Hashing

- Hashing
 - Enables access to table items in time that is relatively constant and independent of the items
- Hash function
 - Maps the search key of a table item into a location that will contain the item
- Hash table
 - An array that contains the table items, as assigned by a hash function

Applications

- Cryptography
 - Integrity and authentication
- Error Corrections
 - CRC
 - Reed-Solomon Codes
- Audio Identification
 - MD5
- String Search Algorithms
 - Rabin-Karp string search algorithm, \(O(n)\)
 - Bloom Filter
 - Check whether an element is in a set (false positive are possible!)

HashMap diagram

How does Hashing work?

- The key is put through a hash function, which converts the key to an integer, which is then used to index the array
- If there is nothing at this location, the element is stored there
- If there is something at this location, we have to resolve the collision.
Hashing

- A perfect hash function
 - Maps each search key into a unique location of the hash table
 - Possible if all the search keys are known
- Collisions
 - Occur when the hash function maps more than one item into the same array location
- Collision-resolution schemes
 - Assign locations in the hash table to items with different search keys when the items are involved in a collision
- Requirements for a hash function
 - Be easy and fast to compute, i.e. complexity O(1)
 - Place items evenly throughout the hash table

Hash Function Properties

- Assume hash table has \(m \) elements
- Hash function maps a key to an integer number between 0 and \(m-1 \)
- If the distribution of keys is uniform, a good hash function has the property
 \[|H(i) - H(j)| \leq 1 \]
 where
 \[H(i) = \{ \text{key} | \text{hash(key)} = i \} \]
 so the number of items mapped to the same hash value is about the same.

Examples of Hash Functions

- Integers
 \[h(x) = x \mod m \]
- Strings
  ```
  int h(String s)
  {
      int h=0;
      for (i=0; i<s.length; i++) {
          h = ((h<<5)^(h>>27))^s.charAt(i);
      }
      h = h % m;
      return h;
  }
  ```

What Constitutes a Good Hash Function?

- A good hash function should
 - Be easy and fast to compute
 - Scatter the data evenly throughout the hash table
- Issues to consider with regard to how evenly a hash function scatters the search keys
 - How well does the hash function scatter random data?
 - How well does the hash function scatter non-random data?
- General requirements of a hash function
 - The calculation of the hash function should involve the entire search key
 - If a hash function uses modulo arithmetic, the base should be prime (why?)
Resolving Collisions

- Two approaches to collision resolution
 - Approach 1: Open addressing
 - A category of collision resolution schemes that probe for an empty, or open, location in the hash table
 - The sequence of locations that are examined is the probe sequence
 - Linear probing
 - Searches the hash table sequentially, starting from the original location specified by the hash function
 - Possible problem: Primary clustering
 - Quadratic probing
 - Searches the hash table beginning with the original location that the hash function specifies and continues at increments of 1, 2, 3, and so on
 - Possible problem: Secondary clustering
 - Double hashing
 - Uses two hash functions
 - Searches the hash table starting from the location that one hash function determines and considers every nth location, where n is determined from a second hash function
 - Possible problem: Increasing the size of the hash table
 - The hash function must be applied to every item in the old hash table before the item is placed into the new hash table

Resolving Collisions (Continued)

- Approach 2: Restructuring the hash table
 - Changes the structure of the hash table so that it can accommodate more than one item in the same location
 - Buckets
 - Each location in the hash table is itself an array called a bucket
 - Separate chaining
 - Each hash table location is a linked list

The Efficiency of Hashing

- An analysis of the average-case efficiency of hashing involves the load factor
 - Load factor: \(\frac{m}{n} \)
 - Ratio of the current number of items in the table to the maximum number of items it can accommodate
 - Measures how full a hash table is
 - Should not exceed 2/3 in general (see later)
 - Hashing efficiency for a particular search also depends on whether the search is successful
 - Unsuccessful searches generally require more time than successful searches (why?)

The Efficiency of Hashing

- Linear probing
 - Successful search: \(\frac{1}{2} + \frac{1}{1 + \alpha} \)
 - Unsuccessful search: \(\frac{1}{2} + \frac{1}{1 + (1 - \alpha)^2} \)

- Quadratic probing and double hashing
 - Successful search: \(\frac{1}{1 - \alpha} \)
 - Unsuccessful search: \(\frac{1}{1 - \alpha} \)

- Separate chaining
 - Insertion is \(O(1) \)
 - Retrievals and deletions
 - Successful search: \(1 + (\alpha/2) \)
 - Unsuccessful search: \(\alpha \)
Table Traversal: An Inefficient Operation Under Hashing

- Hashing as an implementation of the ADT table
 - For many applications, hashing provides the most efficient implementation
 - Hashing is not efficient for
 - Traversal in sorted order
 - Finding the item with the smallest or largest value in its search key
 - Range query
- In external storage, you can simultaneously use
 - A hashing implementation of the `tableRetrieves` operation
 - A search-tree implementation of the ordered operations

