Complement of context-free languages are not context-free.

Consider the language $L = \{ww^R : w \in \{0,1\}^*\}$.

- $L \neq \emptyset$, as ww^R is even for $w = \epsilon$.
- $L \neq \{\epsilon\}$, as ww^R is odd for $w = \epsilon$.
- $L \neq \Sigma^*$, as ww^R is even for $w = \emptyset$.

Consider the language $L = \{a^n b^n c^n : n \geq 0\}$.

- $L \neq \emptyset$, as $a^2 b^2 c^2$ is in the language.
- $L \neq \{\epsilon\}$, as $a^\epsilon b^\epsilon c^\epsilon$ is not in the language.
- $L \neq \Sigma^*$, as $a^\emptyset b^\emptyset c^\emptyset$ is not in the language.

Similarly, state that the class of context-free languages is not closed under complementation.

Theorem: The class of context-free languages is not closed under complementation.
Un-recognizable languages

- A_{TM} is Turing recognizable
- (theorem 4.22p181) A language L is decidable if and only if L and its complement \overline{L} are both Turing recognizable
 - L is called co-Turing-recognizable if its complement \overline{L} is Turing-recognizable
- (corollary 4.23p182) \overline{H}_{TM} and \overline{A}_{TM}, the complements of the halting problem and the acceptance problem, are not Turing recognizable

Un-recognizable languages

- \overline{A}_{TM} is not Turing-recognizable but it is co-Turing-recognizable
- $E_{TM} = \{ G \mid G$ is a TM and $L(G) = \emptyset \}$ is not Turing recognizable
- $EQ_{TM} = \{ < G, H > \mid$ TMs G, H and $L(G) = L(H) \}$ is not even co-TM-recognizable

Classifying problems

- Recognizable (RE)
 - Decidable (Recursive)
 - Context free
 - Regular
- A_{TM} (co-RE)

The halting problem again

- Reductions between two problems "A reduces to B"
- $A \rightarrow B$, if we can solve B then we can solve A
- (theorem 5.1p188) The halting problem is undecidable
- $HALT_{TM} = \{ < M, w > \mid M$ halts on input $w \}$
 - prove by reducing the acceptance problem A_{TM} to $HALT_{TM}$
- Assume R solves $HALT_{TM}
Reducibility and undecidability

The halting problem again

- Construct S as follows:
 - S: On input $< M, w >$
 1. Run $R(< M, w >)$
 2. if R rejects, reject
 3. if R accepts, simulate M on w
- S solves A_{TM} if R exists

Reductions

- Proving undecidability using reductions
- To prove L is undecidable, prove the following:
 "if L is decidable then A_{TM} is decidable"
- Proofs by contradiction based on a construction
- Given a TM for L show how you can use it to solve A_{TM} or any other undecidable problem

Emptiness

- (theorem 5.2p189) The emptiness problem for TMs is undecidable
- $E_{TM} = \{ < M > \mid L(M) = \emptyset \}$
- Proof: reduce from A_{TM}
 - Given a TM R for E_{TM} build one for A_{TM}
 - Modify M to accept only w if it is non-empty
- M_1: on input $< x >$
 1. if $x \neq w$, reject
 2. if $x = w$ simulate M on w and accept if $M(w)$ accepts

- S: on input $< M, w >$
 1. From M construct M_1
 2. Simulate R on M_1
- S constructs M_1 by adding some new states to it that simply check for $x = w$

 $L(M_1) = \emptyset$ \hspace{1cm} M does not accept w
 $L(M_1) = \{ w \}$ \hspace{1cm} M accepts w
Regularly

- (Theorem 5.3p191) REGULAR_{TM} is undecidable
- $\text{REGULAR}_{TM} = \{ < M > | L(M) \text{ is regular} \}$
- Proof: reduce from A_{TM}
- Assume $\text{REG}(M)$ decides regularity.
- Use it to solve $A_{TM}(M, w)$
- S: on input $< M, w >$
 - Construct M_2: on input x
 - if x is 0^n1^n accept
 - otherwise run $M(w)$ and accept if it accepts
 - Run REG on M_2
 - Accept if $\text{REG}(M_2)$ accepts

Other undecidable properties

- Acceptance, emptiness, regularity, equivalence
- Is $L(M)$
 - Context free
 - Finite
 - Σ^*
Rice’s Theorem

- Rice’s theorem: all non-trivial TM language properties are undecidable
- important to note: Rice’s theorem refers to properties of languages; not of the Turing machines

