Sun SPOT Quickstart Manual

Platform Support in Document: Windows XP and Linux

Document last updated: Wednesday, June 28, 2006

-Semester 1, 2006-

Student: Yuhsiang Tsai
SID: 305259938
Table of Contents

1. Sun SPOT Environment ... 2
 1.1 What is needed? ... 2
 1.1.1 Hardware .. 2
 1.1.2 Software .. 2
2. Installation for Windows XP .. 2
 2.1 ANT Installation ... 2
 2.2 Java Development Kit Installation .. 3
 2.3 Serial Port Emulator (USB driver) .. 3
 2.4 Install Sun SPOT Development Kit .. 4
 2.5 Test Sun SPOT Connection ... 4
 2.6 jvm.dll Configuration ... 5
 2.7 Sensor Board Library Installation .. 5
 2.8 Test Sensor Board Library .. 5
3. Quick Setup for Windows XP .. 6
4. Installation for Linux (from Dr. Scholz) ... 7
5. Launch Sun SPOT Application .. 10
 5.1 Run Template Sample .. 10
 5.2 Run Ex1-reactomatic Sample ... 12
 5.3 Samples Application Notices .. 12
6. Initialize Basestation Utility .. 13
7. Sun SPOT Features .. 14
 7.1 Sun SPOT Processor Board .. 14
 7.2 General Purpose Sensor Board ... 15
 7.3 Test Board .. 17
8. Sun SPOT Programming ... 18
 8.1 Green LED Deployment ... 18
 8.2 Tri-color LED Deployment ... 18
 8.3 Switches SW1 and SW2 Deployment ... 18
 8.4 Light Sensor Deployment ... 19
 8.5 Temperature Deployment ... 19
 8.6 2G/6G Accelerometer Deployment ... 20
 8.7 Radio Connection .. 20
 8.8 Squawk API .. 21
9. Reference: ... 22
1. **Sun SPOT Environment**

1.1 **What is needed?**
Before running Sun SPOT development, the following list of software and hardware are the essentials to launch Sun SPOT application.

1.1.1 **Hardware**

1. Sun SPOT
2. USB cable
3. Sun SPOT SDK CD

1.1.2 **Software**

1. ANT 1.6.3, 1.6.2 or 1.6.1
2. Java Development Kit 1.4 or above
3. Serial Port Emulator (USB driver)
4. Sun SPOT Development Kit
5. Sensor Board Library

2. **Installation for Windows XP**
The prerequisites of Sun Spot development are required of installing ANT, Java Development Kit (JDK), Serial Port Emulator (USB driver) and Sun SPOT development Kit (SDK) as Sun SPOT environment through development. The following is the detail of system configuration. In the document, %SunSPOT_HOME% refers the dictionary of C:\program files\SunSPOT.

2.1 **ANT Installation**

Download and install the ANT from http://ant.apache.org in version 1.6.1, 1.6.2 or 1.6.3. The address for ANT version 1.6.3 is following:

http://archive.apache.org/dist/ant/binaries/apache-ant-1.6.3-bin.zip

For Windows XP:

Unzip the file, **apache-ANT-1.6.3-bin.zip**, in a directory, e.g. C:\program files\apache-ANT-1.6.3.

Go to My Computer > Properties > Advanced > Environment Variables > New. Add new System variables, **ANT_HOME**. Set its value to C:\program files\apache-ANT-1.6.3.
Setup the system path to point to the ANT bin/ directory as following. Edit the system environment, PATH, and add value %\ANT_HOMES%\bin to its front or end. Note: make sure values in the Path are delimited by only semi-colons.

To verify that the ANT has installed properly, go to Start > Run > cmd. Do the command, ANT. If DOS recognizes the command, then installation is successful. If not, check steps above.

2.2 Java Development Kit Installation

The JDK can be downloaded from http://java.sun.com. The version for Sun SPOT is 1.4 or above.

For Windows XP:
In this example, the JDK is installed in the directory, C:\program files\jdk1.4\ Setup the system path to point to the JDK bin/ directory as following. Go to My Computer > Properties > Advanced > Environment Variables > New. Edit System variables, PATH. Add the value, C:\program files\jdk1.4\bin to the front or end of the existing value.

If the system has already installed the correct version of JDK, just simply edit the PATH variable. Note: make sure values in the Path are delimited by only semi-colons.

