Algorithm Design and Analysis

The Nuts and Bolts of Computer Science

Julián Mestre

School of Information Technologies
The University of Sydney
In Theoretical Computer Science we study what a computer *can* and *cannot* do.

Rather than working with real computers we work with abstract *computational models* that allow us to make useful predictions about the real world.

The main objective of this lecture is to give you flavor of what computational models look like, and how to design and analyze algorithms for them.
Imagine you are given n nuts and n bolts.

Every nut has a unique perfectly matching bolt, and vice-versa.

You can compare any nut-bolt pair. The outcome can be:

- Nut is too small for the bolt
- Nut is a perfect match for the bolt
- Nut is too large for the bolt

Our goal is to find the n pairs of nuts and bolts.
Input:
- Set of \(n \) nuts and \(n \) bolts

Output:
- List of matching nut-bolt pairs

Operations:
- We can compare any nut-bolt pair (three-way outcome)
- We can keep any other record we want

Analysis:
- We count the number of nut-bolt comparison
- We express this count as a function of \(n \)
A simple algorithm

For every nut-bolt pair, check if they match.

If they do, output the pair.

Analysis:
- Number of comparisons is n^2
A more sophisticated algorithm

Pick a nut x and find its matching bolt y

Use x to split the remaining bolts into smaller and larger than x

Use y to split the remaining nuts into smaller and larger than y

Output (x, y)

Match up the smaller nuts and bolts

Match up the larger nuts and bolts
Number of comparisons

Find matching pair \((x,y)\)
Split remaining ones into smaller and larger

\(n\) bolts
\(n\) nuts

2n-1 comparisons

\(n_1\) smaller bolts
\(n_1\) smaller nuts

\(n_2\) larger bolts
\(n_2\) larger nuts

Let \(f(n)\) be the number of comparisons for \(n\) bolts.
Then \(f(n) = 2n - 1 + f(n_1) + f(n_2)\)
Extreme case: biased partition

- Find matching pair \((x,y)\)
- Split remaining ones into smaller and larger

0 smaller bolts
0 smaller nuts

0 smaller bolts
0 smaller nuts

\(n-1\) larger bolts
\(n-1\) larger nuts

Let \(f(n)\) be the number of comparisons for \(n\) bolts. Then

\[f(n) = 2n - 1 + f(n-1) \]
Extreme case: balanced partition

- Find matching pair \((x,y)\)
- Split remaining ones into smaller and larger

\[
\begin{align*}
\text{n bolts} \\
\text{n nuts}
\end{align*}
\]

\[
\begin{align*}
\text{n/2 smaller bolts} \\
\text{n/2 smaller nuts}
\end{align*}
\]

\[
\begin{align*}
\text{n/2 larger bolts} \\
\text{n/2 larger nuts}
\end{align*}
\]

2n-1 comparisons

Let \(f(n)\) be the number of comparisons for \(n\) bolts.
Then \(f(n) = 2n - 1 + 2f(n/2)\)
If we pick the pair \((x,y)\) at random then the probability that \(n_1\) and \(n_2\) are both less than \((2/3)n\) is \(1/3\)
Pick a nut \mathbf{x} at random and find its matching bolt \mathbf{y}

Use \mathbf{x} to split the remaining bolts into smaller and larger than \mathbf{x}

Use \mathbf{y} to split the remaining nuts into smaller and larger than \mathbf{y}

Output (\mathbf{x},\mathbf{y})

Match up the smaller nuts and bolts

Match up the larger nuts and bolts
If we are not careful how to pick the pair \((x,y)\) the number of comparisons can be as bad as \(n^2\).

If we pick the pair \((x,y)\) uniformly at random, then the expected number of comparisons is \(c \cdot n \log n\) for some constant \(c\).
Even though computers do not compare nuts and bolts, they do compare numbers all the time:
- Google sorts its search results by relevance
- Amazon allows you to sort their products by price, review scores, etc.

The same recursive principle we saw today can be used to sort a list of numbers. This is called the **quicksort** algorithm.

Number of comparisons is a fairly good proxy for actual performance but in practice other factors need to be considered.
Key concepts

Computational model:
- Input
- Output
- Operations

Algorithms:
- Step-by-step sequence of operations
- Take us from input to output

Analysis:
- Measures a single parameter
- Gives predictions of actual performance
Thank you for your attention!