Computability

- regular, context-free and beyond
- \(L = \{1^n | n \text{ and } n + 2 \text{ are prime}\} \)

Alan Turing

- Alan Turing
 - 1912-1954, UK
 - Cambridge University, Princeton University
 - 1936, universal machines and the halting problem
- Alonzo Church
 - 1903-1995, USA
 - Princeton University
 - 1936, lambda calculus and undecidable problems
Turing machines

- The universal machine, a model for computation
- Read, write, move to a new cell, change state
- Tape contains the input string
 All the rest of the tape cells are blank
- Two halting states, Accept and Reject

\[\begin{array}{cccccccc}
$ & 0 & 1 & 0 & 1 & 0 & 1 & \cdots \\
\end{array} \]

one-way infinite tape

finite state control

University of Sydney
COMP3310/3610: Theory of Computation

Decidable problems

- (definition 3.5p142) A language is called Turing recognizable if some Turing machine recognizes it
 - A recognizer accepts all yes-inputs, may loop for ever on no-inputs
 - Also called recursively enumerable

- (definition 3.6p142) A language is called Turing decidable if some Turing machine decides it
 - always gives an answer
 - Also called recursive
Example

• (example 3.7p143)
 Example of a Turing machine for \(\{0^n | n \geq 0\}\)
 from left to right, cross off every other 0

Multitape Turing machines

• \(k\)-tape Turing machine
 \(\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R, S\}^k\)

• (theorem 3.13p149)
 A \(k\)-tape Turing machine is equivalent to a single tape Turing machine
 Proof: Simulate a multitape machine by a single tape one

Non-deterministic Turing machines

• non-determinism allows several choices for each step of the computation

• \(\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})\)

• many possible next steps

• non-deterministic computation represented as a tree

• Several computation paths

• Computation is accepting if an 'accept' leaf exists

• A non-deterministic branch may be infinite
Non-deterministic Turing machines

- (theorem 3.16p150)
 Every non-deterministic Turing machine has an equivalent
deterministic Turing machine
- Simulate the machine deterministically
- Do all possible computation paths, accept if any one of them
 accepts

We can simulate a given non-deterministic machine N by a 3
tape deterministic machine
- tape 3 is used as an index tape for the non-deterministic
 choices, pointing to a path into the computation tree
- a number '135' means 'take the first choice at the root, then
 the third etc'

- (theorem 3.16p150)
 Every non-deterministic Turing machine has an equivalent
deterministic Turing machine
- Simulate the machine deterministically
- Do all possible computation paths, accept if any one of them
 accepts
- problem: Non-deterministic computation may contain infinite
 paths
 simulate in parallel (breadth first traversal of the computation
 tree)
- Dove-tailing

- tape 1 has the input, tapes 2 and 3 are empty
- copy the input to tape 2
- use tape 2 to simulate the machine N. Use the symbols on
 tape 3 for the choices
 - if the symbol describes an unavailable choice goto 4
 - if no more symbols on tape 3, goto 4
 - if rejecting configuration is encountered, goto 4
 - if accept is encountered then {accept}
- replace tape 3 with the next (lexicographically) string
goto 2
Enumerators

- An enumerator is a Turing machine that prints (enumerates) all strings in a language
- (Theorem 3.21p153) a language is Turing recognizable if and only if it has an enumerator

Defining Computation

- Hilbert's tenth problem (1900)
 - Find an algorithm that decides whether a given polynomial has an integral root
 - .."a process by which it can be determined in a finite number of steps"..
- Matijasevic 1970: Hilbert's tenth is unsolvable
 - Martin Davis, Hilary Putnam, Julia Robinson

Church-Turing thesis

- Church-Turing thesis: computable means computable by a Turing machine
- All proposed computation models are equivalent, including
 - Turing machines
 - \(\lambda \)-calculus
 - Recursive functions
 - Quantum Turing machines

Decidable problems for regular languages

- (Theorems 4.1-4.5p166-169)
 - The following problems on regular languages are decidable
 - Does a given DFA \(M \) accept input \(w \)?
 - Same for non-deterministic automata
 - Given a regular expression, does it generate a given string \(w \)?
 - Given a DFA, does it accept any string?
 - Given two DFAs are they equivalent?
Decidable problems for context free

- (theorems 4.7-4.9p170-172)
 the following problems on context free languages are decidable
 - Given a CFG G and a string w, does G generate w?
 - Given a CFG G is $L(G) = \emptyset$?
 - Every context free language is decidable
- Equivalence is not decidable

