Activity Recognition from a Wearable Camera

Kai Zhan
Dr. Fabio Ramos
School of Information Technologies
FACULTY OF ENGINEERING & INFORMATION TECHNOLOGIES

Introduction

• A novel approach of activity recognition using the video recorded from a wearable camera.

• The objective is to recognise the user’s activities from a tiny front-facing camera embedded in user’s glasses.

• Our system allows caretakers to remotely access the current status (activities) of a specified person.

• Apply to:
 ✓ General fitness training
 ✓ Elderly people stayed alone
 ✓ Patients under rehabilitation treatment
 ✓ People requiring cognitive assistance or guidance on daily activities.

Video Collection and Feature Extraction

• We use Lucas Kanade Optical Flow as the primitive feature extraction method.

• Followed by Average Pooling of consequence of Images Patches

System Overview

The system processing pipeline:

- Video Acquisition
 - Reformat & Pre-processing
 - Optical Flow

- Feature Extraction
 - Features Segmentation & Pooling

- Feature Classification
 - K-NN, SVM, LogitBoost

- Structured Classification

- Results

• Our system currently supports four basic activities:
 ✓ Walking
 ✓ Drinking
 ✓ Going Upstairs
 ✓ Going Downstairs

Classification Method

• Three main classification methods:
 ✓ K-Nearest Neighbour:
 ✓ Logit-Boost
 ✓ Support Vector Machines (SVMs):

• Additional structured classification method:
 ✓ Hidden Markov Model (HMM)

Results

• Overall System Accuracy:
 ✓ SVM (RBF kernel)+HMM: 82.1%
 ✓ LogitBoost (200 WLs)+HMM: 82%
 ✓ KNN (22 NNs)+HMM: 78.9%