What is a data structure?

- A table of data including structural relationships
 - Donald Knuth (Turing award ’74)

- Algorithms + data structures = programs
 - Niklaus Wirth (Turing award ’84)

Data structures

- Programs use data
- Data needs to be stored and accessed
- Efficiently
- Different applications have different requirements

Course contents (short)

- List structures, stacks, queues
- Trees
- Sorting
- Heaps, priority queues
- Hashing
- Graphs
- Introduction to algorithms

Course contents (long)

- List structures
- Stacks
- Queues
- Implementation issues
 - Arrays, linked lists
 - Doubly linked lists
 - Dynamic or static
- Recursion
Course contents (long)

- Trees
- Binary trees
- Balanced trees
 - 2-3 trees, red-black
- Binary search trees
- Recursion

Course contents (long)

- Tables
 - Items with a search key
- Priority queues
- Heaps and heapsort
- Hashing
- Hash functions and hash tables

Course contents (long)

- Sorting
- Selection and insertion sort
- Bubblesort
- Mergesort
- Quicksort
- Heapsort
- Comparison of sorting algorithms

Course contents (long)

- Graphs
- Representations
- Graph traversals
- Topological sorting
- Spanning trees
- Shortest paths

Course contents (long)

- Advanced Data structures
- Binomial queues
- Treaps
- Disjoint sets/union find
- Fibonacci heaps
- Analysis of data structures

Abstract Data Types

- The isolation of modules is not total
 - Methods' specifications, or contracts, govern how they interact with each other

Figure 3.2
A slit in the wall
Abstract Data Types

- Typical operations on data
 - Add data to a data collection
 - Remove data from a data collection
 - Ask questions about the data in a data collection
- Data abstraction
 - Asks you to think what you can do to a collection of data independently of how you do it
 - Allows you to develop each data structure in relative isolation from the rest of the solution
 - A natural extension of procedural abstraction

Abstract Data Types

- Abstract data type (ADT)
 - An ADT is composed of
 - A collection of data
 - A set of operations on that data
 - Specifications of an ADT indicate
 - What the ADT operations do, not how to implement them
 - Implementation of an ADT
 - Includes choosing a particular data structure

Abstract Data Types

- Data structure
 - A construct that is defined within a programming language to store a collection of data
 - Example: arrays
- ADTs and data structures are not the same
- Data abstraction
 - Results in a wall of ADT operations between data structures and the program that accesses the data within these data structures

Specifying ADTs

- In a list
 - Except for the first and last items, each item has
 - A unique predecessor
 - A unique successor
 - Head or front
 - Tail or end
 - Does not have a predecessor
 - Does not have a successor

The ADT List

- ADT List operations
 - Create an empty list
 - Determine whether a list is empty
 - Determine the number of items in a list
 - Add an item at a given position in the list
 - Remove the item at a given position in the list
 - Remove all the items from the list
 - Retrieve (get) the item at a given position in the list
- Items are referenced by their position within the list
The ADT Sorted List

- The ADT sorted list
 - Maintains items in sorted order
 - Inserts and deletes items by their values, not their positions

An Array-Based Implementation of the ADT List

- An array-based implementation
 - A list's items are stored in an array \(\text{items} \)
 - A natural choice
 - Both an array and a list identify their items by number
 - A list's \(k \)-th item will be stored in \(\text{items}[k-1] \)

An Array-Based Implementation of the ADT List

- An array-based implementation
 - A list's items are stored in an array \(\text{items} \)
 - A natural choice
 - Both an array and a list identify their items by number
 - A list's \(k \)-th item will be stored in \(\text{items}[k-1] \)

List implementations

- Options for implementing an ADT
 - Array
 - Has a fixed size
 - Data must be shifted during insertions and deletions
 - Linked list
 - Is able to grow in size as needed
 - Does not require the shifting of items during insertions and deletions

Preliminaries

- Options for implementing an ADT
 - Array
 - Has a fixed size
 - Data must be shifted during insertions and deletions
 - Linked list
 - Is able to grow in size as needed
 - Does not require the shifting of items during insertions and deletions
ADT Stack

- ADT stack operations
 - Create an empty stack
 - Determine whether a stack is empty
 - Add a new item to the stack
 - Remove from the stack the item that was added most recently
 - Remove all the items from the stack
 - Retrieve from the stack the item that was added most recently

Stacks

- A stack
 - Last-in, first-out (LIFO) property
 - The last item placed on the stack will be the first item removed

Implementations of the ADT Stack

- The ADT stack can be implemented using
 - An array
 - A linked list
 - The ADT list
- StackInterface
 - Provides a common specification for the three implementations
- StackException
 - Used by StackInterface
 - Extends java.lang.RuntimeException

Stack Interface

```java
public interface StackInterface {
    public boolean isEmpty();
    public void popAll();
    public void push(Object newItem) throws StackException;
    public Object pop() throws StackException;
    public Object peek() throws StackException;
}
```  // end StackInterface

Implementations of the ADT Stack

Figure 6.3

An Array-Based Implementation of the ADT Stack

- StackArrayBased class
 - Implements StackInterface
 - Instances
 - Stacks
 - Private data fields
 - An array of Objects called items
 - The index top
 - an ADT list
An Implementation That Uses the ADT List

