Hamiltonian paths

- given a directed graph \(G \) and two of its vertices \(s, t \), is there a path connecting \(s \) with \(t \) that visits all vertices exactly once?
- \(HAMPATH = \{ (G, s, t) | G \text{ is a directed graph, with a Hamiltonian path from } s \text{ to } t \} \)
- (theorem 7.46p286) \(HAMPATH \) is \(NP \)-complete
- reduce from 3\(SAT \)
- (the following figures are from the textbook, Sipser’s “introduction to the theory of computation”)
Hamiltonian paths

Figure 7.49
The high-level structure of G

Figure 7.50
The horizontal nodes in a diamond structure

Figure 7.51
The additional edges when clause c_j contains x_k

Figure 7.52
The additional edges when clause c_j contains \overline{x}_i

Figure 7.53
Zigzagging and zag-zagging through a diamond, as determined by the satisfying assignment

Figure 7.54
This situation cannot occur
Undirected Hamiltonian path

- *(theorem 7.55p291) UHAMPATH is NP-complete*
- reduce the directed version to the undirected

Space complexity

- characterization of problems in terms of space/memory requirements
- measuring space: use the Turing machine model
- space behaves "better" than time
- space can be re-used

Space complexity

- *(definition 8.1p303) The space complexity of a deterministic TM M is the function $f : \mathbb{N} \to \mathbb{N}$ where $f(n)$ is the maximum number of tape cells that M uses on any input of length n*
- the definition also requires that M halts on all inputs

- *(definition 8.2p304) the space complexity classes $SPACE(f(n))$ and $NSPACE(f(n))$ are defined as follows:*
 - $SPACE(f(n)) = \{ L | \text{there exists a deterministic TM that decides } L \text{ in space } f(n) \}$
 - $NSPACE(f(n)) = \{ L | \text{there exists a non-deterministic TM that decides } L \text{ in space } f(n) \}$
Example

- solving SAT brute-force
- given a formula \(\varphi \) on the variables \(x_1, x_2, \ldots, x_n \), try all assignments to the variables and evaluate \(\varphi \) on each assignment
- what is the space complexity of this algorithm?

Space and time

- \(f \)-space computation may run for \(f^{2O(f)} \) time steps at most
- cannot run for more than that because it would repeat a configuration and therefore lead to an infinite loop

Savitch’s theorem

- comparing the power of deterministic and non-deterministic space
- (theorem 8.5p306) for any \(f(n) \geq n \),
 \(\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f^2(n)) \)
- non-determinism gives little extra power in terms of space complexity
- the equivalent problem for time is the \(P \) versus \(NP \) question
- proof: simulation of a NTM deterministically.
 main idea: re-use space

Solving SAT brute-force

- given a formula \(\varphi \) on the variables \(x_1, x_2, \ldots, x_n \), try all assignments to the variables and evaluate \(\varphi \) on each assignment
- what is the space complexity of this algorithm?
- the space complexity is linear: re-use space
Savitch’s theorem

- straightforward simulation does not work
- f-space computation may go for 2^f time steps
- we can simulate all possible non-deterministic branches but that requires remembering all non-deterministic choices
- space requirements would be 2^f worst case.

Proof of Savitch’s theorem

- consider the yieldability (or reachability) problem: given a NTM N, input w, configurations c_1, c_2 and a number t, can c_1 yield c_2 in t steps?
- if we have a way of solving this problem in limited space, then we can simulate a NTM N:
- given N and input x, is it possible for the start configuration c_1 to yield the accept in the max possible number of steps?

Proof of Savitch’s theorem

- $CANYIELD(c_1, c_2, t)$:
 - $t = 1$, test $c_1 = c_2$ or c_1 leads to c_2 directly (check N’s transition function)
 - for each configuration c_m of N on input w
 - run $CANYIELD(c_1, c_m, t/2)$
 - run $CANYIELD(c_m, c_2, t/2)$
 - if such a mid-point is found, accept
 - otherwise reject

- analysis of space requirements of the simulation
- we need space for the recursion (stack)
- t starts as $2^f(n)$ and is halved at every recursive call
- so the depth of the recursion is $O(\log t)$ or $O(f(n))$
- each level of the recursion needs to store c_1, c_2, t on the stack. that requires $O(f(n)$ space
- total space $O(f^2(n))$
- technical problem: we do not know $f(n)$ beforehand. try all possible values, reusing space
PSPACE

- (definition 8.6p308) *PSPACE* is the class of languages that are decidable in polynomial space on a deterministic TM
 \[PSPACE = \bigcup_k \text{SPACE}(n^k) \]
- Define *NPSPACE*, the non-deterministic version of *PSPACE*
- *PSPACE* = *NPSPACE* by Savitch’s theorem
- Define *EXPTIME* as deterministic exponential time
 \[P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq \text{EXPTIME} \]

PSPACE-completeness

- (definition 8.8p309) A language *B* is called *PSPACE*-complete if it satisfies two conditions:
 1. \(B \in \text{PSPACE} \)
 2. for every \(A \in \text{PSPACE} \), \(A \preceq_P B \)
- If *B* satisfies only (2) then it is called *PSPACE*-hard

Quantified formulas

- *SAT* is an *NP*-complete problem
- Involves boolean formulas, but no quantifiers
- Quantified boolean formulas: boolean formulas with existential or universal quantifiers
- Examples:
 - \(\forall x(x + 1 > x) \)
 - \(\forall x \exists y((x \lor y) \land (\neg x \lor \neg y)) \)
 - All variables quantified: fully quantified formulas or sentences
 - Fully quantified formulas are either true or false

