Capacity expansion in NSW - high carbon price

Year

Capacity [MW]

- WIND
- OCGT
- GEOTHERMAL_HSA_NSA
- GEOTHERMAL_EGS_NSA
- CCGT_CCS
- CCGT
Capacity expansion in Victoria – Scenario 1

Capacity expansion in Victoria - no carbon price

Capacity [MW]

- WIND
- OCGT
- GEOTHERMAL_HSA_NSA
- GEOTHERMAL_EGS_NSA
- CCGT_CCS
- CCGT
Capacity expansion in Victoria – Scenario 3

Capacity expansion in Victoria - High Carbon Price

- WIND
- OCGT
- GEOTHERMAL_HSA_NSA
- GEOTHERMAL_EGS_NSA
- CCGT_CCS
- CCGT

Year: 2013 to 2040
Capacity [MW]: 0 to 1600
Capacity expansion in South Australia – Scenario 1

Capacity expansion in South Australia - no carbon price

- WIND
- OCGT
- GEOTHERMAL_HSA_NSA
- GEOTHERMAL_EGS_NSA
- CCGT_CCS
- CCGT
Capacity expansion in Tasmania – Scenario 1

Capacity expansion in Tasmania - no carbon price

- WIND
- OCGT
- GEOTHERMAL_HSA_NSA
- GEOTHERMAL_EGS_NSA
- CCGT_CCS
- CCGT
Monte Carlo simulations on a computer cluster

IBM eServer Cluster 1350 system, having 123 nodes with Intel Xeon processors HS20 and 2GB / 4GB or 8GB of memory

1. Prepare a scenario
2. Send the Scenario XML file + Data
6. Get Simulated Results

4. Create and execute parallel jobs
5. Aggregate simulated results from the parallel jobs

7. View and analyse simulation results

20 Simulations x 5 years -> 112 GB
804 final reports - 5 GB (4020 attributes)
~1.5 h for a single run
Analysing simulation results using Report Viewer
Example of simulation results

Generation Technology - Hydro dispatch
Example of simulation results

Interconnector Flow – QNI (Queensland to NSW)
Case study for wind generation in South Australia (SA)

- Existing wind generation simulated for one month – March 2010
- Proposed wind farms – ESAA “Electricity Gas 2009”
- Existing + proposed wind generation simulated for one month – March 2020
- The total wind generation is compared with the system demand
- All wind farms as non-scheduled generators
- Partial synchronisation of the output of wind farms in a region.
Wind farms in South Australia (SA)

Lake Bonney Stage 2 Wind Farm
Existing wind generation capacity in SA - 2010

<table>
<thead>
<tr>
<th>Company</th>
<th>Generator Plant</th>
<th>ID</th>
<th>Maximum Capacity [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGL</td>
<td>Wattle Point Wind Farm</td>
<td>WPWF</td>
<td>90.75</td>
</tr>
<tr>
<td>AGL</td>
<td>Hallet Wind Farm</td>
<td>HALLWF1</td>
<td>94.50</td>
</tr>
<tr>
<td>AGL</td>
<td>Hallet Wind Farm 2</td>
<td>HALLWF2</td>
<td>71.00</td>
</tr>
<tr>
<td>Pacific Hydro Clements Gap Pty Ltd</td>
<td>Clements Gap Wind Farm</td>
<td>CLEMGPWF</td>
<td>57.00</td>
</tr>
<tr>
<td>Babcock and Brown Wind Partners</td>
<td>Lake Bonney Wind Farm</td>
<td>LKBONNY1</td>
<td>80.50</td>
</tr>
<tr>
<td>Babcock and Brown Wind Partners</td>
<td>Lake Bonney Stage 2</td>
<td>LKBONNY2</td>
<td>160.00</td>
</tr>
<tr>
<td>Hydro Tasmania</td>
<td>Cathedral Rocks Wind Farm</td>
<td>CATHROCK</td>
<td>66.00</td>
</tr>
<tr>
<td>Tarong Energy</td>
<td>Mount Millar Wind Farm</td>
<td>MTMILLAR</td>
<td>70.00</td>
</tr>
<tr>
<td>Tarong Energy</td>
<td>Starfish Hill Wind Farm</td>
<td>STARFISH</td>
<td>34.50</td>
</tr>
<tr>
<td>Canunda Power Pty Ltd</td>
<td>Canunda Wind Farm</td>
<td>CANUNDA</td>
<td>46.00</td>
</tr>
<tr>
<td>Snowtown Wind Farm</td>
<td>Snowtown Wind Farm</td>
<td>SNOWTWN1</td>
<td>99.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>EXISTING WIND CAPACITY</td>
<td></td>
<td>869.25</td>
</tr>
</tbody>
</table>
Proposed wind farms in SA