- The ADT list can be used to represent the items in a stack
- If the item in position 1 of a list represents the top of the stack
 - `push(newItem)` operation is implemented as `add(1, newItem)`
 - `pop()` operation is implemented as `get(1)`
 - `remove(1)`
 - `peek()` operation is implemented as `get(1)`

Simple Applications of the ADT Stack: Checking for Balanced Braces

- A stack can be used to verify whether a program contains balanced braces
 - An example of balanced braces: `abc(defgijklmn)opqr`
 - An example of unbalanced braces: `abc(def))ghijklm`

The Relationship Between Stacks and Recursion

- The ADT stack has a hidden presence in the concept of recursion
- Typically, stacks are used by compilers to implement recursive methods
 - During execution, each recursive call generates an activation record that is pushed onto a stack
- Stacks can be used to implement a nonrecursive version of a recursive algorithm

The Abstract Data Type Queue

- A queue
 - New items enter at the back, or rear, of the queue
 - Items leave from the front of the queue
 - First-in, first-out (FIFO) property
 - The first item inserted into a queue is the first item to leave
The Abstract Data Type Queue

- ADT queue operations
 - Create an empty queue
 - Determine whether a queue is empty
 - Add a new item to the queue
 - Remove from the queue the item that was added earliest
 - Remove all the items from the queue
 - Retrieve from the queue the item that was added earliest

Queues
- Are appropriate for many real-world situations
 - Example: A line to buy a movie ticket
 - Have many applications in computer science
 - Example: A request to print a document
- A simulation
 - A study to see how to reduce the wait involved in an application

Pseudocode for the ADT queue operations

```java
createQueue()
// Creates an empty queue.

isEmpty()
// Determines whether a queue is empty

enqueue(newItem) throws QueueException
// Adds newItem at the back of a queue. Throws
// QueueException if the operation is not
// successful
```

Pseudocode for the ADT queue operations (Continued)

```java
dequeue() throws QueueException
// Retrieves and removes the front of a queue.
// Throws QueueException if the operation is
// not successful.

dequeueAll()
// Removes all items from a queue

peek() throws QueueException
// Retrieves the front of a queue. Throws
// QueueException if the retrieval is not
// successful
```

Possible implementations of a queue
- A linear linked list with two external references
 - A reference to the front
 - A reference to the back

Possible implementations of a queue (Continued)
- A circular linked list with one external reference
 - A reference to the back
A Reference-Based Implementation

An Array-Based Implementation

Figure 7.4
Inserting an item into a nonempty queue

An Array-Based Implementation

Figure 7.7
a) A naive array-based implementation of a queue; b) rightward drift can cause the queue to appear full

An Array-Based Implementation

Figure 7.8
A circular implementation of a queue

An Array-Based Implementation

Figure 7.9
The effect of some operations of the queue in Figure 7-8

Determining the Efficiency of Algorithms

• Analysis of algorithms
 – Provides tools for contrasting the efficiency of different methods of solution
• A comparison of algorithms
 – Should focus of significant differences in efficiency
 – Should not consider reductions in computing costs due to clever coding tricks

Determining the Efficiency of Algorithms

• Three difficulties with comparing programs instead of algorithms
 – How are the algorithms coded?
 – What computer should you use?
 – What data should the programs use?
• Algorithm analysis should be independent of
 – Specific implementations
 – Computers
 – Data
Algorithm Growth Rates

- An algorithm’s time requirements can be measured as a function of the problem size
- An algorithm’s growth rate
 - Enables the comparison of one algorithm with another
 - Examples
 - Algorithm A requires time proportional to n^2
 - Algorithm B requires time proportional to n
- Algorithm efficiency is typically a concern for large problems only

Order-of-Magnitude Analysis and Big O Notation

- Definition of the order of an algorithm
 - Algorithm A is order $f(n)$ – denoted $O(f(n))$ – if constants k and n_0 exist such that A requires no more than $k \cdot f(n)$ time units to solve a problem of size $n \geq n_0$
- Growth-rate function
 - A mathematical function used to specify an algorithm’s order in terms of the size of the problem
 - Big O notation
 - Example: $O(n^2)$
 - A notation that uses the capital letter O to specify an algorithm’s order

Order-of-Magnitude Analysis and Big O Notation

<table>
<thead>
<tr>
<th>n</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
<th>1,000,000</th>
<th>10,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>$n \cdot \log n$</td>
<td>20</td>
<td>644</td>
<td>9,915</td>
<td>10^13</td>
<td>10^16</td>
<td>10^19</td>
<td>10^19</td>
</tr>
<tr>
<td>n^2</td>
<td>10^4</td>
<td>10^9</td>
<td>10^14</td>
<td>10^19</td>
<td>10^24</td>
<td>10^29</td>
<td>10^29</td>
</tr>
<tr>
<td>n^3</td>
<td>10^7</td>
<td>10^15</td>
<td>10^21</td>
<td>10^27</td>
<td>10^33</td>
<td>10^39</td>
<td>10^39</td>
</tr>
<tr>
<td>2^n</td>
<td>10^10</td>
<td>10^19</td>
<td>10^29</td>
<td>10^39</td>
<td>10^49</td>
<td>10^59</td>
<td>10^59</td>
</tr>
</tbody>
</table>

