Week 2:
- Stacks
- Queues

Stacks and Queues

• Stacks
 – recursion
 – execution stack
 – backtracking, searching

• Queues
 – simulation
 – systems

ADT Stack

• ADT stack operations
 – Create an empty stack
 – Determine whether a stack is empty
 – Add a new item to the stack
 – Remove from the stack the item that was added most recently
 – Remove all the items from the stack
 – Retrieve from the stack the item that was added most recently

Stacks

• A stack
 – Last-in, first-out (LIFO) property
 • The last item placed on the stack will be the first item removed

Implementations of the ADT Stack

• The ADT stack can be implemented using
 – An array
 – A linked list
 – The ADT list

• StackInterface
 – Provides a common specification for the three implementations
 – StackException
 – Used by StackInterface
 – Extends java.lang.RuntimeException

Stack Interface

```java
public interface StackInterface {
    public boolean isEmpty();
    public void popAll();
    public void push(Object newItem) throws StackException;
    public Object pop() throws StackException;
    public Object peek() throws StackException;
} // end StackInterface
```
Implementations of the ADT Stack

An Array-Based Implementation of the ADT Stack

- StackArrayBased class
 - Implements StackInterface
 - Instances
 - Stacks
 - Private data fields
 - An array of objects called items
 - The index top

A Reference-Based Implementation of the ADT Stack

- A reference-based implementation
 - Required when the stack needs to grow and shrink dynamically
- StackReferenceBased
 - Implements StackInterface
 - top is a reference to the head of a linked list of items

An Implementation That Uses the ADT List

- The ADT list can be used to represent the items in a stack
- If the item in position 1 of a list represents the top of the stack
 - push(newItem) operation is implemented as add(1, newItem)
 - pop() operation is implemented as remove(1)
 - peek() operation is implemented as get(1)

An Implementation That Uses the ADT List
Using the ADT Stack in a Solution

- displayBackward can be refined by using stack operations

```java
public void displayBackward()
{
    while (nextChar != end of input)
    {
        stack.push(char);
    }
    while (! stack.isEmpty())
    {
        print stack.pop();
    }
}
```

Simple Applications of the ADT Stack: Checking for Balanced Braces

- A stack can be used to verify whether a program contains balanced braces
 - An example of balanced braces
    ```
    abc{defg{ijk}{lm}{nop}}qr
    ```
 - An example of unbalanced braces
    ```
    abc{def}}{ghij{kl}m
    ```

Checking for Balanced Braces

- Requirements for balanced braces
 - Each time you encounter a "\[", it matches an already encountered "["
 - When you reach the end of the string, you have matched each "["

Checking for Balanced Braces

![Traces of the algorithm that checks for balanced braces](#)

Recognizing Strings in a Language

- Language L
 - L = {w$w' : w is a possible empty string of characters other than $, w' = reverse(w) }
 - A stack can be used to determine whether a given string is in L
 - Traverse the first half of the string, pushing each character onto a stack
 - Once you reach the $, for each character in the second half of the string, pop a character off the stack
 - Match the popped character with the current character in the string

Algebraic Expressions

- Infix expressions
 - (3+5)*7
- Postfix expressions
 - 3 5 + 7 *
- How about 3+(5*7) in postfix?
 - 3 5 7 * +
Evaluating Postfix Expressions

- A postfix calculator
 - Requires you to enter postfix expressions
 - Example: 2, 3, 4, +, *
 - When an operand is entered, the calculator
 - Pushes it onto a stack
 - When an operator is entered, the calculator
 - Applies it to the top two operands of the stack
 - Pops the operands from the stack
 - Pushes the result of the operation on the stack

Converting Infix Expressions to Equivalent Postfix Expressions

- An infix expression can be evaluated by first being converted into an equivalent postfix expression
- Facts about converting from infix to postfix
 - Operands always stay in the same order with respect to one another
 - An operator will move only "to the right" with respect to the operands
 - All parentheses are removed

The Relationship Between Stacks and Recursion

- The ADT stack has a hidden presence in the concept of recursion
- Typically, stacks are used by compilers to implement recursive methods
 - During execution, each recursive call generates an activation record that is pushed onto a stack
- Stacks can be used to implement a nonrecursive version of a recursive algorithm
The Abstract Data Type Queue