To verify that the steps above have configured properly, go to Start > Run > cmd. Do the command, javac. If DOS recognizes the command, then installation is successful. If not, check steps above.

2.3 Serial Port Emulator (USB driver)

The driver for the serial port emulator for the USB chipset (FT232BM) can be downloaded from http://www.ftdichip.com.

For Windows XP:
For some versions of Windows OS may include the driver with its own. Therefore, the step can be ignored. Otherwise, you can download the driver for Windows XP and 2000 from following:

Firstly, unzip the file into a directory, e.g. c:\R2176.
To install the driver go to My Computer > Properties > Hardware > Device Manager. Select the Sun SPOT device with exclamation mark. Update the driver
with pointing the directory, c:\R2176. If successful, the exclamation mark will not appear in Device Manager.

2.4 Install Sun SPOT Development Kit

The SDK installation file locates at the directory SDK
CD:\.squawk\software\sunspot-installer-11#25FED4.jar. Note: there is dot sign before the directory name in Sun SPOT CD.

For Windows XP:
To install the Sun SPOT SDK, just simply double click on this file. If not working, then you can go to the following directory and do the following command.

```
SDK CD:\.squawk\software>java -jar sunspot-installer-11*.jar
```

Next, assign a directory for Sun SPOT SDK. Default directory is C:\SunSPOT\sdk-19Sep2005\.

Note: In the CD, there are two files in the directory. They are sunspot-installer-
current.jar and sunspot-installer-11#25FED4.jar. I assume that the sunspot-
installer-current.jar is corrupt. Therefore, we do the command java -jar sunspot-
installer-11*.jar to execute the file sunspot-installer-11#25FED4.jar instead of
java -jar sunspot-installer-* .jar

2.5 Test Sun SPOT Connection

Before attempting any flashing you must set the port name for USB port. To configure the port in the file, default.properties, in Sun SPOT SDK directory, %SunSPOT_HOME%. Look for the setting of the debugclient.port (Line 106) property.

For Windows XP:
Configure the setting debugclient.port value to COM1 through COM12. To see the port is right or not? You need to test COM1 through COM12 but it is normally COM4 and COM2. Type ant slots. You should get message as following:

“Waiting for target to to synchronise…”
“<please reset Spot if you don’t get a prompt>”

Press the reset button next to the power switch on the test board. If the system does not response, this means that the connection is failure. Try to change debugclient.port to other port and run it again until it works.
2.6 jvm.dll Configuration

Run command, **ant environment**. See the path of jvm.dll file. Set **JVMDLL = <java_directory>\jre\bin\client\jvm.dll**

2.7 Sensor Board Library Installation

After connection has established successfully, install the sensor board library to activate the sensor capabilities of Sun SPOT device. The library file is located at directory **SDK CD:squawk\demosensorboard\sensor-board-kit.jar**.

For Windows XP:
Unzip the file to a directory, e.g. **C:sensor-board-kit**. In DOS, run the command, **ANT install**, in the directory **C:sensor-board-kit** to install the sensor board library as following.

C:sensor-board-kit\ant install

To rebuild the library into Sun SPOT type **ANT library** as following:

C:sensor-board-kit\ant library

To flash the library into Sun SPOT type **ANT flashlibrary** as following:

C:sensor-board-kit\ant flashlibrary

After the library has installed, the directory, sensor-board-kit, can be deleted.

2.8 Test Sensor Board Library

If the sensor board library has installed successfully, then **transducers_rt.jar** is built into Sun SPOT library as well as some sample applications, such as Ex1-xxx to Ex4-xxx. The location of sample applications is in the directory, **%SunSPOT_HOME%\samples**, for sensor demo.
3. Quick Setup for Windows XP

1) Install ANT - setup the system variable
 ANT_HOME = <ANT directory>
 PATH = %\ANT_HOMES%\bin;...

2) Install JDK - setup the system variable
 PATH = <JDK directory>\bin;...

3) Install SDK
 Unzip sunspot-installer-1125fed4.jar
 Run command java -jar sunspot-installer-11#25fed4.jar

4) Install USB driver
 If Windows XP supports, ignore it. Else download from

5) Port configuration
 Edit debugclient.port (line 106) of file default.properties in SDK directory
 to COM1 to COM4.
 debugclient.port = COM4

6) Test connection
 Type ant slots
 When message prompts following, press reset next to power switch

 [java] Waiting for target to synchronise...
 [java] (please reset Spot if you don't get a prompt)

7) jvm.dll configuration
 Run command, ant environment. See the path of jvm.dll file.
 Set JVMDLL = <java_directory>\jre\bin\client\jvm.dll in system variable.