Figure 9.3a
A comparison of growth-rate functions: a) in tabular form

The Efficiency of Searching Algorithms

- Binary search
 - Strategy
 - To search a sorted array for a particular item
 - Repeatedly divide the array in half
 - Determine which half the item must be in, if it is indeed present, and discard the other half
 - Efficiency
 - Worst case: $O(\log n)$
 - For large arrays, the binary search has an enormous advantage over a sequential search

Sorting Algorithms and Their Efficiency

- Sorting
 - A process that organizes a collection of data into either ascending or descending order
- Categories of sorting algorithms
 - An internal sort
 - Requires that the collection of data fit entirely in the computer’s main memory
 - An external sort
 - The collection of data will not fit in the computer’s main memory all at once but must reside in secondary storage

Sorting Algorithms and Their Efficiency

- Data items to be sorted can be
 - Integers
 - Character strings
 - Objects
- Sort key
 - The part of a record that determines the sorted order of the entire record within a collection of records
Selection Sort

• Analysis
 – Selection sort is $O(n^2)$
• Advantage of selection sort
 – It does not depend on the initial arrangement of the data
• Disadvantage of selection sort
 – It is only appropriate for small n

Terminology

• A binary search tree
 – A binary tree that has the following properties for each node n:
 • n’s value is greater than all values in its left subtree T_L
 • n’s value is less than all values in its right subtree T_R
 • Both T_L and T_R are binary search trees

• The height of trees
 – Level of a node n in a tree T:
 • If n is the root of T, it is at level 1
 • If n is not the root of T, its level is 1 greater than the level of its parent
 – Height of a tree T defined in terms of the levels of its nodes:
 • If T is empty, its height is 0
 • If T is not empty, its height is equal to the maximum level of its nodes

• Complete binary trees
 – A binary tree T of height h is complete if:
 • All nodes at level $h-2$ and above have two children each, and
 • When a node at level $h-1$ has children, all nodes to its left at the same level have two children each, and
 • When a node at level $h-1$ has one child, it is a left child

• Balanced binary trees
 – A binary tree is balanced if the height of any node’s right subtree differs from the height of the node’s left subtree by no more than 1
 • Full binary trees are complete
 • Complete binary trees are balanced
Properties of trees

- No cycles
 - a tree is a connected acyclic graph
- Every two nodes are connected by exactly one path
 - simplest way to connect given nodes
- Connected graph with n nodes and n-1 edges

General Operations of the ADT Binary Tree

- General operations of the ADT binary tree
 - createBinaryTree (rootItem, leftTree, rightTree)
 - setRootItem(newItem)
 - attachLeft(newItem) throws TreeException
 - attachRight(newItem) throws TreeException
 - attachLeftSubtree(leftTree) throws TreeException
 - attachRightSubtree(rightTree) throws TreeException
 - detachLeftSubtree() throws TreeException
 - detachRightSubtree() throws TreeException

Traversals of a Binary Tree

Figure 10.9
Traversals of a binary tree: a) preorder; b) inorder; c) postorder

Possible Representations of a Binary Tree

- An array-based representation
 - A Java class is used to define a node in the tree
 - A binary tree is represented by using an array of tree nodes
 - Each tree node contains a data portion and two indexes
 (one for each of the node's children)
 - Requires the creation of a tree list which keeps track of available nodes

Possible Representations of a Binary Tree

Figure 10.10a
a) A binary tree of names

Figure 10.10b
b) An array-based implementation

Possible Representations of a Binary Tree

Figure 10.11
Level-by-level numbering of a complete binary tree

Figure 10.12
An array-based implementation of the complete binary tree in Figure 10.11
A Reference-Based Binary Tree

```java
public class TreeNode {
    private Object item;
    private TreeNode leftChild;
    private TreeNode rightChild;
    // constructors, getLeft() // getRight() getItem() etc
}
```

Tree Traversals

- Basic tree traversals
 - In-order, pre-order, post-order
- Recursive implementations
- Tree iterator implements these tree traversals

The ADT Binary Search Tree

- ADT binary search tree
 - Searching for a particular item
- Each node in a binary search tree satisfies the following properties
 - Its value is greater than all values in its left subtree \(T_L \)
 - Its value is less than all values in its right subtree \(T_R \)
 - Both \(T_L \) and \(T_R \) are binary search trees

The ADT Binary Search Tree

- Record
 - A group of related items, called fields, that are not necessarily of the same data type
- Field
 - A data element within a record
- A data item in a binary search tree has a specially designated search key
 - A search key is the part of a record that identifies it within a collection of records
- KeyedItem class
 - Contains the search key as a data field and a method for accessing the search key
 - Must be extended by classes for items that are in a binary search tree

The ADT Binary Search Tree

- Operations of the ADT binary search tree
 - Insert a new item into a binary search tree
 - Delete the item with a given search key from a binary search tree
 - Retrieve the item with a given search key from a binary search tree
 - Traverse the items in a binary search tree in preorder, inorder, or postorder

The ADT Binary Search Tree

- Figure 10.17
 - A binary search tree

Binary Search Tree: Insertion

- Figure 10.21c
 - Insertion at a leaf
 - TreeNode
 - Insert
 - Keynode
 - Value
 - LeftChild
 - RightChild
 - Item

Figure 10.21c
- Insertion at a leaf
 - TreeNode
 - Insert
 - Keynode
 - Value
 - LeftChild
 - RightChild
 - Item
The Efficiency of Binary Search Tree Operations