Undecidable problems

- A specific problem that is algorithmically unsolvable
- Fundamental limitation of computing
- Example of an unsolvable problem: software verification- Given a program, does it conform to its specification?
- A more simple unsolvable problem: Given a TM M and a string w, does M halt on input w?
- In fact, (almost) "all" languages are undecidable
- ... and they are not even recognizable
- Existence of undecidable problems

Counting infinities

- How many languages $L \subseteq \Sigma^*$ are there?
 $\Sigma = \{0, 1\}$
- For $L \subseteq \Sigma^k$ there are 2^{2k}, a finite number
- For $L \subseteq \Sigma^*$ the number of languages is infinite...
- Small infinite sets and big infinite sets
- Georg Cantor, 1873
- Two sets have the same size if the elements of one set can be paired with the elements of the other

Mappings and functions

- A function $f : A \rightarrow B$ is a mapping of the elements of A to the elements of B
- f is ...
 - one-to-one if $f(a) \neq f(b)$ whenever $a \neq b$
 - onto if $f(A) = B$
 - correspondence if it is both 1-to-1 and onto
- Two sets A and B have the same size if there is a correspondence $f : A \rightarrow B$ between them.
Countable and uncountable

- The set of natural numbers is $\mathbb{N} = \{0, 1, 2, \ldots \}$
- A set is called **countable** if it is finite or it has the same size with \mathbb{N}
- Example: $\mathbb{Q} = \{\frac{m}{n} | m, n \in \mathbb{N}\}$, the set of rational numbers is countable
- A set is called **uncountable** if it is not countable
- The set of real numbers \mathbb{R} is uncountable
- Proofs: by **diagonalization**

Infinite binary strings

- Let $B = \{\text{all infinite binary strings}\}$
- B is uncountable

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 1 & 0 & \ldots \\
1 & 0 & 0 & 1 & 0 & 0 & \ldots \\
2 & 1 & 1 & 0 & 1 & 0 & \ldots \\
3 & 0 & 1 & 1 & 1 & 0 & \ldots \\
4 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\end{array}
\]

Counting languages and TMs

- **(theorem 4.18p178)** Some languages are not Turing-recognizable
- proof by diagonalization
- the set of all TMs is countable
 - a TM can be described by a finite string over a finite alphabet
 - arrange the strings alphabetically

- the set of all languages over an alphabet Σ is uncountable
- $\mathcal{P}(\Sigma^*)$
 - The set of all infinite binary sequences B is uncountable
 - Σ^* is countable (arrange alphabetically)
 - Every language corresponds to a characteristic sequence from B
More on counting

- Examples of countable sets: correspondence between \(\mathbb{N} \) and \(\mathbb{Z}, \mathbb{N}^2, \{a\}^*, \{a, b\}^* \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>+1</td>
<td>-1</td>
<td>+2</td>
<td>-2</td>
<td>+3</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>(0,0)</td>
<td>(0,1)</td>
<td>(1,0)</td>
<td>(0,2)</td>
<td>(1,1)</td>
<td>(2,0)</td>
<td>(0,3)</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>a</td>
<td>aa</td>
<td>aaa</td>
<td>aaaa</td>
<td>aaaaa</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>a</td>
<td>b</td>
<td>aa</td>
<td>ab</td>
<td>ba</td>
<td>bb</td>
<td></td>
</tr>
</tbody>
</table>

Counting \(\mathbb{N}^* \)

- Consider \(\mathbb{N}^* \), the set of finite sequences of numbers
- \(\mathbb{N}^* \) is countable, there is a bijection between \(\mathbb{N} \) and \(\mathbb{N}^* \)
- Use the unique prime factorization theorem
 - Every number can be written as a product of prime factors
 - Primes \(p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, \ldots \)
 - Every number can be written as a product of prime factors
 - \(x = p_1^{e_1} p_2^{e_2} \ldots \)
 - \(525 = p_2 * p_3 * p_3 * p_4 \)

Universal Turing Machine

- Universal Turing Machine \(U \) is given a description of any TM \(M \) and an input \(w \) and simulates \(M \) on \(w \)
- Use 2 tapes. The first tape contains the description of \(M \) and the input \(w \)
 - Write down starting \(<q_0w> \) configuration on the 2nd tape
- Repeat until halting configuration is reached:
 - Replace the configuration on tape 2, according to the transition function of \(M \)
- Accept if \(q_{accept} \) is reached, reject if \(q_{reject} \) is reached
The halting problem

- The halting problem for TMs is undecidable
 \(H_{TM} = \{ < M, w > | M \text{ halts on input } w \} \)
- proof by contradiction
- Assume that \(H_{TM} \) is decidable and \(\text{Halts}(M, w) \) is the TM that decides it
- Define the following TM:
 \[D(M) := \begin{cases} \text{accept} & \text{if } \text{Halts}(M, M) \text{ then loop for ever} \\ \text{reject} & \text{otherwise halt (accept)} \end{cases} \]

- What is the output of \(D(D) \)? Does it halt?