<table>
<thead>
<tr>
<th>No.</th>
<th>Power Station Name</th>
<th>Company</th>
<th>Capacity (MW)</th>
<th>Plant type</th>
<th>Location</th>
<th>Status</th>
<th>Proposed Commissioning Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allendale/Laslett</td>
<td>Acciona Energy</td>
<td>150</td>
<td>Wind turbine</td>
<td>Allendale/Laslett</td>
<td>Proposed</td>
<td>1/01/2015</td>
</tr>
<tr>
<td>2</td>
<td>Barn Hill (Red Hill)</td>
<td>Transfield Services</td>
<td>130.2</td>
<td>Wind turbine</td>
<td>Barn Hill</td>
<td>Proposed</td>
<td>2011</td>
</tr>
<tr>
<td>3</td>
<td>Barunga</td>
<td>Wind Prospect</td>
<td>170</td>
<td>Wind turbine</td>
<td>Barunga Ranges, Port Pirie</td>
<td>Proposed</td>
<td>1/07/2014</td>
</tr>
<tr>
<td>4</td>
<td>Carmody's Hill</td>
<td>Pacific Hydro</td>
<td>175</td>
<td>Wind turbine</td>
<td>East of Georgetown</td>
<td>Proposed</td>
<td>1/07/2015</td>
</tr>
<tr>
<td>5</td>
<td>Elliston Stage I</td>
<td>Ausker Energies</td>
<td>55</td>
<td>Wind turbine</td>
<td>Tungketta Hill</td>
<td>Proposed</td>
<td>1/07/2015</td>
</tr>
<tr>
<td>6</td>
<td>Elliston Stage II</td>
<td>Ausker Energies</td>
<td>65</td>
<td>Wind turbine</td>
<td>Tungketta Hill</td>
<td>Proposed</td>
<td>1/07/2016</td>
</tr>
<tr>
<td>7</td>
<td>Green Point</td>
<td>Wind Prospect</td>
<td>54</td>
<td>Wind turbine</td>
<td>Green Point</td>
<td>Proposed</td>
<td>1/01/2016</td>
</tr>
<tr>
<td>8</td>
<td>Hallett 3 (Mt Bryan)</td>
<td>AGL Energy</td>
<td>90</td>
<td>Wind turbine</td>
<td>Near Hallett</td>
<td>Proposed</td>
<td>2011</td>
</tr>
<tr>
<td>9</td>
<td>Hallett 4 (North Brown Hill)</td>
<td>AGL Energy</td>
<td>189</td>
<td>Wind turbine</td>
<td>Near Hallett</td>
<td>Proposed</td>
<td>2011</td>
</tr>
<tr>
<td>10</td>
<td>Kongorong</td>
<td>Transfield Services</td>
<td>120</td>
<td>Wind turbine</td>
<td>Kongorong</td>
<td>Proposed</td>
<td>1/07/2016</td>
</tr>
<tr>
<td>11</td>
<td>Kulpara</td>
<td>Transfield Services</td>
<td>60-110</td>
<td>Wind turbine</td>
<td>Kulpara</td>
<td>Proposed</td>
<td>1/07/2017</td>
</tr>
<tr>
<td>12</td>
<td>Lincoln Gap</td>
<td>Wind Energy Solutions</td>
<td>118</td>
<td>Wind turbine</td>
<td>Lincoln Gap</td>
<td>Proposed</td>
<td>1/12/2016</td>
</tr>
<tr>
<td>13</td>
<td>Mount Hill</td>
<td>Transfield Services</td>
<td>80</td>
<td>Wind turbine</td>
<td>Mount Hill</td>
<td>Proposed</td>
<td>1/07/2017</td>
</tr>
<tr>
<td>14</td>
<td>Snowtown Stage II</td>
<td>TrustPower</td>
<td>174</td>
<td>Wind turbine</td>
<td>Snowtown</td>
<td>Advanced planning</td>
<td>1/12/2017</td>
</tr>
<tr>
<td>15</td>
<td>Myponga/Sellicks Hill</td>
<td>TrustPower</td>
<td>41</td>
<td>Wind turbine</td>
<td>Myponga</td>
<td>Advanced</td>
<td>2010</td>
</tr>
<tr>
<td>16</td>
<td>Vincent North</td>
<td>Pacific Hydro</td>
<td>59.4</td>
<td>Wind turbine</td>
<td>Yorke Peninsula</td>
<td>Proposed</td>
<td>1/07/2018</td>
</tr>
<tr>
<td>17</td>
<td>Waterloo</td>
<td>Roaring 40s</td>
<td>117</td>
<td>Wind turbine</td>
<td>Near the Clare Valley</td>
<td>Proposed</td>
<td>2010-11</td>
</tr>
<tr>
<td>18</td>
<td>Willogoleche</td>
<td>International Power Australia</td>
<td>52-78</td>
<td>Wind turbine</td>
<td>Near Hallett</td>
<td>Proposed</td>
<td>1/07/2018</td>
</tr>
<tr>
<td>19</td>
<td>Worlds End</td>
<td>AGL Energy</td>
<td>180</td>
<td>Wind turbine</td>
<td>Burra</td>
<td>Proposed</td>
<td>1/07/2018</td>
</tr>
</tbody>
</table>
Total capacity of wind generation in SA

Proposed new wind capacity: 2155.60 MW

869.25 MW - 2010

3024.85 MW – 2020
Aggregated wind generation

Wind Generation in SA - March 2010

MW

No of half-hour intervals

0 100 200 300 400 500 600

1 83 165 247 329 411 493 575 657 739 821 903 985 1067 1149 1231 1313 1395
Wind generation and system demand in SA

SA: Wind generation and System Demand
March 2010

MW

No. of half-hour time intervals
Total Wind Generation and System Demand in SA - March 2020
• Genersys - an integrated gas-electricity simulation model has been presented
• A capacity expansion algorithm is available in Genersys
• Some example outputs from Monte Carlo simulations have been presented
• A case study for wind generation in South Australia created and analysed
• As an integrated simulation platform, Genersys could be used by industry, academics and regulators to assess different energy futures and emerging market features.
Thank you