COMP2860 Data structures

- Huffman trees

Definitions

- Graph is $G=(V,E)$
 - set of vertices V
 - set of edges $E \subseteq V \times V$
- Tree is a connected
 - acyclic graph
 - graph on n vertices and $n-1$ edges

Rooted trees

- Distinguished root node
- Every node has a unique parent
- Ordered trees: ordering of children nodes
 - ordered sequence of children instead of set
- Extended tree
 - add (square) nodes for all empty sub-trees

External and internal nodes

- Empty tree is represented by a single external node (box)
- Claim: Any binary tree with n internal nodes has $n+1$ external nodes

Trees as binary trees

- Any tree can be converted to a binary tree
- Usually we wish to preserve some ordering for the nodes
- Many different binary trees

Operations on binary trees

- Insert, delete
- Restructuring the tree
- Complexity of operations
 - depends heavily on the structure of the tree
Properties of trees

- height of a node $h(x)$: max path length from the node to a leaf (or external node)
 - external nodes have height 0
- height of a tree is the height of its root
- depth of a node $d(x)$: path to the root
- internal path length $i(T)$
- external path length $e(T)$

$$e(T) = i(T) + 2n$$

Internal and external paths

- Internal path length: sum of distances from the root
- Theorem: For any binary tree T on n internal nodes, $e(T) = i(T) + 2n$
 - Proof: by induction

Skew trees

- For different binary trees on n nodes, internal path length may vary
- Skew trees: binary trees of maximal internal path length
 - and therefore max external path length
 - lead to bad performance
- Theorem: in skew trees, every node has at most one child (internal node)

Skew trees

- Theorem: in skew trees, every node has at most one child (internal node)
- Proof: prove two things:
 - A. skew tree implies one child per node
 - B. one child per node implies skew tree
Skew trees

- B. one child per node implies skew tree
- Consider the set S of all possible single-child trees on n nodes
 - chains
- Previous part proves maximal (skew) trees must lie in S
- All have the same path length
 \[i(T) = \frac{n(n-1)}{2} \]

Balanced binary trees

- Definition 1: A binary tree is balanced iff there exists a number q such that every external node has depth either q or q+1
- Definition 2: A binary tree is balanced iff it has minimal internal path length

Tree measurements

- Binary tree T on n nodes
 - height is between \(O(\log n) \) and \(O(n) \)
 - internal and external path lengths are between \(O(n \log n) \) and \(O(n^2) \)

Huffman trees

- Data representation
 - example: ASCII characters
- Compression
 - Some characters appear more often
- Encode more frequent items with shorter representations

Prefix encoding

- No code word is a prefix of any other code word
- Tree representation

Prefix encoding

- Characters used often
 - encode by short words
- Example: cdabcccc
 - 17 bits on huffman
 - 80 bits on ASCII
Encoding sequences

- Encode sequence S
- x appears $w(x)$ times in S
- Assume prefix encoding tree
- $d(x)$ depth of external node containing x
- Length of encoded sequence is L
- Given S find optimal prefix encoding
 - find prefix tree that minimizes L

Optimal prefix tree encodings

- Define the weighted external path length of T as follows:
 $$wepl(T) = \sum_{x \in E(T)} w(x)d(x)$$
- Trees of minimum external path length?
 - Might be many trees that min $wepl$
- Minimum weight external path tree is called a Huffman tree

Example

- Example: if the weights are $\{1, 1, 3, 5\}$
- Both trees are optimal
- $wepl = 17$
- If all weights are 1, Huffman is a balanced tree
 - since $wepl(T) = e(T)$

Huffman trees

- Huffman, 1952
- Start with all external nodes
 - with their weight
 - consider them as trivial trees
- Find two minimum weight trees and connect them into a new one
 - New weight for the tree is the sum of weights of combined trees
- Repeat until there is only one tree

Huffman example

- Implement with a priority queue

Correctness of Huffman algorithm

- Induction
- Definition: fringing forest for T is a set of trees which may be "Huffman-combined" into T
- Main lemma: (loop invariant)
 - At any Intermediate step, set of trees is a fringing forest for some Huffman tree
- Proof:
 - True for base case
 - Inductive step. True for $F = \{T_1, \ldots\}$
Huffman correctness

- \(F = \{ T_1, \ldots \} \) is a fringing forest
- Next step: \(F' \) combines \(T_a \) and \(T_b \)
- Pick a node \(z \)
 - in \(T \)
 - not in \(F \)
 - of max depth
- Children of \(z, T_x \) and \(T_y \) must be in \(F \)
- Exchange sub trees keeping wepl minimal

Correctness of huffman

- New tree is also Huffman
- \(F' \) is a fringing forest for \(T' \)

\[\text{wepl}(T_a) < \text{wepl}(T_x) \] (\(T_a \) was chosen)

\[\text{wepl}(T_b) < \text{wepl}(T_y) \] (\(T_b \) was chosen)

\[\text{wepl}(T_a) < \text{wepl}(T_x) \] swap \(T_a \) and \(T_x \)

\[\text{wepl}(T_b) < \text{wepl}(T_y) \] swap \(T_b \) and \(T_y \)