Let T_\emptyset be a TM that always rejects $L(T_\emptyset) = \emptyset$

wlog assume $T_\emptyset \not\in P$ (otherwise proceed with \overline{P})

P non-trivial implies $\exists T \in P$

use the ability of $P()$ to distinguish between T_\emptyset and T

Rice’s Theorem

- (problem 5.28p213) Let P be a non-trivial property of the language of a TM. Prove that determining if the language of a given TM has this property is undecidable

 $P(M) = \{ < M > \mid L(M) \text{ has property } P \}$

 - non-trivial property: it contains some but not all TM languages
 - P is a property of the TM language whenever $L(M_1) = L(M_2)$ then $M_1 \in P$ iff $M_2 \in P$

 Proof: assume $P()$ decides the property P

 reduce A_{TM} to $P()$ by constructing S

- define S: on input $< M, w >$

 - Based on M and w construct $M_w(x)$

 - Simulate $M(w)$ if it halts and rejects, reject

 - if it accepts, simulate T on x. if it accepts, accept

 - Use $P()$ to determine whether M_w has property P. if it does, accept, otherwise reject

 M_w simulates T if $M(w)$ accepts

 - $L(M_w) = L(T)$ if M accepts w

 - $L(M_w) = \emptyset$ otherwise
Reductions

- Reductions so far have been straightforward
- Properties that involve TM
- For more general questions, use different reductions

Computation histories

(definition 5.5p193) An accepting computation history of M on w is a sequence of configurations C_1, \ldots, C_k
- C_1 is the start configuration of M on w
- C_k is an accepting configuration
- $C_i \rightarrow_M C_{i+1}$, a valid computation stem of M
- If C_k is a rejecting configuration, then this sequence is a rejecting computation history
- Computation histories are finite sequences
- If M does not halt on w no computation sequence exists

Deciding CF properties

(theorem 5.13p197) ALL_{CFL} is undecidable
- $ALL_{CFL} = \{ < G > | G$ is a CFG and generates all $\Sigma^* \}$
- Proof: use computation histories to reduce A_{TM} to this problem
- A_{TM}: Does M accept w?
- A_{TM}: Does there exist an accepting computation history for M on w?
CFL

- \(< M, w > \notin A_{TM} \) implies all histories \(x \) are non-accepting
- Define \(L_{CFL} \) a CFL that contains all accepting histories \(x \) of \(M \) on \(w \)
- \(< M, w > \notin A_{TM} \) translates to \(x \in L_{CFL} \)?
- a CFG \(G \) can describe all accepting histories
- \(x = (C_1, \ldots, C_k) \in G \) iff
 1. \(C_1 \) is not proper start configuration, or
 2. there is an invalid \(C_i \rightarrow C_{i+1} \)
 3. last configuration in \(x \) is not accepting

\(\text{CFL equality} \)

- theorem: \(EQ_{CFL} = \{ < G_1, G_2 > | G_1, G_2 \text{ are CFG and } L(G_1) = L(G_2) \} \)
- proof: let \(G' = \Sigma^* \). decide \(< G > \) is in \(ALL_{CFL} \) by \(EQ(G, G') \)

Post correspondence problem

- An undecidable problem concerning manipulations of strings
- a domino contains two strings (top and bottom)
 \[
 \begin{bmatrix}
 a \\
 bc
 \end{bmatrix}
 \]
- a collection of dominos
 \[
 \left\{ \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix} \right\}
 \]
- PCP: given a collection of dominos find a match, a sequence (repetitions allowed) such that the top string is the same as the bottom
Post correspondence problem

- a collection of dominos
 \[
 \left\{ \left[\frac{b}{ca} \right], \left[\frac{a}{ab} \right], \left[\frac{ca}{a} \right], \left[\frac{abc}{c} \right] \right\}
 \]
- PCP: given a collection of dominos find a match, a sequence (repetitions allowed) such that the top string is the same as the bottom
 \[
 \left[\frac{a}{ab} \right] \left[\frac{b}{ca} \right] \left[\frac{ca}{a} \right] \left[\frac{a}{ab} \right] \left[\frac{abc}{c} \right]
 \]

PCP is undecidable advanced topic

- (theorem 5.15p200) PCP is undecidable
- proof: reduce from \(A_{TM}\) using computation histories
- given \(M\) and \(w\), construct the dominos to be parts of the computation history of \(M\) on \(w\)
- these dominos will form a match only of an accepting computation history exists
- start with \(MPCP\), the modified PCP: the match must start with the first domino \(\left[\frac{t_1}{b_1} \right]\)