- A queue
 - New items enter at the back, or rear, of the queue
 - Items leave from the front of the queue
 - First-in, first-out (FIFO) property
 - The first item inserted into a queue is the first item to leave

- ADT queue operations
 - Create an empty queue
 - Determine whether a queue is empty
 - Add a new item to the queue
 - Remove from the queue the item that was added earliest
 - Remove all the items from the queue
 - Retrieve from the queue the item that was added earliest

- Queues
 - Are appropriate for many real-world situations
 - Example: A line to buy a movie ticket
 - Have many applications in computer science
 - Example: A request to print a document
 - A simulation
 - A study to see how to reduce the wait involved in an application

Pseudocode for the ADT queue operations

createQueue()
// Creates an empty queue.

isEmpty()
// Determines whether a queue is empty

enqueue(newItem) throws QueueException
// Adds newItem at the back of a queue. Throws QueueException if the operation is not successful

decqueue() throws QueueException
// Retrieves and removes the front of a queue. Throws QueueException if the operation is not successful.

decqueueAll()
// Removes all items from a queue

peek() throws QueueException
// Retrieves the front of a queue. Throws QueueException if the retrieval is not successful

Some queue operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Queue after operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue.createQueue()</td>
<td></td>
</tr>
</tbody>
</table>
| queue.enqueue(5) | 5 | front
| queue.enqueue(2) | 5 2 |
| queue.enqueue(7) | 5 2 7 |
| queue.front = queue.peek() | 5 2 7 (queue.front is 5) |
| queue.front = queue.dequeue() | 5 2 7 (queue.front is 5) |
| queue.front = queue.dequeue() | 2 7 (queue.front is 2) |
Simple Applications of the ADT
Queue: Reading a String of Characters

- A queue can retain characters in the order in which they are typed

  ```java
  queue.createQueue();
  while (not end of line) {
    Read a new character ch
    queue.enqueue(ch)
  }
  ```

- Once the characters are in a queue, the system can process them as necessary

Recognizing Palindromes

- A palindrome
 - A string of characters that reads the same from left to right as it does from right to left
 - To recognize a palindrome, a queue can be used in conjunction with a stack
 - A stack can be used to reverse the order of occurrences
 - A queue can be used to preserve the order of occurrences

Implementations of the ADT Queue

- A queue can have either
 - An array-based implementation
 - A reference-based implementation

A Reference-Based Implementation

- Possible implementations of a queue
 - A linear linked list with two external references
 - A reference to the front
 - A reference to the back

- A circular linked list with one external reference
 - A reference to the back
A Reference-Based Implementation

Figure 7.4
Inserting an item into a nonempty queue

A Reference-Based Implementation

Figure 7.5
Inserting an item into an empty queue: a) before insertion; b) after insertion

A Reference-Based Implementation

Figure 7.6
Deleting an item from a queue of more than one item

An Array-Based Implementation

Figure 7.7
a) A naive array-based implementation of a queue; b) rightward drift can cause the queue to appear full

An Array-Based Implementation

Figure 7.8
A circular implementation of a queue

An Array-Based Implementation

Figure 7.9
The effect of some operations of the queue in Figure 7-8

• A circular array eliminates the problem of rightward drift
An Array-Based Implementation

- A problem with the circular array implementation
 - `front` and `back` cannot be used to distinguish between queue-full and queue-empty conditions

Figure 7.10a

- Front passes back when the queue becomes empty

Figure 7.10b

- Back catches up to front when the queue becomes full

An Array-Based Implementation

- To detect queue-full and queue-empty conditions
 - Keep a count of the queue items
- To initialize the queue, set
 - `front` to 0
 - `back` to `MAX_QUEUE - 1`
 - `count` to 0

An Array-Based Implementation

- Variations of the array-based implementation
 - Use a flag `full` to distinguish between the full and empty conditions
 - Declare `MAX_QUEUE + 1` locations for the array items, but use only `MAX_QUEUE` of them for queue items