8) Sensor board Library install
 Unzip file, sensor-board-kit.jar, from SDK CD
 Run command, ant install

9) Library flash and rebuild
 In the sensor board library directory, run following command
 Rebuild
 ant library
 Flash library to Sun SPOT
 ant flashlibrary
4. **Installation for Linux** (from Dr. Scholz)

These are the steps I took to get the sunspot system up and running on my Linux (gentoo) box.

1) Mount the cdrom
   ```
   sudo mount /dev/cdrom /mnt/cdrom/
   ```

2) Set install locations
   ```
   mkdir ~/sunspot
   ```

3) Copy devkit to install location.
   ```
   cp /mnt/cdrom/squawk/software/sunspot-installer-1125fed4.jar
   /home/massad/sunspot/
   ```

4) Run install.
   ```
   cd ~/sunspot
   chmod 644 sunspot-installer-1125fed4.jar
   java -jar sunspot-installer-1125fed4.jar
   ```

 This installs sunspot to cd ~/SunSPOT/

5) Install ANT
   ```
   emerge -v dev-java/ANT
   ```

6) Install the USB driver.
 This was a pain, I needed to re-compile the linux kernel to get the driver installed. It’s the FT232BM driver.

 Load module: modprobe ftdi_sio
 Add my development user to tty & uucp groups.

7) Edit the port in the java config file:
   ```
   vim ~/SunSPOT/sdk-29Sep2005/default.properties
   ```
   ```
   line 106:
   debugclient.port=/dev/ttyUSB0
   ```

8) Test if it works.
   ```
   ant slots
   ```

 You may need to reset the board. The reset button is about 1cm to the eight of the green power led. It's really small.
You should see something like this:

- debugclient-run:

```
[java] Devel Library
[java] ==============================================================
[java] Native lib Version = RXTX-2.1-7pre17
[java] Java lib Version  = RXTX-2.1-7pre17
[java] RXTX Warning: Removing stale lock file. /var/lock/LCK..ttyUSB0
[java] Waiting for target to synchronise...
[java] (please reset Spot if you don't get a prompt)

[java] /home/massad/SunSPOT/sdk-29Sep2005/suite/image-BL>startup -v
[java] /home/massad/SunSPOT/sdk-29Sep2005/suite/image-BL>slots
[java] 0: /Users/massad/sunspot/sensor/Ex1-mark/suite/image (Sat Apr 08
14:42:19 EST 2006) (724 bytes) at 0x10c0000
[java] 1: /Users/massad/sunspot/sensor/Ex1-mark/suite/image (Sat Apr 08
14:51:26 EST 2006) (760 bytes) at 0x10e0000 (current)
[java] /home/massad/SunSPOT/sdk-29Sep2005/suite/image-BL>quit
[java] Exiting
[delete] Deleting: /home/massad/SunSPOT/sdk-29Sep2005/null1589279175
```

9) Flash vm and code.
 ant flashall

10) Flash config
 ant -Dserial.nubmer=29 flashconfig

The nubmer (in this case 29) is the address of the sunspot board code.

Setting up the sesnor board

1) copy the 'sensor-board-kit.jar' file to a local location.
2) cd ~/SunSpot
3) mkdir sensor
4) cd sensor
5) jar -xf ~/SunSpot/sensor-board-kit.jar
6) cd sensor
7) ant library # this compiles the library and installs it into the subspot SDK.
8) ant flashlibrary # this will flash the library onto the sunspot board.
Running a basic example

1) cd ~/SunSpot/sensor/Ex1-reactomatic
2) ant compile
3) ant suite
4) ant deploy # you may need to press the reset button to make it deploy
5) ant run

If you shake the board you should see the lights change colour.
5. Launch Sun SPOT Application

5.1 Run Template Sample
The template application is just blank template with printing out message, hello world. To run the application, go to SDK directory, e.g. %SunSPOT%\samples, unzip the file, template.jar. Run the following in the directory, %SunSPOT%\samples\template.