• Theorem 10.2
 A full binary tree of height $h \geq 0$ has $2^h - 1$ nodes

• Theorem 10.3
 The maximum number of nodes that a binary tree of height h can have is $2^h - 1$

General Trees

• An n-ary tree
 – A generalization of a binary tree whose nodes can have no more than n children

2-3 Trees

• A 2-3 tree
 – Has 2-nodes and 3-nodes
 – A 2-node
 – A node with one data item and two children
 – A 3-node
 – A node with two data items and three children
 – Is not a binary tree
 – Is never taller than a minimum height binary tree
 – A 2-3 tree with n nodes never has height greater than $\lceil \log_2(n + 1) \rceil$

2-3 Trees: The Insertion Algorithm

• To insert an item I into a 2-3 tree
 – Locate the leaf at which the search for I would terminate
 – Insert the new item I into the leaf
 – If the leaf now contains only two items, you are done
 – If the leaf now contains three items, split the leaf into two nodes, n_1 and n_2

2-3 Trees: The Deletion Algorithm

• When analyzing the efficiency of the insertItem and deleteItem algorithms, it is sufficient to consider only the time required to locate the item
• A 2-3 operation is $O(\log_2 n)$
• A 2-3 tree is a compromise
 – Searching a 2-3 tree is not quite as efficient as searching a binary search tree of minimum height
 – A 2-3 tree is relatively simple to maintain
2-3-4 Trees

• Rules for placing data items in the nodes of a 2-3-4 tree
 – A 2-node must contain a single data item whose search keys satisfy the relationships pictured in Figure 12.3a
 – A 3-node must contain two data items whose search keys satisfy the relationships pictured in Figure 12.3b
 – A 4-node must contain three data items whose search keys S, M, and L satisfy the relationship pictured in Figure 12.21
 – A leaf may contain either one, two, or three data items

Figure 12.21 A 4-node in a 2-3-4 tree

2-3-4 Trees: Inserting into a 2-3-4 Tree

• The insertion algorithm for a 2-3-4 tree
 – Splits a node by moving one of its items up to its parent node
 – Splits 4-nodes as soon as it encounters them on the way down the tree from the root to a leaf
 • Result: when a 4-node is split and an item is moved up to the node’s parent, the parent cannot possibly be a 4-node and can accommodate another item

2-3-4 Trees: Splitting 4-nodes During Insertion

• A 4-node is split as soon as it is encountered during a search from the root to a leaf
• The 4-node that is split will
 – Be the root, or
 – Have a 2-node parent, or
 – Have a 3-node parent

Figure 12.28 Splitting a 4-node root during insertion

2-3-4 Trees: Deleting from a 2-3-4 Tree

• The deletion algorithm for a 2-3-4 tree
 – Locate the node n that contains the item theItem
 – Find theItem’s inorder successor and swap it with theItem (deletion will always be at a leaf)
 – If that leaf is a 3-node or a 4-node, remove theItem
 – To ensure that theItem does not occur in a 2-node
 • Transform each 2-node encountered into a 3-node or a 4-node

2-3-4 Trees: Remarks

• Advantage of 2-3 and 2-3-4 trees
 – Easy-to-maintain balance
 – Trees grow or shrink at the root
• Insertion and deletion algorithms for a 2-3-4 tree require fewer steps that those for a 2-3 tree
 – 2-3-4 tree operations are one-pass
• Allowing nodes with more than four children is counterproductive

Figure 12.21 A 4-node in a 2-3-4 tree
Red-Black Trees

- A 2-3-4 tree
 - Advantages
 - It is balanced
 - Its insertion and deletion operations use only one pass from root to leaf
 - Disadvantage
 - Requires more storage than a binary search tree
- A red-black tree
 - A special binary search tree
 - Used to represent a 2-3-4 tree
 - Has the advantages of a 2-3-4 tree, without the storage overhead

Red-Black Trees

- Basic idea
 - Represent each 3-node and 4-node in a 2-3-4 tree as an equivalent binary tree
- Red and black children references
 - Used to distinguish between 2-nodes that appeared in the original 2-3-4 tree and 2-nodes that are generated from 3-nodes and 4-nodes
 - Black references are used for child references in the original 2-3-4 tree
 - Red references are used to link the 2-nodes that result from the split 3-nodes and 4-nodes

Red-Black Trees

- Figure 12.31: Red-black representation of a 4-node
- Figure 12.32: Red-black representation of a 3-node

Red-Black Trees: Inserting and Deleting From a Red-Black Tree

- Figure 12.34: Splitting a red-black representation of a 4-node that is the root

Red-Black Trees: Inserting and Deleting From a Red-Black Tree

- Figure 12.35: Splitting a red-black representation of a 4-node whose parent is a 2-node
Sorting algorithms

- Bubblesort
- Insertionsort
- Selectionsort
- Mergesort
- Quicksort
- Shellsort
- Heapsort
- Bucketsort

Bubble Sort

- Analysis
 - Worst case: $O(n^2)$
 - Best case: $O(n)$

Insertion Sort

- Analysis
 - Worst case: $O(n^2)$
 - For small arrays
 - Insertion sort is appropriate due to its simplicity
 - For large arrays
 - Insertion sort is prohibitively inefficient

Shellsort

- Extension to insertion sort
- Exchange items far apart
- H-sorted sequence
 - taking every h-th element yields a sorted subsequence
 - every h-th element, starting anywhere
 - H-sorted sequence is h independent sorted sequences put together
Shellsort

