CHINESE CCGbank

Building fast, accurate, rich parsers for the Chinese language

Daniel Tse
School of IT, FACULTY OF ENGINEERING & INFORMATION TECHNOLOGIES

WHAT WE’VE DONE AND WHY

- China has more Internet users than the entire population of the United States.
- As the quantity of Chinese text grows, so does the need for efficient, automatic text processing tools.
- Building those tools demands data. *Lots of data.*
- A theory of syntax and semantics called Combinatory Categorial Grammar (CCG) can be used to build a rich description of Chinese grammar.
- We have a way of getting *lots of data* for CCG in the Chinese language.
- Introducing Chinese CCGbank: 0.75 million Chinese words, annotated for CCG, ready for deep, efficient, automatic Chinese text processing.

CHINESE LANGUAGE SYSTEMS NEED CHINESE DATA

- Modern natural language processing systems often rely on the availability of large, wide-coverage collections of data to learn a model of natural language.
- There are many theories of how to encode the grammar of a language, like Chinese.
- We have shown that a theory called Combinatory Categorial Grammar (CCG) accounts for Chinese syntax & semantics concisely and effectively.

THE APPROACH

1. Take PENN CHINESE TREEBANK, an existing database of Chinese text annotated for syntax
2. Design an analysis of Chinese syntax through CCG
3. Automatically convert Penn Chinese Treebank derivations into CCG derivations
4. Create and train rich, efficient Chinese parsers based on CCG using Chinese CCGbank

THE MILLION DOLLAR QUESTION

Approach 1:
Spend millions of dollars and 100,000 man hours developing your own dataset for a new language, employing linguists and computational linguists.

Approach 2:
Don’t reinvent the wheel – take an existing dataset, and transform it into a new resource.

THE RESULTS

1. We have the first analyses of Chinese syntax using the power of CCG.
2. We have an automatic system for converting Penn Chinese Treebank derivations into CCG derivations.
3. We have Chinese CCGbank, a database of 0.75 million words of Chinese text annotated with their syntax & semantics.

CHINESE CCGbank: ANALYSIS

HOW MUCH OF THE ORIGINAL CORPUS HAVE WE PRESERVED?

<table>
<thead>
<tr>
<th></th>
<th>Original corpus</th>
<th>Our algorithm produces</th>
</tr>
</thead>
<tbody>
<tr>
<td>derivations</td>
<td>28295</td>
<td>28227 (99.76%)</td>
</tr>
<tr>
<td>Filtering out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>infrequent</td>
<td>Filtering out</td>
<td></td>
</tr>
<tr>
<td>categories</td>
<td>27759 (98.11%)</td>
<td></td>
</tr>
<tr>
<td>Filtering out</td>
<td>Filtering out</td>
<td></td>
</tr>
<tr>
<td>infrequent</td>
<td>26680 (94.30%)</td>
<td></td>
</tr>
</tbody>
</table>

IS THE ORIGINAL CORPUS BIG ENOUGH TO YIELD A GOOD MODEL OF CHINESE?

We graph the size of the CCG tag set against the size of the corpus (in words).

If the resulting graph shows an upward trend then the original corpus is likely too small.

Ignoring words that only occur once, the trend flattens out, so Chinese CCGbank is likely to embody a good analysis of Chinese.

WHAT’S NEXT?

- We sidestepped the cost of developing your own dataset by transforming an existing one.
- We can harness CCG, a powerful, efficiently parseable theory of grammar, to analyse Chinese.
- We have Chinese CCGbank, a large database of Chinese text annotated with syntax & semantics.
- We are ready to build efficient, deep parsers using Chinese CCGbank, to meet the vast text processing needs which Chinese will demand in the years to come.