PCP is undecidable advanced topic

- for some collections, a match does not exist
- Post correspondence problem: determine whether a given collection of dominos has a match
- collection: \(P = \left\{ \left[\frac{t_1}{b_1} \right], \left[\frac{t_2}{b_2} \right], \ldots, \left[\frac{t_k}{b_k} \right] \right\}\)
- a match is a sequence \(i_1, i_2, \ldots, i_n\) such that
 \[t_1 t_2 \cdots t_n = b_1 b_2 \cdots b_n\]
- the PCP language is
 \[PCP = \{ \langle P \rangle | \text{a PCP problem that has a match} \}\]

- \(#q_0 w_1 w_2 \cdots w_n\#\) is the starting configuration of \(M\) on \(w\)
- put \(\left[\begin{array}{c} \#q_0 w_1 w_2 \cdots w_n \# \\ \# \end{array} \right]\) as the first domino
- need to start from this domino- need to match the bottom part at the top
- this forces the next domino to have a certain kind of top part
- that domino will have a bottom part that is the next configuration of \(M(w)\)
PCP is undecidable advanced topic

<table>
<thead>
<tr>
<th>$\delta(q, a) = (r, b, R)$</th>
<th>$\delta(q, a) = (r, b, L)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q a \rightarrow b \delta$</td>
<td>$q a \rightarrow b \gamma$</td>
</tr>
<tr>
<td>$\forall a \in \Gamma$</td>
<td>$\forall a \in \Gamma$</td>
</tr>
<tr>
<td>copy #, add a blank</td>
<td>$a \text{accept}$</td>
</tr>
<tr>
<td>γaccept</td>
<td>γaccept</td>
</tr>
</tbody>
</table>

last step: build in the problem the requirement to start with the first domino
- for $u = u_1 u_2 \cdots u_n$ define
 - $u_\star = u_1 \star u_2 \star \cdots \star u_n$
 - $u_* = u_1 \ast u_2 \ast \cdots \ast u_n$
- convert $\{ [t_1 b_1], [t_2 b_2], \ldots, [t_k b_k] \}$
- to $\{ [t_1 \ast b_1 \star], [t_1 \ast b_1 \ast], [t_2 \ast b_2 \ast], \ldots, [t_k \ast b_k \ast], [\ast \ast \ast] \}$

PCP is undecidable advanced topic

- Many different kinds of reductions
- Mapping or many-one reducibility
- (definition 5.17p206) a function $f : \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if some TM on input w halts with $f(w)$ on its tape
- (definition 5.20p207) A is mapping reducible to B written $A \leq_m B$ if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that for all w
 $$w \in A \iff f(w) \in B$$
 The function f is called the reduction from A to B

- if $A \leq_m B$ and B is decidable then A is decidable
- $A \leq_m B$ if A is undecidable then B is undecidable
- if $A \leq_m B$ and B is Turing recognizable then A is T-recognizable
- if $A \leq_m B$ and A is not T-recognizable then B is not T-recognizable
- $A \leq_m B$ is the same as $\overline{A} \leq_m \overline{B}$
Equality of TM languages advanced topic

- (theorem 5.30p210) EQ_{TM} is neither T-recognizable nor co-T-recognizable
- prove two things:

 \[
 \begin{array}{c}
 EQ_{TM} \text{ not T-recognizable} \\
 EQ_{TM} \text{ not co-T-recognizable} \\
 EQ_{TM} \text{ not T-recognizable}
 \end{array}
 \]

 $A_{TM} \leq_{m} EQ_{TM}$

$A_{TM} \leq_{m} EQ_{TM}$ advanced topic

- A_{TM} reduces to \overline{EQ}_{TM}
- F: on input M, w
 1. construct two machines
 - $M_1 = \text{reject all inputs}$
 - $M_2 = \text{run } M(w) \text{ if it accepts, accept}$
 2. output $< M_1, M_2 >$

 \[
 \begin{array}{c}
 M(w) \text{ accepts} \\
 M(w) \text{ does not accept}
 \end{array}
 \]

 \[
 \begin{array}{c}
 M_1 \text{ nothing, } M_2 \text{ everything} \\
 M_1 \text{ nothing, } M_2 \text{ nothing}
 \end{array}
 \]