COMP3310/3610: Theory of Computation

Taso Viglas
tasos@it.usyd.edu.au

University of Sydney

July 31, 2007

Computation

- Simple computation models
- Machines or programming models
- Question: "What can we compute?"
- Problems solvable computationally
- Formalize the notion of computation
 actually we need to formalize the notions of 'problem', 'solvable' and 'computationally'

sets and membership

- decision problems
- languages

finite state automata

- regular languages

non-determinism

- non-deterministic automata
- regular operations
- equivalence of automata and regular expressions

Non-regular languages

- the pumping lemma
- pumping lemma examples

decision problems

- languages

Computation

- Decision problems: given a graph G decide whether it is connected or not
- non-decision problems: in the graph G, find the shortest path from vertex s to t
- in a decision problem, the algorithms receives an input (for example a graph G) and responds yes or no (true/false or accept/reject, or 1/0)
- the problem versus the instance of a problem
 the problem: graph connectivity the instance: a specific graph G
A decision problem

- Problem: given an undirected graph G, decide if it is connected
- Fix an alphabet. For example $\Sigma = \{0, 1\}$
- Input: representation/description of a graph, as a string using the fixed alphabet
- Output is 0/1 (reject/accept the given input

Deciding membership

- Input: can be any string, which will be interpreted as a problem instance
- Example below shows 3 different problems that may interpret input strings their own way
- If an input string does not correspond to a valid instance, just reject it
- Example of a problem definition: the problem of graph connectivity can be defined as the set of strings that represent graphs that are connected

<table>
<thead>
<tr>
<th>Input</th>
<th>Connected</th>
<th>Complete</th>
<th>Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100...1010</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1111...010011</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>001011...101</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>00000...0001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notation

- Defining a set: $A = \{ x | x \text{ is a positive natural number with some property}\}$
- Union: $A \cup B$
- Intersection: $A \cap B$
- Complement: \bar{A}
- Cartesian Product: $A \times B = \{(x, y) | x \in A, y \in B\}$
- $\Sigma = \{0, 1\}$, then $\Sigma \times \Sigma = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$
- Power set: $\mathcal{P}(A)$
 - $\Sigma = \{0, 1\}$, then $\mathcal{P}(\Sigma) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

Sets and membership

- $PRIMES = \{ x | x \text{ is the binary representation of an integer that is prime}\}$
- The primality problem: given a binary string x, does it belong to the set $PRIMES$?
- $x \in PRIMES$
Languages

- An alphabet is a (finite) set of symbols, \(\Sigma = \{ a, b \} \)
- A word is a concatenation of alphabet symbols
 (a string over a given alphabet), \(w = abba \)
- A language is a set of words over a given alphabet
 \(L = \{ a, aa, abba \} \), or
 \(L = \{ \text{all words starting with an } a \} \)
 \(L = \{ a^n b^n | n \in \mathbb{N} \} \)

Machines and languages

- Let \(L \) be a language
- A machine \(M \) recognizes \(L \)
 if \(M(x) = 1 \) iff \(x \in L \), otherwise
 \(M(x) = 0 \)
- \(M \) accepts all strings in the language \(L \) and rejects all other strings

Finite Automaton

- A finite state machine, reads its input once (left to right) and
 accepts or rejects
- Finite automaton has fixed size memory
- Example of an automaton

Finite automaton: formal definition

- Def: A deterministic finite state automaton (DFA) \(M \) is a
 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \)
 - \(Q \) finite set of states
 - \(\Sigma \) finite alphabet
 - \(\delta \) transition function, \(\delta : Q \times \Sigma \to Q \)
 - \(q_0 \in Q \) starting state
 - \(F \subseteq Q \) accepting states
A deterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ accepts a string/word $w = w_1 \ldots w_n$ if there exists a sequence $r_0 \ldots r_n$ of states in Q such that
- $r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}$ for all $i = 0, \ldots, n - 1$
- $r_n \in F$

$L(M)$ denotes the language recognized by M

Regular languages

- (Def 1.16p40) A language is called regular if some finite automaton recognizes it.
- A regular language is completely described by its automaton