Open Addressing: Unsuccessful Insert/Retrieval

- Assume a probability \(p(i) \) of \(1/m \) for storing \(h(key) \) at location \(i \).
- Assume \(T(i) \) is the length of the list at index \(i \).
- Average complexity of an unsuccessful retrieval is then

\[
A(n) = \sum_{i=0}^{m-1} p(i) T(i) = \frac{1}{m} \sum_{i=0}^{m-1} T(i) = \frac{n}{m}
\]

Summary

- A hash function should be extremely easy to compute and should scatter the search keys evenly throughout the hash table
- A collision occurs when two different search keys hash into the same array location
- Hashing does not efficiently support operations that require the table items to be ordered
- Hashing as a table implementation is simpler and faster than balanced search tree implementations when table operations such as traversal are not important to a particular application

Terminology

- \(G = (V, E) \)
- A graph \(G \) consists of two sets
 - A set \(V \) of vertices, or nodes
 - A set \(E \) of edges
- A subgraph
 - Consists of a subset of a graph’s vertices and a subset of its edges
- Adjacent vertices
 - Two vertices that are joined by an edge

Graphs

Terminology

- Figure 14-2
 a) A campus map as a graph; b) a subgraph
Terminology

- A path between two vertices
 - A sequence of edges that begins at one vertex and ends at another vertex
 - May pass through the same vertex more than once
- A simple path
 - A path that passes through a vertex only once
- A cycle
 - A path that begins and ends at the same vertex
- A simple cycle
 - A cycle that does not pass through a vertex more than once

Terminology

- A connected graph
 - A graph that has a path between each pair of distinct vertices
- A disconnected graph
 - A graph that has at least one pair of vertices without a path between them
- A complete graph
 - A graph that has an edge between each pair of distinct vertices

Terminology

- Multigraph
 - Not a graph
 - Allows multiple edges between vertices

Terminology

- Weighted graph
 - A graph whose edges have numeric labels

Terminology

- Undirected graph
 - Edges do not indicate a direction
- Directed graph, or digraph
 - Each edge is a directed edge
Terminology

- Directed graph
 - Can have two edges between a pair of vertices, one in each direction
- Directed path
 - A sequence of directed edges between two vertices
 - Vertex y is adjacent to vertex x if
 - There is a directed edge from x to y

Graphs as ADTs

- Graphs can be used as abstract data types
- Two options for defining graphs
 - Vertices contain values
 - Vertices do not contain values
- Operations of the ADT graph
 - Create an empty graph
 - Determine whether a graph is empty
 - Determine the number of vertices in a graph
- Operations of the ADT graph (Continued)
 - Determine whether an edge exists between two given vertices; for weighted graphs, return weight value
 - Insert a vertex in a graph whose vertices have distinct search keys that differ from the new vertex’s search key
 - Insert an edge between two given vertices in a graph
 - Delete a particular vertex from a graph and any edges between the vertex and other vertices
 - Delete the edge between two given vertices in a graph
 - Retrieve from a graph the vertex that contains a given search key

Implementing Graphs

- Most common implementations of a graph
 - Adjacency matrix
 - Adjacency list
- Adjacency matrix
 - Adjacency matrix for a graph with n vertices numbered $0, 1, \ldots, n-1$
 - An n by n array matrix such that $matrix[i][j]$ is
 - The weight that labels the edge from vertex i to vertex j if there is an edge from i to j
 - 0 (or false) if there is no edge from vertex i to vertex j

Implementing Graphs

- Adjacency matrix for a weighted graph with n vertices numbered $0, 1, \ldots, n-1$
 - An n by n array matrix such that $matrix[i][j]$ is
 - The weight that labels the edge from vertex i to vertex j if there is an edge from i to j
 - 0 (or false) if there is no edge from vertex i to vertex j

Figure 14-6

(a) A directed graph and (b) its adjacency matrix

Figure 14-7

(a) A weighted undirected graph and (b) its adjacency matrix
Implementing Graphs

- Adjacency list
 - An adjacency list for a graph with \(n \) vertices numbered 0, 1, …, \(n - 1 \)
 - Consists of \(n \) linked lists
 - The \(i \)th linked list has a node for vertex \(j \) if and only if the graph contains an edge from vertex \(i \) to vertex \(j \)
 - This node can contain either
 - Vertex \(j \)’s value, if any
 - An indication of vertex \(j \)’s identity

Figure 14-8

a) A directed graph and
b) its adjacency list

Implementing Graphs

- Adjacency list for an undirected graph
 - Treats each edge as if it were two directed edges in opposite directions

Figure 14-9

a) A weighted undirected graph and b) its adjacency list

Implementing a Graph Class Using the JCF

- ADT graph not part of JCF
- Can implement a graph using an adjacency list consisting of a vector of maps
- Implementation presented uses TreeSet class

Graph Traversals

- A graph-traversal algorithm
 - Visits all the vertices that it can reach
 - Visits all vertices of the graph if and only if the graph is connected
 - A connected component
 - The subset of vertices visited during a traversal that begins at a given vertex
 - Can loop indefinitely if a graph contains a loop
 - To prevent this, the algorithm must
 - Mark each vertex during a visit, and
 - Never visit a vertex more than once
Graph Traversals

Figure 14-10
Visitation order for a) a depth-first search; b) a breadth-first search.