An Array-Based Implementation

- Inserting into a queue

  ```
  back = (back+1) % MAX_QUEUE;
  items[back] = newItem;
  ++count;
  ```

- Deleting from a queue

  ```
  front = (front+1) % MAX_QUEUE;
  --count;
  ```
An Array-Based Implementation

Determining the Efficiency of Algorithms

- Analysis of algorithms
 - Provides tools for contrasting the efficiency of different methods of solution
- A comparison of algorithms
 - Should focus on significant differences in efficiency
 - Should not consider reductions in computing costs due to clever coding tricks

Figure 7.11
A more efficient circular implementation: a) a full queue; b) an empty queue

Determining the Efficiency of Algorithms

- Three difficulties with comparing programs instead of algorithms
 - How are the algorithms coded?
 - What computer should you use?
 - What data should the programs use?
- Algorithm analysis should be independent of
 - Specific implementations
 - Computers
 - Data

The Execution Time of Algorithms

- Counting an algorithm's operations is a way to access its efficiency
 - An algorithm's execution time is related to the number of operations it requires
 - Examples
 - Traversal of a linked list
 - The Towers of Hanoi
 - Nested Loops

Algorithm Growth Rates

- An algorithm's time requirements can be measured as a function of the problem size
- An algorithm's growth rate
 - Enables the comparison of one algorithm with another
 - Examples
 - Algorithm A requires time proportional to \(n^2 \)
 - Algorithm B requires time proportional to \(n \)
- Algorithm efficiency is typically a concern for large problems only

Algorithm Growth Rates

- Figure 9.1
 - Time requirements as a function of the problem size \(n \)
 - Algorithm A requires \(n^2 \) seconds
 - Algorithm B requires \(n^* n \) seconds

- Figure 9.1
 - Time requirements as a function of the problem size \(n \)
Order-of-Magnitude Analysis and Big O Notation

- Definition of the order of an algorithm
 Algorithm A is order $f(n)$ – denoted $O(f(n))$ – if constants k and n_0 exist such that A requires no more than $k \cdot f(n)$ time units to solve a problem of size $n \geq n_0$

- Growth-rate function
 - A mathematical function used to specify an algorithm’s order in terms of the size of the problem

- Big O notation
 - Example: $O(f(n))$
 - A notation that uses the capital letter O to specify an algorithm’s order

Order-of-Magnitude Analysis and Big O Notation

<table>
<thead>
<tr>
<th>Function</th>
<th>10</th>
<th>10^2</th>
<th>10^3</th>
<th>10^4</th>
<th>10^5</th>
<th>10^6</th>
<th>10^7</th>
<th>10^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n^2)$</td>
<td>10^4</td>
<td>10^6</td>
<td>10^8</td>
<td>10^{10}</td>
<td>10^{12}</td>
<td>10^{14}</td>
<td>10^{16}</td>
<td>10^{18}</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>10^5</td>
<td>10^7</td>
<td>10^9</td>
<td>10^{11}</td>
<td>10^{13}</td>
<td>10^{15}</td>
<td>10^{17}</td>
<td>10^{19}</td>
</tr>
<tr>
<td>$O(2^n)$</td>
<td>2^1</td>
<td>2^2</td>
<td>2^3</td>
<td>2^4</td>
<td>2^5</td>
<td>2^6</td>
<td>2^7</td>
<td>2^8</td>
</tr>
</tbody>
</table>

Figure 9.3a
A comparison of growth-rate functions: a) in tabular form

Order-of-Magnitude Analysis and Big O Notation

- Order of growth of some common functions
 $O(1) < O(\log_2 n) < O(n) < O(n \cdot \log n) < O(n^2) < O(n^3) < O(2^n)$

- Properties of growth-rate functions
 - You can ignore low-order terms
 - You can ignore a multiplicative constant in the high-order term
 - $O(f(n)) + O(g(n)) = O(f(n) + g(n))$

Order-of-Magnitude Analysis and Big O Notation

- Worst-case and average-case analyses
 - An algorithm can require different times to solve different problems of the same size
 - Worst-case analysis
 - A determination of the maximum amount of time that an algorithm requires to solve problems of size n
 - Average-case analysis
 - A determination of the average amount of time that an algorithm requires to solve problems of size n

