Scale problems

Untangling a large diagram is difficult

1. Layout methods take a long time for large graphs, even on a Pentium VIII 3650 MHz with 256 GB memory
2. Anyway, there is too much information to fit on a screen, even if it is 29”

Faster spring methods

It is feasible to use a spring method followed by a geometric clustering method to obtain a good graph clustering.

Barnes&Hutt proposed a method of computing forces between stars.

An octree (quadtree) is a simple kind of cluster tree that represents the stars at their current positions.

Force directed methods (Aaron Quigley)

Problem: the usual spring algorithm is quite slow.

1. \(p_u = \) some initial position for each node \(u \).
2. Repeat
 2.1 \(F_u := 0 \) for each node \(u \);
 2.2 Foreach pair \(u,v \) of nodes
 2.2.1 calculate the force \(f_{uv} \) between \(u \) and \(v \);
 2.2.2 \(F_u += f_{uv} \);
 2.2.3 \(F_v += f_{uv} \);
 2.3 Foreach node \(u \), \(p_u += \varepsilon F_u \).
 Until \(p_u \) converges for all \(u \).
Faster spring methods

The contents of a subtree of can be approximated by a mass at the centroid.

The force that the subtree s exerts on the star x can approximate the sum of the forces that the nodes in s exert on x.

Faster spring methods

To compute the force on star x, we proceed from the root toward the leaves.

ComputeForce(star x; treenode t)
If the approximation is good then return the approximation;
else return \(\Sigma_s \text{ComputeForce}(x, s) \), where the sum is over all children s of t.

A simple method can be used to determine whether the approximation is good; it depends on the mass of nodes and the distance between x and s.

Faster spring methods

The Barnes-Hutt method is faster than the usual spring algorithm.

1. \(p_x \) = some initial position for each star x;
2. Repeat
 2.1 Build the octree;
 2.2 Foreach star x
 ComputeForce(x, root);
 2.3 Foreach star x, \(p_x += F_x \);
 Until \(p_x \) converges for all x;

In practice, computing all the forces takes \(O(n \log n) \) time.

Faster spring methods

The Barnes-Hutt method provides a synergy between clustering and layout.

1. \(p_u \) = some initial position for each node u;
2. Repeat
 2.1 Build the octree;
 2.2 Foreach node u
 ComputeForce(u, root);
 2.3 Foreach node u, \(p_u += F_u \);
 Until \(p_u \) converges for all u;
Visual abstraction

Abstract view of a 51,000 node graph