1) ant compile
2) ant suite
3) ant deploy # you might need to reset while deploying
4) ant run # you might need to reset while running

The result of ANT run will be similar to following:

Buildfile: build.xml

-init-user:
-init-system:
-don't-
do-init:
-post-init:
-init-check:

init:

-pre-run:

-do-run:
 [java] Devel Library
 [java] =---
 [java] Native lib Version = RXTX-2.1-7pre17
 [java] Java lib Version = RXTX-2.1-7pre17
 [java] Waiting for target to synchronise...
 [java] (please reset Spot if you don't get a prompt)

 [java] C:\SunSPOT\samples\template\suite\image-BL>run

 [java] ***************** Debug version *****************
 [java] [loaded object memory from 'flash://1090000.lib']
[java] [loaded object memory from 'flash://10e0000']
[java] **Hello, world**
[java] Detected Spot RevB
[java] Detected radio...
[java] Board with CS=0x20000 detected (DEMO_SENSOR_BOARD_REV_B)

[java] --
[java] Hits - Class:94.39% Monitor:84.00% Exit:100.00% New:99.42%
[java] GCs: 2 full, 0 partial
[java] ** VM stopped: exit code = 0 **

[java] Waiting for target to synchronise...
[java] (please reset Spot if you don't get a prompt)

[java] C:\SunSPOT\samples\template/suite/image-BL>quit
[java] Exiting

-post-run:

run:

BUILD SUCCESSFUL
Total time: 9 seconds
5.2 Run Ex1-reactomatic Sample
Ex1-reactomatic is a demo of detecting X, Y and Z axis when shaking Sun SPOT by showing green, red or blue light.

Before running this example, you need to flash sensor board library into Sun SPOT by command, ANT flashlibrary as mentioned above. Also, you need to import the library by editing the file, build.properties, before compiling the application, e.g. %SunSPOT%\Ex1-reactomatic.

Alternatively, edit the file, default.properties, in SDK root directory, %SunSPOT_HOME%, to apply the configuration to all Sun SPOT applications. Edit the user.classpath (Line 156) as following.

user.classpath=${sunspot.lib}/transducers_rt.jar

1) ant compile
2) ant suite
3) ant deploy # you might need to reset while deploying
4) ant run # you might need to reset while running

After running, your Sun SPOT now can detect X, Y and Z alias by showing green, red and blue light in LED1 while shaking.

Note: Any applications which apply facilities of sensor board in Sun SPOT must import the library for implementation.

5.3 Samples Application Notices
There are some sample applications provided in samples directory and SDK CD. However, some of the classes have changed without any notices.

Therefore, some of old sample applications might have incorrect class name such as SensorBoard to DemoSensorBoard. To debug samples applications, Netbeans is a good IDE for a developer to fix bugs by importing Sun SPOT library into it when developing.
6. Initialize Basestation Utility
Before running any basestation applications, need to do following steps. All basestation applications are available to run on Sun SPOT devices, once the basestation utility is initialized. The initiation of basestation needs to be done only once.

1. MUST deploy and run the basestation in basestation directory
 C:\Program Files\SunSPOT\samples\basestation>ant compile
 C:\Program Files\SunSPOT\samples\basestation>ant suite
 C:\Program Files\SunSPOT\samples\basestation>ant deploy
 C:\Program Files\SunSPOT\samples\basestation>ant run

2. Launch basestation application
For example, host-template basestation application.

 C:\Program Files\SunSPOT\samples\host-template>ant host-compile
 C:\Program Files\SunSPOT\samples\host-template>ant host-run

 -do-host-run:
 [java] Devel Library
 [java] ================================
 [java] Native lib Version = RXTX-2.1-7pre17
 [java] Java lib Version = RXTX-2.1-7pre17
 [java] My IEEE address is 1
 [java] Adding protocol manager for 101
 [java] Adding connection for 2:125:false
 [java] Removing connection 2:125:false
 [java] Base station initialized

 The above message displays if the template-host run successfully.
7. Sun SPOT Features
The Sun SPOT consists of three boards: a processor board, a sensor board and a test board. Each of them carries out different tasks.
Note: Different versions of Sun SPOT devices might have different hardware such as flash memory storage or battery capacity. In the following, we are discussing the bSPOT version.