- Main idea:
 - Sort for large values of \(h \)
 - This allows long-distance swaps
 - Proceed with smaller \(h \) values
 - Until \(h = 1 \)
- For every \(h \)-pass, use insertion sort
 - On the \(h \) subsequence

Mergesort

- Important divide-and-conquer sorting algorithms
 - Mergesort
 - Quicksort
- Mergesort
 - A recursive sorting algorithm
 - Gives the same performance, regardless of the initial order of the array items
 - Strategy
 - Divide an array into halves
 - Sort each half
 - Merge the sorted halves into one sorted array

Mergesort analysis

- Mergesort running time

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + T(n/2) + n & \text{otherwise}
\end{cases}
\]

Mergesort

- Analysis
 - Worst case: \(O(n \times \log_2 n) \)
 - Average case: \(O(n \times \log_2 n) \)
- Advantage
 - It is an extremely efficient algorithm with respect to time
- Drawback
 - It requires a second array as large as the original array
QuickSort

- **QuickSort**
 - A divide-and-conquer algorithm
 - **Strategy**
 - Partition an array into items that are less than the pivot and those that are greater than or equal to the pivot
 - Sort the left section
 - Sort the right section

![A partition about a pivot](image)

Figure 9.12
A partition about a pivot

- Using an invariant to develop a partition algorithm
 - **Invariant for the partition algorithm**
 - The items in region S_1 are all less than the pivot, and those in S_2 are all greater than or equal to the pivot

![Invariant for the partition algorithm](image)

Figure 9.14
Invariant for the partition algorithm

- **Analysis**
 - **Worst case**
 - QuickSort is $O(n^2)$ when the array is already sorted and the smallest item is chosen as the pivot

![A word-case partitioning with quicksort](image)

Figure 9.19
A word-case partitioning with quicksort

Radix Sort

- **Radix sort**
 - Treats each data element as a character string
 - **Strategy**
 - Repeatedly organize the data into groups according to the i^{th} character in each element
 - **Analysis**
 - Radix sort is $O(n)$

![A radix sort of eight integers](image)

Figure 9.21
A radix sort of eight integers

A Comparison of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst case</th>
<th>Average case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Bubble sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Insertion sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Mergesort</td>
<td>$n \cdot \log n$</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>QuickSort</td>
<td>n^2</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>Radix sort</td>
<td>n</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>Timsort</td>
<td>n^2</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>Heapsort</td>
<td>$n \cdot \log n$</td>
<td>$n \cdot \log n$</td>
</tr>
</tbody>
</table>

![Approximate growth rates of time required for eight sorting algorithms](image)

Figure 9.22
Approximate growth rates of time required for eight sorting algorithms
The ADT Table

- The ADT table, or dictionary
 - Uses a search key to identify its items
 - Its items are records that contain several pieces of data

<table>
<thead>
<tr>
<th>City</th>
<th>Country</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athens</td>
<td>Greece</td>
<td>2,700,000</td>
</tr>
<tr>
<td>Barcelona</td>
<td>Spain</td>
<td>1,600,000</td>
</tr>
<tr>
<td>Cairo</td>
<td>Egypt</td>
<td>9,000,000</td>
</tr>
<tr>
<td>London</td>
<td>England</td>
<td>7,800,000</td>
</tr>
<tr>
<td>New York</td>
<td>U.S.A.</td>
<td>7,300,000</td>
</tr>
<tr>
<td>Paris</td>
<td>France</td>
<td>2,200,000</td>
</tr>
<tr>
<td>Rome</td>
<td>Italy</td>
<td>2,600,000</td>
</tr>
<tr>
<td>Toronto</td>
<td>Canada</td>
<td>3,200,000</td>
</tr>
<tr>
<td>Venice</td>
<td>Italy</td>
<td>300,000</td>
</tr>
</tbody>
</table>

Selecting an Implementation

- Categories of linear implementations
 - Unsorted, array based
 - Unsorted, reference based
 - Sorted (by search key), array based
 - Sorted (by search key), reference based

<table>
<thead>
<tr>
<th>size</th>
<th>0</th>
<th>1</th>
<th>size + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>item</td>
<td>0</td>
<td>1</td>
<td>Min_value</td>
</tr>
</tbody>
</table>

Scenario A: Insertion and Traversal in No Particular Order

- An unsorted order is efficient
 - Both array based and reference based tableInsert operation is $O(1)$
- Array based versus reference based
 - If a good estimate of the maximum possible size of the table is not available
 - Reference based implementation is preferred
 - If a good estimate of the maximum possible size of the table is available
 - The choice is mostly a matter of style

Scenario B: Retrieval

- Binary search
 - An array-based implementation
 - Binary search can be used if the array is sorted
 - A reference-based implementation
 - Binary search can be performed, but is too inefficient to be practical
 - A binary search of an array is more efficient than a sequential search of a linked list
 - Binary search of an array
 - Worst case: $O(n)$
 - Sequential search of a linked list
 - $O(n)$
- For frequent retrievals
 - If the table’s maximum size is known
 - A sorted array-based implementation is appropriate
 - If the table’s maximum size is not known
 - A binary search tree implementation is appropriate
Scenario C: Insertion, Deletion, Retrieval, and Traversal in Sorted Order

