INFO 4990: Information Technology Research Methods

Overview of Research: Definition and Process
Lecture by A. Fekete,
based in part on materials by J. Davis and others

Research

• What is research?
• Key components
 – A question of interest
 – A claim
 – Evidence
 – Argument (link evidence to claim)
• What are some of the different kinds of research?
• How to do research

Definition

• As a general term, research is gathering information that answers a question and so solves a problem.
 – from Booth, Colomb, & Williams "The Craft of Research"
• Eg journalist finds out who contributed to election campaign fund, to understand political decisions
• Eg repairer finds out what procedure to use to fix a washing machine

Academic Research

• In academic research, you must not only answer a question, but you must find something new and interesting.
• You join a community of researchers.
 – You must advance the collective understanding of this community.
 – Each community has a cumulative tradition with a set of interesting questions, tools and methods, practices, a style and language for writing up the research.
 – Research is a conversation and ongoing social activity!
• You need critical and careful reading of published research
 – to learn what the community already knows
 – to fit your work into the community
 – to be prepared for your own work to be evaluated

A question

• Every piece of research should address a question of interest to the community
• Each community has a tradition of style of question,
 – what happens?
 – why does it happen?
 – how should one do something?
 – what something should one do?
• Many questions fit into an on-going agenda
 – eg find data models to represent different sorts of information
 – eg move data and computation in a network to exploit locality

A claim

• Every piece of research makes a claim (the “contribution”)
 – this should answer a question of interest
• Claims can be very diverse, among fields and within fields
• This is what happens
 – eg how often is data corrupted when using weak concurrency control
• This is why something happens
 – eg what factors lead to project success in open-source development
• This is a better way to do something
 – eg efficiently recalculate a graph layout after a change to topology
 – eg allow users to see the model of their skills kept in a teaching system
 Be explicit about the meaning of "better"
Evidence

- You must back up the claim
 - evidence can be very varied, for examples
 - a prototype implementation to show that a system can be built to achieve claimed functionality
 - a simulation model which is executed to show a system has certain properties
 - measurements of a running system to show it has good performance
 - observations of behaviour in an organisation to show what is happening
 - a mathematical proof to show that some process has desired properties
- Each research method is defined by the sort of evidence that it can produce
 - each community has its own standards of quality and reasonableness

Argument

- You should show that the evidence you offer supports the claim you made
 - it's essential that you deal with natural or obvious objections to the correctness or importance of the work
 - that is, you must think like your readers, and anticipate their reactions
- In systems work, this is often called an "evaluation" of the design

Some types of claim and argument I

- This system design leads to better performance on some metric
 - make sure you limit how much worse this makes other metrics (such as cost)
 - make sure your measurements are fair (don't compare with "strawman" design but with state-of-the-art)
- This system design offers better functionality for some uses
 - make sure you show it can be implemented with adequate performance

Some types of claim and argument II

- This behaviour can be explained by this theory
 - make sure you don't have confounding factors such as level of experience, or method novelty, or subject expectations ("placebo effect")
- This is what happens
 - make sure you don't interfere too much with what happens when you gather data, or misinterpret it due to observer expectations

Common mistakes I

- Gather lots of data without a focussed question or method
- A collection of facts is not a contribution!
 - it must reveal some pattern or understanding that you make explicit

Common mistakes II

- Build a system without a focussed question or planned evaluation
 - eg let's see how to use aspect-oriented programming in a sensor network
- An innovative system is not a contribution!
 - it must be a worthwhile innovation in a sense you make explicit
 - eg better performance
 - eg better functionality
Negative results

- Sometimes, you don't get the result you hoped for
 - You gather data that does not reveal any pattern or understanding
 - eg no factor seems to correlate well with project success
- You design a system that turns out to be worse than the state-of-the-art
 - eg your machine learning algorithm runs slower than expected
- You can still salvage a thesis
 - but publication will be hard, and it won't have much impact
- Try to find some way to contribute to our understanding, or suggest fruitful directions for further work
 - eg what features of the algorithm make it slow
- Make sure the problem is intrinsic, not just your bad coding/experiment design/et al.

Ground-breaking work

- Very rarely, a piece of research will establish a whole new agenda for a field, or even a new field
 - the contribution can be as much in the possibilities for further work, as in the result itself!
- In some sense, this is work that asks a new type of question, or introduces a new method
- I don’t recommend this for Hons/MIT/MSc/PhD
 - save the idea till you have time enough, and flexibility enough to deal with inevitable digressions/difficulties

Great scholars do not solve problems; they create them.

-Albert Einstein

Idealised Research Process v1

- Finding the right “Question” to seek an answer for
- Having an idea of an possible answer (“Claim”)
- Making flexible plans
 - Choosing appropriate research method(s)
- Gathering the data, doing the experiment, building the prototype etc. (“Evidence”)
- Analysis, interpretation, and conclusions (“Claim”)
- Writing up the report (“Argument”).
 - Importance of “writing” (aided by thinking from the point of view of your readers)

Idealised Research Process v2

- Finding the right “Question” to seek an answer for
- Having an idea of an possible answer (“Claim”)
- Making flexible plans
 - Choosing appropriate research method(s)
- Gathering the data, doing the experiment, building the prototype etc. (“Evidence”)
- Analysis, interpretation, and conclusions (“Claim”)
- Writing up the report.

Actual Research Process

- Research is a non-linear process!
 - it is normal in v1 for argument to lead to changes in the claim
 - it is normal in v2 for the process of gathering evidence to lead to changes in the claim
 - sometimes one refines the claim
 - eg limit the scope (from “this has higher throughput” to “this has higher throughput if the contention rate is low”)
 - sometimes one must change the claim entirely
 - sometimes while gathering evidence, one finds new questions which look worth answering!
- New claims or questions need further evidence, revised plans, maybe even different methods
Finding a question

- Especially when you are learning to do research, it may be already chosen for you by supervisor
 - or supervisor may suggest an area, and leave you to find the question
- A question may arise naturally from some previous work
 - Incremental ‘delta’ research
- A question may come from the interaction of previous works
 - eg reconcile apparent contradictions
- A question may arise due to new technology
 - eg how to use new hardware
 - eg revisit design choices as speed, bandwidth, cost etc change
- A question may come from a great mind’s simple curiosity

Suitable Research Questions

Main Considerations:
- Specificity and answerability - can the questions be answered through research?
- Scale and Scope in relation to needs and available resources.
- Resource Adequacy in relation to available time.
- Often start with broad topic space, then narrow in to a specific question

Research Plan Structure

- State the question
- Evidence gathering methods
 - Type of method to be used.
 - Type of data to be obtained.
 - Pilot Study
- Data analysis or evaluation methods
- Budget and timetable
 - make sure you have internal deadlines, and fallback options!
 - leave time for writing up the results

Robust planning

- Risk-driven planning: Don’t make a plan where if something goes wrong, you end up with failure
 - Eg what if the supplier of a crucial device goes broke before delivering, or if the software you plan to use doesn’t work on the hardware that’s available, or if a data source can’t be obtained
 - check key dependencies early enough
 - Have a fallback position!
- Make sure that there are preliminary goals (perhaps small, unsurprising) that are safe (don’t require luck/genius/etc)
 - plan to get these accomplished early
 - Then enhance/expand/complicate, to make it more interesting

Defining the Research Problem

- You need several clear, concise and succinct statements of the research problem of different lengths
 - eg one minute (elevator) pitch
 - eg ten minutes introduction to full seminar
- Issues you must deal with:
 - Can it be understood by others without too much background?
 - Does it demonstrate a good understanding of the research community?