7.1 Sun SPOT Processor Board
The processor board is the core component of the Sun SPOT devices. It contains 32-bit ARM9 CPU, 512K memory, 2 Mb flash storage and wireless networking following 802.15.4 the standard with integrated antenna.

- CPU: 180 MHz 32 bit ARM920T core
- Memory: 512K RAM/2M Flash
- Radio: 2.4 GHz IEEE 802.15.4 radio with integrated antenna

7.1.1 Radio: 2.4 GHz IEEE 802.15.4 radio with integrated antenna
Sun SPOT devices support two types of protocols for wireless communication in the standard of IEEE 802.15.4. They are radio and radiogram protocols. SPOT radio communication is only capable of operating on one channel at any time, and they can not transmit and receive at the same time.

7.1.2 Memory: 256K RAM/2M Flash
The 2M Flash memory is organized in 8 x 8 Kb and 31 x 64 Kb sectors. Two applications take 128 Kb capacities each. 1Mb is available for data storage. The remaining memory is taken by system configuration and execution.

IEEE 64-bit address
Each Sun SPOT has its own IEEE 64-bit network address. They might have more than one address when communicating between a host and target when one Sun SPOT acts as a basestation. The address of a SPOT is assigned by user. A basestation SPOT has two addresses: one is for host and one is for radio. The address for communicating with the host is fixed to 2 according to the Sun SPOT Developer’s Guide [17].

Direct Communication
Radio: The radio protocol is a socket-like peer-to-peer communication protocol that reliable, provides buffered stream-based IO between two devices.

Radiogram: The radiogram protocol is a client-server protocol that provides buffered datagram-based IO between two devices.

Multi-Hop Communication
According to the Sun SPOT Developer’s Guide [17], page 15, the current version of the JDK only provides point-to-point (Single hop) communication between nodes using a choice of two protocols. However, the mesh networking (Multi-Hop) is demonstrated by a sample application provided in the SDK CD. The application shows three nodes: a receiver, a forwarder and a sender. The forwarder is used for catching packets for the receiver and the sender. If the forwarder is missed in between, the sender and the receiver will not be able to transmit.

Broadcast: Broadcast is allowed in wireless networking. However, the broadcast is not reliable due to the fact that datagrams might be lost.

7.2 General Purpose Sensor Board
The sensor board integrates multiple sensors, monitoring LED and interactive switches into one board. All the facilities of this board are programmable in Java. The facilities of the sensor board are:

- One 2G/6G 3-axis accelerometer
- One temperature sensor
- One light sensor
- Two 8-bit tri-color LEDs
- 6 analog inputs
- Two momentary switches
- 5 general purpose I/O pins and 4 high current output pins

In the following, the characteristics of each sensor will be explained in detail.
7.2.1 2G/6G 3-axis accelerometer
The three-axis accelerometers measure acceleration in three dimensions. Accelerometers are very handy for measuring the orientation of an object relative to the earth, because gravity causes all objects to accelerate towards the earth.

The Sun SPOT SDK contains a sample of application, “Ex1-reactomatic”, that demonstrates the usage of the accelerometer by indicating the X, Y and Z readings with different colors on one tri-color LED. The range of value for each axis is 4 to 929 as I experienced manually. The default value without having any acceleration is 461 to 463 for X, Y and Z axis.

7.2.2 Temperature sensor
This sensor is capable of detecting the environmental temperature. The temperature value which is read from the sensor is a raw value that represents a temperature number without the standard of Celsius or Fahrenheit. The model of the temperature sensor is ADT7411 with a 10-bit temperature-to-digital converter which is capable of detecting -40 to +125 Celsius. The range of the raw value is 0 to 1023. The following mathematical algorithm can be applied to convert the raw reading into Celsius or Fahrenheit. The resolution of raw value is 0.25 Celsius degrees.

\[
\text{Temperature Positive} = \frac{\text{rawValue}}{4} \\
\text{Temperature Negative} = \frac{\text{rawValue} - 1024}{4}
\]

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Positive</th>
<th>Out of range</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-120 C°</td>
<td>-40 C°</td>
<td>-0.25 C°</td>
</tr>
<tr>
<td>500</td>
<td>864</td>
<td>1023</td>
<td></td>
</tr>
</tbody>
</table>

Reference As specified on page 19 of the ADT7411 data sheet

7.2.3 Light sensor
The light sensor measures the range from darkness to lightness and converts it to a raw value. The range for the raw light value is 0 to 1023. The value represents the intensity of detected light.