- Steps performed by both insertion and deletion
 - Step 1: Find the appropriate position in the table
 - Step 2: Insert into (or delete from) this position
- Step 1
 - An array-based implementation is superior than a reference-based implementation
- Step 2
 - A reference-based implementation is superior than an array-based implementation
 - A sorted array-based implementation shifts data during insertions and deletions

Summary of Tables

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Insertion</th>
<th>Deletion</th>
<th>Retrieval</th>
<th>Traversal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted array based</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Unsorted pointer based</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Sorted array based</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Sorted pointer based</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Binary search tree</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

The ADT Priority Queue: A Variation of the ADT Table

- The ADT priority queue
 - Orders its items by a priority value
 - The first item removed is the one having the highest priority value
- Operations of the ADT priority queue
 - Create an empty priority queue
 - Determine whether a priority queue is empty
 - Insert a new item into a priority queue
 - Retrieve and then delete the item in a priority queue with the highest priority value

Possible implementations (Continued)

- Binary search tree implementation
 - Appropriate for any priority queue

Some implementations of the ADT priority queue: a) array based; b) reference based; c) binary search tree
Heaps

• A heap is a complete binary tree
 – That is empty
 or
 – Whose root contains a search key greater
 than or equal to the search key in each of
 its children, and
 – Whose root has heaps as its subtrees

Heaps: An Array-based Implementation of a Heap

• Data fields
 – items: an array of heap items
 – size: an integer equal to the number of items in the heap

Heaps: heapDelete

• Step 1: Return the item in the root
 – Results in disjoint heaps

Heaps: heapDelete

• Step 2: Copy the item from the last node into the root
 – Results in a semiheap

Heaps: heapDelete

• Step 3: Transform the semiheap back into a heap
 – Performed by the recursive algorithm heapRebuild

Heaps: heapDelete

• Efficiency
 – heapDelete is \(O(\log n) \)
Heaps: heapInsert

- **Strategy**
 - Insert new item into the bottom of the tree
 - Trickle new item up to appropriate spot in the tree
- **Efficiency**: \(O(\log n)\)
- **Heap class**
 - Represents an array-based implementation of the ADT heap

Heapsort

- **Strategy**
 - Transforms the array into a heap
 - Removes the heap's root (the largest element) by exchanging it with the heap's last element
 - Transforms the resulting semiheap back into a heap
- **Efficiency**
 - Compared to mergesort
 - Both heapsort and mergesort are \(O(n \log n)\) in both the worst and average cases
 - Advantage over mergesort
 - Heapsort does not require a second array
 - Compared to quicksort
 - Quicksort is the preferred sorting method

Summary

- A heap that uses an array-based representation of a complete binary tree is a good implementation of a priority queue when you know the maximum number of items that will be stored at any one time
- **Efficiency**
 - Heapsort, like mergesort, has good worst-case and average-case behaviors, but neither algorithms is as good in the average case as quicksort
 - Heapsort has an advantage over mergesort in that it does not require a second array

Red-Black Trees

- **A 2-3-4 tree**
 - **Advantages**
 - It is balanced
 - Its insertion and deletion operations use only one pass from root to leaf
 - **Disadvantage**
 - Requires more storage than a binary search tree
- **A red-black tree**
 - A special binary search tree
 - Can be used to represent a 2-3-4 tree
 - Has the advantages of a 2-3-4 tree, without the storage overhead
Red-Black Trees

- Basic idea
 - Represent each 3-node and 4-node in a 2-3-4 tree as an equivalent binary tree
- Red and black children references
 - Used to distinguish between 2-nodes that appeared in the original 2-3-4 tree and 2-nodes that are generated from 3-nodes and 4-nodes
 - Black references are used for child references in the original 2-3-4 tree
 - Red references are used to link the 2-nodes that result from the split 3-nodes and 4-nodes

Red-Black equivalent

split nodes => red references;
original nodes => black references

Red-Black Trees: Inserting and Deleting From a Red-Black Tree

Other definitions

- Alternatively if you think of red-black trees without deriving them from 2-3-4 trees, there are corresponding definitions.
AVL Trees

- Invented by G.M. Adel'son-Vel'skii and E.M. Landis, "An algorithm for the organization of information" [1962]
- It is self-balancing: as such it is a self-organizing data structure
 - (can you think of any others?)
- It can be thought of as "nearly balanced" or in the context of AVL trees just "balanced".

AVL Trees

- Advantage
 - Height of an AVL tree with n nodes is always very close to the theoretical minimum (so it's good when you need lots of look-up)
- Disadvantage
 - An AVL tree implementation of a table is more difficult than other implementations (so it's a pain to program)

The ADT Priority Queue: A Variation of the ADT Table

- The ADT priority queue
 - Orders its items by a priority value
 - The first item removed is the one having the highest priority value
- Operations of the ADT priority queue
 - Create an empty priority queue
 - Determine whether a priority queue is empty
 - Insert a new item into a priority queue
 - Retrieve and then delete the item in a priority queue with the highest priority value

Summary

- A 2-3 tree and a 2-3-4 tree are variants of a binary search tree in which the balanced is easily maintained (hah!)
- The insertion and deletion algorithms for a 2-3-4 tree are more efficient than the corresponding algorithms for a 2-3 tree
- A red-black tree is a binary tree representation of a 2-3-4 tree that requires less storage than a 2-3-4 tree
- An AVL tree is a binary search tree that is guaranteed to remain balanced
Hashing

HashMap diagram

Key Partitions

Resolving Collisions

Resolving Collisions (Continued)

The Efficiency of Hashing

Figure 12.50
Summary

• A hash function should be extremely easy to compute and should scatter the search keys evenly throughout the hash table.
• A collision occurs when two different search keys hash into the same array location.
• Hashing does not efficiently support operations that require the table items to be ordered.
• Hashing as a table implementation is simpler and faster than balanced search tree implementations when table operations such as traversal are not important to a particular application.