Regular operations

- (Def 1.23p44) Let A and B be languages. We define the regular operations as follows:
 - Union: $A \cup B = \{ x | x \in A \text{ or } x \in B \}$
 - Concatenation: $A \circ B = \{ xy | x \in A, y \in B \}$
 - Star: $A^* = \{ x_1 x_2 \ldots x_k | k \geq 0, x_i \in A \}$
Regular operations

- Regular languages are closed under the regular operations
- (Thm 1.25p45) The class of regular languages is closed under union
- Proof of closure properties is easier through non-deterministic automata

Non-determinism

- Computation: sequence of steps
- Given the current state and input symbol, the next state is completely determined
- Non-deterministic computation: many possible next states
- example: Non-deterministic FA
 - empty transitions
 - many outgoing arrows for the same symbol
- multiple ways to read through an input
- try all possibilities in parallel. accept if any computation path exists

Examples of NFAs

- alphabet $\Sigma = \{a, b\}$
- $L_1 = \{w | w \text{ contains } 'aba' \text{ as a substring}\}$
- $L_2 = \{w | \text{length of } w \text{ is a multiple of 3}\}$

example of a NFA

$L = \{ \text{all strings whose third symbol from the end is 1} \}$
Definition of an NFA

(Def 1.37p53) a non-deterministic FA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$:
- Q is a finite set of states
- Σ is a finite alphabet (set of symbols)
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow P(Q)$ is the transition function
- $q_0 \in Q$ is the starting state
- $F \subseteq Q$ are the final (accepting) states

Two machines are called equivalent if they accept the same language

(Th 1.39p55) Every NFA has an equivalent FA
Proof: by construction

Proof of NFA and DFA equivalence

Given an NFA $N = (Q, \Sigma, \delta, q_0, F)$, construct an equivalent DFA $M = (Q', \Sigma, \delta', q'_0, F')$

First, assume there are no ϵ arrows
If the number of states in Q is k the all possible subsets of states is 2^k

$Q' = P(Q)$
for $R \in Q'$, $a \in \Sigma$ define $\delta'(R, a) = \{ q \in Q | q \in \delta(r, a), r \in R \}$

$E(R) = \{ q \in Q | q \in \delta(r, a), r \in R \}$

$E(q_0) = \{ q \}$, and $F' = \{ R \in Q' | R contains a final state of N \}$

Proof of NFA and DFA equivalence: ϵ arrows

define $E(R) = \{ all states reachable from R by \epsilon moves only \}$
modify definition $\delta'(R, a) = \{ q \in Q | q \in E(\delta(r, a)), r \in R \}$
start state $q'_0 = \{ E(q_0) \}$
(end of proof)

(Corollary 1.40p56) A language is regular if and only if some NFA accepts it

Closure under regular operations

(Theorems 1.45-49p59) Regular languages are closed under union, concatenation and star
Proof: by construction
Regular expressions

- Assume an alphabet Σ
- (Definition 1.52) a regular expression R is either:
 - $a \in \Sigma$
 - ϵ (the empty string)
 - \emptyset the empty regular expression
 - $(R_1 \cup R_2)$, $(R_1 \circ R_2)$, (R^*), where R, R_1, R_2 are regular expressions
- examples
 - $0^*10^* = \{w | w$ contains exactly one '1'\}
 - $\Sigma^*1\Sigma^*$
 - $(0 \cup 1)^*1(0 \cup 1)^*$

FAs and regular expressions

- (Theorem 1.54) a language is regular if and only if some regular expression describes it
- proof: by construction, two directions
- (Lemma 1.55) Any regular expression can be converted into an NFA
- (Lemma 1.60) Any DFA can be converted into a regular expression
- proof of the first lemma is straightforward: go through inductive definition of a regular expression and show how to build the NFA for every case
- second lemma requires some more work

Generalized NFA: GNFA

- GNFA, generalized NFA: arrow labels are regular expressions
- start state has arrows to every other state and no incoming arrows
- single accepting state
- only one arrow between two states, no multiple labels