Raw Value Range:
Darkness 0 -------------------------- 1023 Brightness

7.2.4 Two 8-bit tri-color LEDs
There are two 8-bit tri-color LEDs located on the sensor board. These LEDs are able to flash with a range of colors. The typical use of these two LEDs is to show the status when an application is in a particular state. Therefore, it might be easier for a developer to see the current progress of an application. The color of the
LEDs is shown with red, green and blue. The range of each color for intensity is 0 to 255.

![LEDs range](image)

7.2.5 Two momentary switches
The two switches can be used to interact with an application. An application can be changed to a sub-function or other program when user-defined application has supported.

7.3 Test Board
The test board contains the USB cable interface to communicate with a computer. There is also a 650 mAh lithium-ion battery attached to it. A set of LEDs are located which indicate a particular status of SPOT such as transmitting or receiving with a computer while deploying or running an application.

- Interface: USB 2.0 interface with power monitoring
- Battery: 3.6V rechargeable 650 mAh lithium-ion battery
- Power switch, reset buttons and status LEDs

7.3.1 USB 2.0 interface with power monitoring
Sun SPOT devices can be connected to a computer via USB cable. All applications are transmitted into SPOTs via the USB cable. While the USB cable is connected, the battery is recharged.

7.3.2 3.6V rechargeable 650 mAh lithium-ion battery
The power supply of Sun SPOTs can be either via battery or via USB cable. One is supplied by 650 mAh lithium-ion battery which is rechargeable. The other just simply plugs USB cable to Sun SPOT.

7.3.3 Power switch, reset buttons and status LEDs
The power switch and reset button are located on the test board. The power switch only works when no USB cable is plugged. 4 LEDs indicate the status of the SPOT. They indicate the status of recharging, transmitting (TX), receiving (RX) and power.
8. Sun SPOT Programming
The API document of Sun SPOT SDK is located at .squawk\software\doc\javadoc\spots and .squawk\software\doc\javadoc\squawk. However, the classes DemoSensorBoard and SensorBoardColouredLED, which are provided in the sensor board library sensor-board-kit.jar, are not contained in the API document. Furthermore, the Sun Spot Developer’s Guide [17] introduces the use of the sensor library.

The location of the sensing facilities on the sensor board, please refer to section 2.1.2 General Purpose Sensor Board. The following shows the programming of common facilities in SPOT in Java syntax.

8.1 Green LED Deployment
 import com.sun.squawk.peripheral.ILed;
 import com.sun.spot.sensorboard.DemoSensorBoard;

 ILed greenLED;
 greenLED = DemoSensorBoard.getGreenLed();

 greenLED.setOn(); //TURN OFF LED
 greenLED.setOff(); //TURN ON LED
 greenLED.setOn(true); //TURN OFF LED
 greenLED.setOn(false); //TURN ON LED

8.2 Tri-color LED Deployment
 import com.sun.spot.sensorboard.SensorBoardColouredLED;

 SensorBoardColouredLED lightLed
 lightLed = SensorBoardColouredLED.getLed1(); //getLed2() is the other Led.
 lightLed.setOn(); //switch it on
 lightLed.setRGB(0, 0, 0); //(Red,Green,Blue) in the range of 0 to 255.

8.3 Switches SW1 and SW2 Deployment
 import com.sun.squawk.peripheral.ISwitch;
 import com.sun.squawk.peripheral.testboard.TestBoard;

 ISwitch sw1 = TestBoard.getInstance().getSwitchP1();
 sw1.waitForChange(); //This will block until switch1 is presses. Need to throw a
 //InterruptException

 if(sw1.isClose()) //Detect the sw1 status.
 System.out.println(“SW1 is now pressed.”);
 else if(sw1.isOpen())
 System.out.println(“SW1 is now released.”);
8.4 Light Sensor Deployment
import com.sun.spot.sensorboard.DemoSensorBoard;
import com.sun.squawk.peripheral.io.RangeInput;

//The getRange() return 1024 for all instances of RangeInput class

RangeInput lightSensor;
lightSensor = DemoSensorBoard.getLightSensor();

System.out.println("Light Range: " + lightSensor.getRange());
System.out.println("Light Value: " + lightSensor.getValue());