Graphs

Terminology

• G = (V, E)
• A graph G consists of two sets
 – A set V of vertices, or nodes
 – A set E of edges
• A subgraph
 – Consists of a subset of a graph’s vertices and a subset of its edges
• Adjacent vertices
 – Two vertices that are joined by an edge

Graphs as ADTs

• Operations of the ADT graph (Continued)
 – Determine whether an edge exists between two given vertices; for weighted graphs, return weight value
 – Insert a vertex in a graph whose vertices have distinct search keys that differ from the new vertex’s search key
 – Insert an edge between two given vertices in a graph
 – Delete a particular vertex from a graph and any edges between the vertex and other vertices
 – Delete the edge between two given vertices in a graph
 – Retrieve from a graph the vertex that contains a given search key

Implementing Graphs

Figure 14-6

a) A directed graph and b) its adjacency matrix
Implementing Graphs

- Adjacency list for an undirected graph
 - Treats each edge as if it were two directed edges in opposite directions

![Figure 14-9](https://example.com/figure14-9)

a) A weighted undirected graph and b) its adjacency list

Graph Traversals

- A graph-traversal algorithm
 - Visits all the vertices that it can reach
 - Visits all vertices of the graph if and only if the graph is connected
 - A connected component
 - The subset of vertices visited during a traversal that begins at a given vertex
 - Can loop indefinitely if a graph contains a loop
 - To prevent this, the algorithm must
 - Mark each vertex during a visit, and
 - Never visit a vertex more than once

![Figure 13.10](https://example.com/figure13.10)

Visitation order for a) a depth-first search; b) a breadth-first search

Graph Traversals

- A graph-traversal algorithm
 - Visits all the vertices that it can reach
 - Visits all vertices of the graph if and only if the graph is connected
 - A connected component
 - The subset of vertices visited during a traversal that begins at a given vertex
 - Can loop indefinitely if a graph contains a loop
 - To prevent this, the algorithm must
 - Mark each vertex during a visit, and
 - Never visit a vertex more than once

Depth-First Search

- Depth-first search (DFS) traversal
 - Visit vertex then explore all adjacent vertices recursively
 - A first visited, first explored strategy
 - An iterative form uses a queue
 - A recursive form is also possible

```
function DFS(u)
    if not marked(u) then
        marked(u) = true;
        for all s ∈ succs(u)
            DFS(s)
        endfor
    endif
endfunction
```

Algorithm

- Set of successors
 - succ(u) = {v | (u, v) ∈ E}
- Initialization
 - for all nodes u
 - marked(u) = false;
 - DFS(start)

Breath-First Search

- Breath-First Search (BFS) traversal
 - Visits neighbors first before exploring depth.
 - A first visited, first explored strategy
 - An iterative form uses a queue
 - A recursive form is possible, but not simple
Breath-First Search
Algorithm
```java
void BFS(Node u) {
    q = new Queue();
    q.enq(u); marked[u] = true;
    while(!q.isEmpty()) {
        u = q.deq();
        for all v in succ(u)
            if (!marked[v]) {
                q.enq(v);
                marked[v] = true;
            }
    }
}
```

Applications of Graphs: Topological Sorting
- **Topological order**
 - A list of vertices in a directed graph without cycles such that vertex \(x\) precedes vertex \(y\) if there is a directed edge from \(x\) to \(y\) in the graph
 - There may be several topological orders in a given graph
- **Topological sorting**
 - Arranging the vertices into a topological order

Algorithm for Top-Sort
```
function TopSort(u)
    if not marked[u] then
        marked[u] = true;
        for all s in succe(s) TopSort(s)
        order[i] = u;
        i = i - 1;
    endif
endfunction
```

Spanning Trees
- A tree
 - An undirected connected graph without cycles
- A spanning tree of a connected undirected graph \(G\)
 - A subgraph of \(G\) that contains all of \(G\)'s vertices and enough of its edges to form a tree
- To obtain a spanning tree from a connected undirected graph with cycles
 - Remove edges until there are no cycles

Spanning Trees
- You can determine whether a connected graph contains a cycle by counting its vertices and edges
 - A connected undirected graph that has \(n\) vertices must have at least \(n - 1\) edges
 - A connected undirected graph that has \(n\) vertices and exactly \(n - 1\) edges cannot contain a cycle
 - A connected undirected graph that has \(n\) vertices and more than \(n - 1\) edges must contain at least one cycle
The DFS Spanning Tree

- To create a depth-first search (DFS) spanning tree
 - Traverse the graph using a depth-first search and mark the edges that you follow
 - After the traversal is complete, the graph's vertices and marked edges form the spanning tree

The BFS Spanning Tree

- To create a breadth-first search (BFS) spanning tree
 - Traverse the graph using a breadth-first search and mark the edges that you follow
 - When the traversal is complete, the graph's vertices and marked edges form the spanning tree