TQBF

- True quantified boolean formula *TQBF*
- Given a fully quantified boolean formula, decide whether it is true or false
- \(TQBF = \{ \varphi | \varphi \text{ is a true fully quantified boolean formula} \} \)
- *TQBF* is *PSPACE*-complete
(Theorem 8.9p311) TQBF is PSPACE-complete

- Proof:
 - **TQBF ∈ PSPACE**: try out all possible assignments, reusing space
 - All of PSPACE reduces to TQBF: encode the simulation of any PSPACE computation by a formula

TQBF ∈ PSPACE

- Here is a polynomial space algorithm \(T(\varphi) \) for TQBF on input \(\varphi \), \(T(\varphi) \):
 1. If \(\varphi \) has no quantifiers, just evaluate it
 2. If \(\varphi \) is \(\exists x \psi \), call \(T(\psi) \) once with \(x = 0 \) and once with \(x = 1 \)
 accept if any of the two accepts otherwise reject
 3. If \(\varphi \) is \(\forall x \psi \), call \(T(\psi) \) once with \(x = 0 \) and once with \(x = 1 \)
 accept if both of them accept, otherwise reject
- Space required: depth of the recursion is equal to the number of variables, and constant space for each recursive call

TQBF is PSPACE-hard

- Let \(A \) be in \(SPACE(n^k) \), decided by a TM \(M \). Reduce it to TQBF as follows
 1. The reduction will map any string \(w \) to a formula \(\varphi \) that is true if \(M \) accepts \(w \)
 2. Construction similar to the Cook-Levin theorem formula
 3. Formula cannot be used in the same way as in Cook-Levin theorem: the running time may be exponential (the computation tableau is too big)
 4. Solution: break up formula into parts and represent each part with the same 'subformula' plus quantifiers

- Construct a formula \(\varphi_{c_1,c_2,t} \)
 - \(\varphi_{c_1,c_2,t} = \exists m_1[\varphi_{c_1,m_1,\frac{t}{2}} \land \varphi_{m_1,c_2,\frac{t}{2}}] \)
 - Reduce formula size
 - \(\varphi_{c_1,c_2,t} = \exists m_1 \forall (c_3,c_4) \in \{(c_1,m_1),(m_1,c_2)\}[\varphi_{c_3,c_4,\frac{t}{2}}] \)
 - Use \(\forall x[\{x = y \lor x = z \} \rightarrow \ldots] \) instead of \(\forall x \in \{y,z\}[\ldots] \)
Other PSPACE-hard problems

- other PSPACE-complete problems include games and finding winning strategies in games
- example: game of GO in an $n \times n$ board
 variant of GO (bounded moves and some simplified rules)

Logspace

- sublinear space bounds, log n
- a machine can read the entire input, but does not have enough space to store it
- modify the Turing machine model to allow a read-only input tape, plus a working tape
- the space bound applies on the working tape only
- log-space is an class that contains interesting problems and has robustness properties under model and input encoding variations

L and NL

- L is the class of languages decidable in deterministic logarithmic space
 \[L = \text{SPACE}(\log n) \]
- NL is the class of languages decidable in non-deterministic logarithmic space
 \[NL = \text{NSPACE}(\log n) \]

Is there a path?

- the reachability problem on directed graphs is in NL
- for TM with a read only input tape, define the configuration the TM on an input w to include the contents of the work tape, the state, and the positions of all head pointers (including the input tape pointer)
- an $f(n)$-space machine may have at most $n^{2O(f(n))}$ configurations
- with this definition, Savitch’s theorem works for any space bound $f(n) \geq \log n$
Completeness and reductions

- characterizing L and NL, using completeness
- (open) question $L = NL$?
- reducibility: polynomial time reducibility is not useful, since all NL problems are reducible to one another
- poly-time reductions are too powerful to reveal interesting properties within NL
- use log-space reducibility

log-space reducibility

- (definition 8.21p324) a log-space transducer is a TM with a read only input tape and a write-only output tape that works in $O(\log n)$ space. The transducer computes a function $f : \Sigma^* \rightarrow \Sigma^*$
- f is called a log-space computable function
- a language A is called log space reducible to B written $A \leq_L B$ if A is mapping-reducible to B by a log space computable function

NL-completeness

- (definition 8.22p324) a language B is NL-complete if
 - $B \in NL$
 - every $A \in NL$ is log-space reducible to B
- if only the second property holds, then B is called NL-hard
- if any NL-complete problem is in L then $NL = L$

Path is NL-complete

- (theorem 8.25p325) PATH is NL-complete
- proof: construct a directed graph that represents the computation of a log-space computation
- (corollary 8.26p326) $NL \subseteq P$
the following is considered a surprising result

(theorem 8.27p327) $NL = co-NL$

- proof: show that $PATH$ is in NL
- Immerman-Szelepcsényi theorem: For reasonable $s(n) \geq \log n$, $NSPACE(s(n)) = co-NSPACE(s(n))$

Complexity classes

- the known relationships among some classes

\[L \subseteq NL = co-NL \subseteq P \subseteq PSPACE \]

- we know that $NL \neq PSPACE$
- we believe that all these containments are proper

On NP

- graph theoretic properties and NP
- first order logic
 - how do you express reachability in first-order logic?
- existential second order logic $\exists P \varphi$ where φ is first-order

Fagin's theorem (adv)

- the class of all graph-theoretic properties expressible in existential second order logic is precisely NP