8.5 Temperature Deployment
import com.sun.spot.sensorboard.DemoSensorBoard;
import com.sun.squawk.peripheral.io.RangeInput;

RangeInput tempeSensor;
tempeSensor = DemoSensorBoard.getTemperatureSensor();

System.out.println("Temp Range: " + tempeSensor.getRange());
System.out.println("Temp Value: " + tempeSensor.getValue());

8.5.1 Algorithm Converting Raw Value to Celsius
//Reference from Sample, FridgificationApplication, from Sun SPOT SDK CD
private int convertToCelsius(int value) {
 int convertedValue;
 if (((value >> 9) & 0x000001) > 0) {
 convertedValue = (((value & 0xFF) - 512) / 4);
 } else {
 convertedValue = value / 4;
 }
 return convertedValue;
}

8.5.2 Simplified Algorithm
private int convertToCelsius(int value) {
 int convertedValue;
 if (value > 512 && value < 1024) {
 convertedValue = (value - 1024) / 4;
 } else {
 convertedValue = value / 4;
 }
 return convertedValue;
}
8.6 2G/6G Accelerometer Deployment
import com.sun.spot.sensorboard.DemoSensorBoard;
import com.sun.squawk.peripheral.accelerometer.Accelerometer3D;
import com.sun.squawk.peripheral.accelerometer.LIS3L02AQAccelerometer;

((LIS3L02AQAccelerometer)acc).set6GScale();
//special scale call for particular accelerometer
//or set to 2G by set2GScale()

RangInput x = acc.getX();
RangInput y = acc.getY();
RangInput z = acc.getZ();

8.7 Radio Connection
The default IEEE address of SPOTs are -1 which are not acceptable for radio
connection. Before running radio connection applications, the addresses of SPOTs
need to be set as well as the port number consistency. In the following example, the
address of the server is 129 whereas the client’s is 128. Both are using the port
number 100. To configure the address of a SPOT, execute an ANT command,
-Ddebugclient.port=XXX.

8.7.1 For server
//129 is address of other SPOT
StreamConnection conn = (StreamConnection) Connector.open("radio://129:100");

DataOutputStream dos = conn.openDataOutputStream();
try {
 dos.writeUTF("Hello");
} catch (NoAckException e) {
 System.out.println("No sending to 129");
} finally {
 conn.close();
 dos.close();
}

8.7.2 For client
//128 is address of other SPOT
StreamConnection conn = (StreamConnection) Connector.open("radio://128:100");

DataInputStream dis = conn.openDataInputStream();
DataOutputStream dos = conn.openDataOutputStream();
String question = ";
try {
 question = dis.readUTF();
System.out.println(question);
}
catch(NoAckException e) {
 System.out.println("No received from 128");
}
finally {
 conn.close();
 dis.close();
 dos.close();
}

8.8 Squawk API

The Squawk API provides access of different low-level facilities of the Java VM. The following may help to understand the property of Sun SPOT device. For more information about the CLDC API, please refer to the section 7. Reference [20].

RunTime.FreeMemory()

Returns the available memory of 256K bytes RAM. Calling `RunTime.gc()` may increase the available memory (see below).

RunTime.TotalMemory()

Returns 2M bytes Flash Memory of Sun SPOT devices. This may vary depending on the hardware of a host.

RunTime.gc()

Runs the Java garbage collector. Calling this method suggests that the Java Virtual Machine expend effort toward recycling unused objects in order to make the memory they currently occupy available for quick reuse. Java Virtual Machine will automatically run garbage collection whenever it thinks appropriate.

System.currentTimeMillis()

The current system time, measured in milliseconds. The type of value is `long`. The initial value is 0 when a SPOT application starts. Applications initiate when `ant run` or `ant host-run` command executed or when the power of Sun SPOTs is turned to on. The `currentTimeMillis` counter will keep running until the application is reset or terminated.
9. Reference:
[2] Sun SPOT Development Kit. Sun Microsystems. 29-Sep-2005
[4] ADT7411 Data Sheets. Analog Devices. URL:
Last accessed: 07/05/06
http://www.st.com/stonline/products/families/sensors/motion_sensors.htm
Last accessed: 14/05/06
discussion. URL: http://www.sunspotworld.com/forums/viewtopic.php?t=38
Last accessed: 11/05/06