Minimum Spanning Tree

- Minimum spanning tree
 - A spanning tree for which the sum of its edge weights is minimal
- Prim's algorithm
 - Finds a minimal spanning tree that begins at any vertex
 - Strategy
 - Find the least-cost edge \((v, u)\) from a visited vertex \(v\) to some unvisited vertex \(u\)
 - Mark \(u\) as visited
 - Add the vertex \(u\) and the edge \((v, u)\) to the minimum spanning tree
 - Repeat the above steps until there are no more unvisited vertices

Summary

Graph searching
 - Depth-first search goes as deep into the graph as it can before backtracking
 - Breadth-first search visits all possible adjacent vertices before traversing further into the graph
 - Topological sorting produces a linear order of the vertices in a directed graph without cycles
 - Trees are connected undirected graphs without cycles
 - A spanning tree of a connected undirected graph is a subgraph that contains all the graph's vertices and enough of its edges to form a tree
 - A minimum spanning tree for a weighted undirected graph is a spanning tree whose edge-weight sum is minimal

Geometric problems

- Example: Given \(n\) points on a plane, compute their convex hull
 - Points are given by their \((x, y)\) coordinates

Convex hulls

- A set \(S\) is called convex iff for any \(p, q\) in \(S\) the line \(pq\) is completely contained in \(S\)
- The convex hull of a set \(S\) is the smallest convex set that contains \(S\)
 - The convex hull of \(S\) is the intersection of all convex sets that contain \(S\)
 - The convex hull of \(S\) is denoted \(CH(S)\)
Computing the convex hull

- Given a set of points \(P = \{p_1, p_2, \ldots, p_n\} \), the convex hull is usually given as a list of points in \(P \) that are vertices of \(P \) in clockwise order.
- Testing if points \(p, q \) are on the convex hull: all of \(P \) except \(p \) and \(q \) must be on the same side of \(pq \).

Checking for left turns

- If there is a left turn remove the middle point, and check again the “new” last three points.

Convex hull algorithm

1. sort points by x coordinate in sequence \(p_1, p_2, \ldots, p_n \)
2. add \(p_1 \) and \(p_2 \) to the upper hull list \(L_{upper} \)
3. for \(i := 3 \) to \(n \)
 4. append \(p_i \) to \(L_{upper} \)
 5. while last 3 points in \(L_{upper} \) do not make a right turn
 6. delete the middle of the last 3 points from \(L_{upper} \)
7. Add the points \(p_n \) and \(p_{n-1} \) to the lower hull list \(L_{lower} \)
8. for \(i := n-2 \) down to \(1 \)
 9. append \(p_i \) to \(L_{lower} \)
10. while last 3 points in \(L_{lower} \) do not make a right turn
11. delete the middle of the last 3 points from \(L_{lower} \)
12. To avoid duplication, remove first and last points of \(L_{upper} \)
13. return the two lists \((L_{lower}, \text{appended to } L_{upper}) \)

Convex hulls

- Graham’s scan works in time \(O(n \log n) \) (sorting)
- Convex hull computation requires \(n \log n \) steps (lower bound)
- However, the lower bound corresponds to cases where almost all the points are on the hull.
- In practice very few points may appear on the hull.

1-dimensional query

- \(P = \{p_1, p_2, \ldots, p_n\} \) points on a line in other words this is a set of numbers (x-coordinates only)
- locate point query: find the number \(x \).
- use a binary search tree

kd-trees

- alternate splitting on \(x \) and \(y \) coordinates
- pick the point with the median coordinate (to split evenly “balanced” tree)
- kd-trees may also be defined to store points only at the leaves.
kd-trees

- alternate splitting on x and y coordinates
- pick the point with the median coordinate (to split evenly - "balanced" tree)
- left subtree is the "low" subtree, right subtree is the "high" subtree

Example query

- find point with coordinates (7,3)

Performance of kd-trees

- a kd-tree
 - requires \(O(n)\) space
 - can be built in \(O(n \log n)\)
 - supports \(O(\sqrt{n+k})\) range queries
 where \(k\) is the number of reported points

Better query time?

- can we beat the square root of \(n\) query time?
- the data structure must use more space to achieve a better query time
 (lower bound by Chazelle)
- range trees: use \(O(n \log n)\) space and achieve \(O(\log^2 n+k)\) query time
- with some additional techniques, query time can be improved to \(O(\log n+k)\)

Kd-trees and range trees

- kd-trees: search alternates between x and y coordinates
- range trees: search on x-coordinates then y-coordinates
range trees

- the main tree is a balanced binary search tree on the x coordinates
- for every internal or leaf node v, there is an associated balanced binary search tree T_v on the y-coordinate for all nodes that appear in the subtree rooted at v.

medians in linear time

- break up in groups of 5
- sort each group
- find the median of the medians
- partition around the median of the medians
- if not done, continue recursively on one side of the partition

1d range query

- use a balanced search tree
- do a modified binary search

1d range query (list, tree, low, high) {
 1. if (tree is empty) return list
 2. if (high < tree.value) return rangeQuery(tree.getLeft);
 3. if (low > tree.value) return rangeQuery(tree.getRight);
 4. if (low <= tree.value <= high) {
 5. add tree.value to the list
 6. list = rangeQuery(list, tree.getLeft(), low, high);
 7. return rangeQuery(list, tree.getRight(), low, high);
 8. }
 9. }