Order-of-Magnitude Analysis and Big O Notation

- Keeping Your Perspective
 - Throughout the course of an analysis, keep in mind that you are interested only in significant differences in efficiency
 - When choosing an ADT’s implementation, consider how frequently particular ADT operations occur in a given application
 - Some seldom-used but critical operations must be efficient
Keeping Your Perspective

- If the problem size is always small, you can probably ignore an algorithm's efficiency
- Weigh the trade-offs between an algorithm’s time requirements and its memory requirements
- Compare algorithms for both style and efficiency
- Order-of-magnitude analysis focuses on large problems

The Efficiency of Searching Algorithms

- Sequential search
 - Strategy
 - Look at each item in the data collection in turn, beginning with the first one
 - Stop when
 - You find the desired item
 - You reach the end of the data collection

The Efficiency of Searching Algorithms

- Sequential search
 - Efficiency
 - Worst case: O(n)
 - Average case: O(n)
 - Best case: O(1)

The Efficiency of Searching Algorithms

- Binary search
 - Strategy
 - To search a sorted array for a particular item
 - Repeatedly divide the array in half
 - Determine which half the item must be in, if it is indeed present, and discard the other half
 - Efficiency
 - Worst case: O(log_2 n)

Binary Search

- A high-level binary search
- Looking for a value 'x' in a sorted array

\[
\begin{array}{c}
1 & a & n \\
\end{array}
\]

- \(x < a \)? Continue on left half else right

Binary Search

- A high-level binary search
 if (anArray is of size |) |
 Determine if anArray's item is equal to value
 else |
 Find the midpoint of anArray
 Determine which half of anArray contains value
 if (value is in the first half of anArray) |
 binarySearch (first half of anArray, value) |
 else |
 binarySearch (second half of anArray, value) |
 // end if
 // end if
Binary Search

- Implementation issues:
 - How will you pass “half of anArray” to the recursive calls to binarySearch?
 - How do you determine which half of the array contains the value?
 - What should the base case(s) be?
 - How will binarySearch indicate the result of the search?

Binary Search

- Searching a number in a list of length n
- How many steps? (worst case)
- “Step” is “list item access”
- \(T(n) = 1 \)
- \(T(n) = k + T(n/2^k) \)
- Stop when: \(n/2^k = 1 \) or \(k = \log n \)
- \(T(n) = O(\log n) \)

Sorting Algorithms and Their Efficiency

- Sorting
 - A process that organizes a collection of data into either ascending or descending order
- Categories of sorting algorithms
 - An internal sort
 - Requires that the collection of data fit entirely in the computer’s main memory
 - An external sort
 - The collection of data will not fit in the computer’s main memory all at once but must reside in secondary storage
- Data items to be sorted can be
 - Integers
 - Character strings
 - Objects
- Sort key
 - The part of a record that determines the sorted order of the entire record within a collection of records
Selection Sort

- Selection sort
 - Strategy
 - Select the largest item and put it in its correct place
 - Select the next largest item and put it in its correct place, and so on

Figure 9.4
A selection sort of an array of five integers

<table>
<thead>
<tr>
<th>Initial array:</th>
<th>29 10 14 27 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 1st swap:</td>
<td>10 14 29 27 13</td>
</tr>
<tr>
<td>After 2nd swap:</td>
<td>10 14 29 13 27</td>
</tr>
<tr>
<td>After 3rd swap:</td>
<td>10 14 13 29 27</td>
</tr>
<tr>
<td>After 4th swap:</td>
<td>10 13 14 29 27</td>
</tr>
</tbody>
</table>

Selection Sort

- Analysis
 - Selection sort is $O(n^2)$
- Advantage of selection sort
 - It does not depend on the initial arrangement of the data
- Disadvantage of selection sort
 - It is only appropriate for small n

Summary

- Today
 - Stacks (carrano/prichard ch.7)
 - recursion
 - backtracking
 - parsing and evaluating expressions
 - Queues (carrano/prichard ch.8)
 - Simulation
 - Running times, complexity and asymptotics (carrano/prichard 10.1)
- Next week:
 - Trees