INFO 4990: Information Technology Research Methods

Overview of Research: Definition and Process
Lecture by A. Fekete,
based in part on materials by J. Davis and others
Research

• What is research?
• Key components
 – A question of interest
 – A claim
 – Evidence
 – Argument (link evidence to claim)
• What are some of the different kinds of research?
• How to do research
Definition

• As a general term, research is gathering information that answers a question and so solves a problem.
 • from Booth, Colomb, & Williams “The Craft of Research”
• Eg journalist finds out who contributed to election campaign fund, to understand political decisions
• Eg repairer finds out what procedure to use to fix a washing machine
In academic research, you must not only answer a question, but you must find something new and interesting. You join a community of researchers. You must advance the collective understanding of this community. Each community has a cumulative tradition with a set of interesting questions, tools and methods, practices, a style and language for writing up the research. Research is a conversation and ongoing social activity! You need critical and careful reading of published research to learn what the community already knows, to fit your work into the community, and to be prepared for your own work to be evaluated.
A question

- Every piece of research should address a question of interest to the community.
- Each community has a tradition of style of question,
 - what happens?
 - why does it happen?
 - how should one do something?
 - what something should one do?
- Many questions fit into an on-going agenda
 - eg find data models to represent different sorts of information
 - eg move data and computation in a network to exploit locality
 - eg understand the design process
A claim

- Every piece of research makes a claim (the “contribution”)
 - this should answer a question of interest
- Claims can be very diverse, among fields and within fields
- This is what happens
 - eg how often is data corrupted when using weak concurrency control
- This is why something happens
 - eg what factors lead to project success in open-source development
- This is a better way to do something
 - eg efficiently recalculate a graph layout after a change to topology
- This is a better something to do
 - eg allow users to see the model of their skills kept in a teaching system

Be explicit about the meaning of “better”
Evidence

- You must back up the claim
 - evidence can be very varied, for examples
 - a prototype implementation to show that a system can be built to achieve claimed functionality
 - a simulation model which is executed to show a system has certain properties
 - measurements of a running system to show it has good performance
 - observations of behaviour in an organisation to show what is happening
 - a mathematical proof to show that some process has desired properties
- Each research method is defined by the sort of evidence that it can produce
 - each community has its own standards of quality and reasonableness
Argument

• You should show that the evidence you offer supports the claim you made
 – It’s essential that you deal with natural or obvious objections to the correctness or importance of the work
 – that is, you must think like your readers, and anticipate their reactions
• In systems work, this is often called an “evaluation” of the design
Some types of claim and argument I

- This system design leads to better performance on some metric
 - make sure you limit how much worse this makes other metrics (such as cost!)
 - make sure your measurements are fair (don’t compare with “strawman” design but with state-of-the-art)
- This system design offers better functionality for some uses
 - make sure you show it can be implemented with adequate performance
Some types of claim and argument II

• This behaviour can be explained by this theory
 – make sure you don’t have confounding factors such as level of experience, or method novelty, or subject expectations ("placebo effect")

• This is what happens
 – make sure you don’t interfere too much with what happens when you gather data, or misinterpret it due to observer expectations
Common mistakes I

• Gather lots of data without a focussed question or method
• A collection of facts is not a contribution!
 – it must reveal some pattern or understanding that you make explicit
Common mistakes II

• Build a system without a focused question or planned evaluation
 – eg let’s see how to use aspect-oriented programming in a sensor network
 – eg let design agents breed and evolve
• An innovative system is not a contribution!
 – it must be a worthwhile innovation in a sense you make explicit
 • eg better performance
 • eg better functionality
 • eg better model of reality
Negative results

- Sometimes, you don’t get the result you hoped for
 - You gather data that does not reveal any pattern or understanding
 - eg no factor seems to correlate well with project success
 - You design a system that turns out to be worse than the state-of-the-art
 - eg your machine learning algorithm runs slower than expected
- You can still salvage a thesis
 - but publication will be hard, and it won’t have much impact
- Try to find some way to contribute to our understanding, or suggest fruitful directions for further work
 - eg what features of the algorithm make it slow
- Make sure the problem is intrinsic, not just your bad coding/experiment design/etc
Ground-breaking work

• Very rarely, a piece of research will establish a whole new agenda for a field, or even a new field
 – the contribution can be as much in the possibilities for further work, as in the result itself!

• In some sense, this is work that asks a new type of question, or introduces a new method

• I don’t recommend this for Hons/MIT/MSc/PhD
 – save the idea till you have time enough, and flexibility enough to deal with inevitable digressions/difficulties
Great scholars do not solve problems; they create them.

-Albert Einstein
Idealised Research Process v1

- Finding the right “Question” to seek an answer for
- Making flexible plans
 - Choosing appropriate research method(s)
- Gathering the data, doing the experiment, building the prototype etc. (“Evidence”)
- Analysis, interpretation, and conclusions (“Claim”)
- Writing up the report (“Argument”).
 - Importance of “writing” (aided by thinking from the point of view of your readers)
Idealised Research Process v2

• Finding the right “Question” to seek an answer for
• Having an idea of an possible answer (“Claim”)
• Making flexible plans
 – Choosing appropriate research method(s)
• Gathering the data, doing the experiment, building the prototype etc. (“Evidence”)
• Analysis, interpretation, and conclusions (“Argument”)
• Writing up the report.
Actual Research Process

• Research is a non-linear process!
 – it is normal in v1 for argument to lead to changes in the claim
 – it is normal in v2 for the process of gathering evidence to lead to changes to the claim
 • sometimes one refines the claim
 – eg limit the scope (from “this has higher throughput” to “this has higher throughput if the contention rate is low”)
 • sometimes one must change the claim entirely
 – sometimes while gathering evidence, one finds new questions which look worth answering!
 • New claims or questions need further evidence, revised plans, maybe even different methods
Finding a question

- Especially when you are learning to do research, it may be already chosen for you by supervisor
 - or supervisor may suggest an area, and leave you to find the question
- A question may arise naturally from some previous work
 - incremental “delta” research
- A question may come from the interaction of previous works
 - eg reconcile apparent contradictions
- A question may arise due to new technology
 - eg how to use new hardware
 - eg revisit design choices as speed, bandwidth, cost etc change
- A question may come from a great mind’s simple curiosity
Suitable Research Questions

Main Considerations:
- Specificity and answerability—can the questions be answered through research?
- Scale and Scope in relation to needs and available resources.
- Resource Adequacy in relation to available time.
- Often start with broad topic space, then narrow in to a specific question
Research Plan Structure

• State the question
• Evidence gathering methods
 - Type of method to be used.
 - Type of data to be obtained.
 - Pilot Study
• Data analysis or evaluation methods
• Budget and timetable
 – make sure you have internal deadlines, and fallback options!
 – leave time for writing up the results
Robust planning

- Risk-driven planning: Don’t make a plan where if something goes wrong, you end up with failure
 - Eg what if the supplier of a crucial device goes broke before delivering, or if the software you plan to use doesn’t work on the hardware that’s available, or if a data source can’t be obtained
 - check key dependencies early enough
 - Have a fallback position!

- Make sure that there are preliminary goals (perhaps small, unsurprising) that are safe (don’t require luck/genius/etc)
 - plan to get these accomplished early
 - Then enhance/expand/complicate, to make it more interesting
Defining the Research Problem

• You need several clear, concise and succinct statements of the research problem of different lengths
 – eg one minute (elevator) pitch
 – eg ten minutes introduction to full seminar

• Issues you must deal with:
 – Can it be understood by others without too much background?
 – Does it demonstrate a good understanding of the research community?