Generalized NFAs

- a GNFA is a 5-tuple $(Q, \Sigma, \delta, q_{start}, q_{accept})$, where
 - Q, Σ finite set of states, and alphabet
 - $\delta : (Q - \{q_{accept}\}) \times (Q - \{q_{start}\}) \rightarrow R$
 - q_{start} is the start state
 - q_{accept} is the accept state
DFA → regular expression

- convert DFA to a GNFA such that:
 - start state has arrows to every other state and no incoming arrows
 - single accepting state
 - only one arrow between two states, no multiple labels
- DFA → GNFA with \(k \) states → \(k - 1 \) states → \(\ldots \) 2 states
- Remove any internal state and repair the machine (update labels)
- complete proof by induction (proving that the conversion step is correct)

Non-regular languages

- power of FAs, regular languages
- \(B = \{0^n1^n|n \geq 0\} \)
- \(C = \{w|w \text{ has the same number of 0s and 1s}\} \)
- \(D = \{w|w \text{ has the same number of occurrences of } '01' \text{ and } '10' \text{ as substrings}\} \)
- \(B \) and \(C \) are not regular but \(D \) is regular (why ?)
- limitation: fixed number of states
 - fixed amount of memory
 - proving that languages are not regular: the pumping lemma

DFA → regular expression

- main step: removing states from the GNFA
- remove any internal state and update transition labels

Non-regular languages

- Long paths in DFAs
 - long strings correspond to long (computation) paths
 - long paths must repeat states (visit a state twice)
 - therefore there is a loop in the path
 - consider a DFA with \(|Q| = k\) that accepts a string \(w \) of size \(p \leq k \)
 - on input \(w \) the DFA will visit \(p + 1 \) states
 - \(q_1, \ldots, q_i, \ldots, q_i, \ldots, q_k \)
 - repeat \(q_i, \ldots, q_i \) part. same final state
Non-regular languages

(\textit{Theorem 1.70p78}) Pumping lemma
If \(A \) is regular then it
there exists \(p \) (pumping length) such that,
if \(s \) is any string in \(A \) of length at least \(p \)
then \(s \) may be divided in 3 parts, \(s = xyz \) satisfying:

1. for each \(i \geq 0 \), \(xy^i z \in A \)
2. \(|y| > 0 \) and
3. \(|xy| \leq p \)

Pumping examples -1

\(B = \{0^n|n \geq 0\} \) (ex. 1.73p80)
assume \(B \) is regular and \(p \) is the pumping length, and
\(s = 0^p1^p \)
then \(\exists x, y, z : s = xyz = 0^p1^p \) and \(\forall i \geq 0 : xy^i z \in B \)
three cases for \(i \):

1. if \(y = 0^k \) then \(xy^i z = 0^p+k1^p \in B \) - contradiction
2. if \(y = 1^k \) then \(xy^i z = 0^p1^p+k \in B \) - contradiction
3. if \(y = 0^k1^l \) then \(xy^i z = 0^p+k1^p0^k1^p+l \in B \) - contradiction

Pumping examples -2

\(F = \{ww|w \in \Sigma^*\} \) (ex. 1.75p81)
Let \(p \) be the pumping length and consider \(s = 0^p1^p0^p1 \)
\(s = xyz \) and \(|xy| \leq p \). One case: \(y = 0^k \) and
\(xy^i z = 0^p+k10^p1 \in F \)

note that choice of the string \(s \) is important.
if in this example we choose \(s = 0^p0^p \) the pumping lemma will not work.
Pumping examples -3

- $E = \{ 0^i 1^j | i \geq j \}$ (ex. 1.77p82)
 - consider $s = 0^p 1^p$. cases as first example
 - cases 2 and 3 still give contradictions. but pumping up the zeroes will not give a contradiction $xyz \in E$
 - Pump down $s = xz = 0^{p-k} 1^p$
- note: pumping lemma implies that all FAs accept "short" strings

Two questions

- Is the class of regular languages closed under intersection? prove you claim.
- NFA for a language can be much smaller than the DFA for the same language. can you give an example for such a language?