More on the halting problem

- (theorem 4.11p174,179)
 The acceptance problem for TMs,
 \(A_{TM} = \{ < M, w > | M \text{ accepts input } w \} \) is undecidable
- Proof by contradiction
- Assume \(A_{TM} \) is decidable and \(H(M, w) \) is the TM that decides it

 \[H(M, w) = \begin{cases} \text{accept} & \text{if } M \text{ accepts input } w \\ \text{reject} & \text{otherwise} \end{cases} \]
More on the halting problem

	M_1	M_2	M_3	M_4	...	D	...
M_1	accept	accept	reject	accept
M_2	reject	accept	accept	reject
M_3	reject	reject	reject	reject
M_4	reject	accept	accept	accept
...
D	reject	reject	accept	reject

Un-recognizable languages

- A_{TM} is Turing recognizable
- (theorem 4.22p181)
 A language L is decidable if and only if L and its complement \overline{L} are both Turing recognizable
 - L is called co-Turing-recognizable if its complement \overline{L} is Turing-recognizable
- (corollary 4.23p182)
 \overline{H}_{TM} and A_{TM}, the complements of the halting problem and the acceptance problem, are not Turing recognizable

Un-recognizable languages

- A_{TM} is not Turing-recognizable but it is co-Turing-recognizable
- $E_{TM} = \{ G \mid G$ is a TM and $L(G) = \emptyset \}$ is not Turing recognizable
- $E_{Q_{TM}} = \{ < G, H > \mid$ TMs G, H and $L(G) = L(H) \}$ is not even co-TM-recognizable

Classifying problems

Recognizable (RE)

- Decidable (Recursive)
 - Context free
 - Regular
 - co-Recognizable (co-RE)
Classifying problems

- Recognizable (RE)
- Decidable (Recursive)
- Context Free
- Regular

\[
\begin{array}{c}
\text{EQ}_{TM} \\
\text{ATM} \\
\text{co-\text{RE}} \\
(0+1)^* 1 \\
\text{ww} R
\end{array}
\]

Emptiness

- (Theorem 5.2p189) The emptiness problem for TMs is undecidable
- \(E_{TM} = \{ < M > | L(M) = \emptyset \} \)
- Proof: reduce from \(A_{TM} \)
given a TM \(R \) for \(E_{TM} \) build one for \(A_{TM} \)
- Modify \(M \) to accept only \(w \) if it is non-empty
- \(M_1 \): on input \(< x > \)
 - if \(x \neq w \), reject
 - if \(x = w \) simulate \(M \) on \(w \) and accept if \(M(w) \) accepts

Reductions

- Proving undecidability using reductions
- To prove \(L \) is undecidable, prove the following:
 - “if \(L \) is decidable then \(A_{TM} \) is decidable”
- Proofs by contradiction based on a construction
- Given a TM for \(L \) show how you can use it to solve \(A_{TM} \) or any other undecidable problem

Mapping reducibility

- Many different kinds of reductions
- Mapping or many-one reducibility
- (Definition 5.17p206) a function \(f : \Sigma^* \rightarrow \Sigma^* \) is a computable function if some TM on input \(w \) halts with \(f(w) \) on its tape
- (Definition 5.20p207) \(A \) is mapping reducible to \(B \) written \(A \leq_m B \) if there is a computable function \(f : \Sigma^* \rightarrow \Sigma^* \) such that for all \(w \)
 \[
 w \in A \iff f(w) \in B
 \]
The function \(f \) is called the reduction from \(A \) to \(B \)
Reducibility

- if $A \leq_m B$ and B is decidable then A is decidable
- if $A \leq_m B$ and A is undecidable then B is undecidable $\leq_m B$
- if $A \leq_m B$ and B is Turing recognizable then A is T- recognizable
- if $A \leq_m B$ and A is not T-recognizable then B is not T- recognizable
- $A \leq_m B$ is the same as $\overline{A} \leq_m \overline{B}$

Properties of regular languages

- deciding properties of sets of languages can be a very difficult problem
- automata are simple enough to allow simple algorithms

Problems on FAs

- acceptance (or membership): does M accept string w? $A_{FA} = \{< M, w > | M \text{ is a FA that accepts } w \}$
- membership for regular expressions
- emptiness: given A, is $L(A) = \emptyset$? $E_{FA} = \{< A > | L(A) = \emptyset \}$
- equivalence: do A and B accept the same language? $EQ_{FA} = \{< A, B > | L(A) = L(B) \}$

Descriptions

- $< M >$ denotes a description of the machine M
- checking if a given string is a valid DFA
- encode everything as a string
- description of a machine and enumeration
- self-reference
Membership

- theorem 4.1p166
- acceptance (or membership): does M accept string w?
 $A_{FA} = \{< M, w > \mid M$ is a FA that accepts $w\}$
- note: this problem deals with all possible DFAs, not a specific instance
- check the description of M
- simulate M on w

Emptiness

- theorem 4.4p168
- emptiness: given A, is $L(A) = \emptyset$?
 $E_{FA} = \{< A > \mid L(A) = \emptyset\}$
- let $M = (Q, \Sigma, \delta, q_0, F)$ and $|Q| = k$
- check if any final state is reachable from q_0 within k steps
- note: we are using the pumping lemma property
 if M accepts any string, then it must accept a short string

Equivalence

- theorem 4.5p169
- equivalence: do A and B accept the same language?
 $EQ_{FA} = \{< A, B > \mid L(A) = L(B)\}$
- construct the symmetric difference
 $L' = (L(A) \cap \bar{L}(B)) \cup (\bar{L}(A) \cap L(B))$
- note: the symmetric difference is empty iff $L(A) = L(B)$
- check L' for emptiness

Equivalence of states

- given a DFA M, two states p, q are called equivalent if for all strings w,
 starting from state p on input w we end up to an accept iff
 starting from state q on input w we end up to an accept
- if two states are not equivalent, they are called distinguishable
- testing equivalence: table filling method
Equivalence of states - 1

- construct a table as follows

<table>
<thead>
<tr>
<th>q0</th>
<th>q1</th>
<th>...</th>
<th>q_{k-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>q1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- for states \(p, q \) if there exists an input symbol \(a \) such that \(\delta(p, a) = r \neq s = \delta(q, a) \) then \(p, q \) are distinguishable
- if not, mark the appropriate entry of the table

Equivalence of states - example

- apply previous algorithm for deciding equivalence of two automata
- are the two starting states equivalent?
- use the previous algorithm and treat both automata as one
- if their starting states are found to be equivalent, then the automata are equivalent
Minimizing automata

* (see also problem 7.40p299)
* given a DFA M construct a DFA M' with minimal number of states such that $L(M) = L(M')$
* input $<M>$ where $M = (Q, \Sigma, \delta, q_0, A)$
 output $<M'>$ such that $L(M) = L(M')$
* remove useless states (unreachable from q_0)
* find all pairs of equivalent states
* partition into subsets of equivalent states
* merge equivalent states into one new state

Minimality

* Minimized DFAs are ... minimal
* assume not: M is the minimized automaton from the previous algorithm, and there exists an even smaller one N
* start states of M and N are equivalent since $L(M) = L(N)$
* if p, q are equivalent then their successors on any one input symbol are equivalent

Minimality- 1

* all states of M are distinguishable (same for N)
* all states are reachable in both M, N
* every state p of M is equivalent to some state q in N for s such that $M : p_0 \xrightarrow{s} p$ then $N : q_0 \xrightarrow{s} q$
* N is smaller, two states of M are equivalent to the same N state
* therefore they are equivalent - contradiction
Multistack machines

- theorem: a PDA with two stacks is as powerful as a TM
- proof: simulate a TM by a two stack machine
 - one stack holds the TM tape contents to the left of the head and the second the contents to the right of the head

Counter machines

- a k-counter machine has access to k counters
- the machine can add/subtract one from each counter or test for zero
- transition depends on state, input symbol, and which counters are zero
- equivalent definition: k-stack machine that can push a single symbol on its stacks
- what is the power of a counter machine?

Counter machines

- (theorem) a three counter machine can simulate a TM
 - simulate a 2 stack PDA with two counters
 - each counter has a numeric representation of the stack contents
 - the third is used for adjusting the other two counters
- (theorem) a two counter machine can simulate a TM
 - simulate 3 counters with 2
 - use one counter to store an encoding of the three counters/numbers (i, j, k): store $2^i3^j5^k$
 - use the second counter for adjusting the first
 - incrementing i is multiplying the counter by 2 etc