SOFT1002
Lecture 21: Trees and Composite Design Pattern

School of Information Technologies

DSP1
◆ Due 5pm on Friday 25th May
◆ Submit code as .zip on WebCT

DSP2
◆ Data Structures Problem 2 is from Big Java 2nd ed pg 770:
◆ Implement a queue as a circular array.
 □ Use two index variables, head and tail that contain the index of the next object to be removed, and the next object to be added, respectively.
◆ Due Friday 1st June

Today’s Lecture
◆ Trees
◆ Recursive algorithms on trees
◆ Code for trees and their algorithms
◆ Design Patterns
◆ Composite Design Pattern
◆ Read Kingston Chapter 19

Trees
◆ We like to organize things in hierarchical manner.

Some Application of Trees
◆ Family Trees
◆ Organizational chart
◆ Sports tournament chart
◆ Linguistics (structure of language)
◆ Computer File Systems (directories/folders)
A rooted tree consists of a root node and a finite set of subtrees, which are themselves rooted trees.

- Note: it is allowed to have no subtrees (an empty set).
- In that case, the tree is just a single node!

Note: it is allowed to have no subtrees (an empty set).

In that case, the tree is just a single node!

Example

- Different subtrees can have different shapes.
- Each node can have a value: in some applications this is a string; in others it is another object; sometimes, it’s a number.

Terminology

- Children of node X: the root nodes of the sub-trees of the tree (or sub-tree, or sub-sub-tree etc) whose root is X.
 - Descendants of X: X, or its children, or its children’s children, or ….
 - Parent of Y: the node X such that Y is among the children of X.
 - Leaf node: any node with no children.

Examples

- The node with 14 is the parent of the node with 23.
- The node with 16 is a descendant of the node with 14.
- The node with 18 is a leaf; the node with 23 is not a leaf.

More terminology

- Depth of node X: number of nodes including the root and X on the longest path from the root down to X.
- Height of node X: number of nodes (including X and the leaf) on the longest path from X down to a leaf.
- Height of a tree: height of the root node in the tree.

Warning: these definitions are not standard; different books give different meanings to the words.
Recursive algorithms on trees

- **Base case:** tree with only one node (the root, with no subtrees)
- **Recursion step:** how does the algorithm act on a tree, related to how it acts on the subtrees

Tree height

- Height of tree with no subtrees: 1
- Height of tree $= 1 + \max(\text{Height of any subtree})$

Exercise: Count nodes

- **Count nodes of tree:** $= \sum(\text{Count nodes in each subtree})$
- **Count nodes of tree with no subtrees:** $= 1$
- **Answer:** Count nodes of tree $= 1 + \sum(\text{Count nodes in each subtree})$
- **Answer:** Count nodes $= 11$

Tree Traversal

- **Pre-order:** each node is visited before its descendents.
- **Post-order:** the descendents are visited before the node.
- **In-order:** for binary trees (e.g. where there are distinct left and right children) there is in-order:
 - traverse left subtree, then visit the node, then traverse right subtree.

Preorder Traversal

- Visit 12
- Visit 16
- Visit 20
- Visit 13
- Visit 23
- Visit 11
- Visit 31
- Visit 34
- Visit 31
- Visit 30

Tree traversal

- For binary trees (e.g. where there are distinct left and right children) there is in-order:
 - traverse left subtree, then visit the node, then traverse right subtree.
Varieties of Trees
- Binary trees
- Ordered trees
- Rooted trees
- Free trees

Trees are used in representing relational structures and implementing various data structures.

Binary trees
- A binary tree is a node with a left subtree (or null) and a right subtree (or null)

V3 is left child of V2; V2 is right child of V0

Note: V4 has null instead of a right subtree

Traversing ordered trees
- Pre-order: V0, V1, V2, V3, V4, V5
- Post-order: V1, V3, V5, V4, V2, V0
- In-order: V1, V0, V3, V2, V5, V4

Coding trees
- Unfortunately, there is no simple general-purpose library class to use when representing tree structures.
 - There are JTree, TreeModel, and TreeNode in Swing!
 - This leaves lots of alternative approaches to coding the information and the algorithms.
 - We look at 3 main styles:
 - Use a non-standard library class
 - Implement directly using node class containing references to other nodes
 - Implement directly with a mixture of classes (Composite design pattern)

Use a Tree class
- Kingston text refers to a Tree class
- This allows access to subtrees through an Iterator
 - Just as List allows Iterator-based access to elements
- Because the library is already written, the recursive method you write is in the class that has a reference to a Tree
Tree class API

- In Tree
 /* return the value stored in the root */
 Object rootVal();
- /* return an Iterator */
 Iterator treeIterator();

Recall that Iterator provides
Boolean hasNext(); Object next();
In this case, the result from next() should be cast to type Tree

Code an algorithm

- One parameter is a Tree t
- Inside method, obtain iterator and examine the subtrees of t
 - Call the method recursively with each appropriate subtree as argument
 - Combine the results from recursive calls to get return value for the method on t

Tree height

- Where is the base case?
- Answer: It is hidden; for a single node tree, the while loop body is not executed at all!

height of tree = 1 + max(height of any subtree)

public int height(Tree tree) {
 int maxHeight = 0;
 Iterator it = tree.treeIterator();
 while(it.hasNext()) {
 Tree subtree = (Tree) it.next();
 int thisHeight = height(subtree);
 if (thisHeight > maxHeight)
 maxHeight = thisHeight;
 }
 return (1+maxHeight);
}

Coding traversals

public void preorderTraversal(Tree tree) {
 visit(tree.rootVal());
 Iterator it = tree.treeIterator();
 while(it.hasNext()) {
 Tree subtree = (Tree) it.next();
 preorderTraversal(subtree);
 }
}

public void postorderTraversal(Tree tree) {
 Iterator it = tree.treeIterator();
 while(it.hasNext()) {
 Tree subtree = (Tree) it.next();
 postorderTraversal(subtree);
 }
 visit(tree.rootVal());
}

Binary tree nodes

- You can also define your own trees, using a Node class with references to its children
- This is especially common when representing binary trees
 - Similar code is found inside some of the Java collection library classes!
- Often each node also has two pieces of information: a value and a label

public class Node {
 Node left;
 Node right;
 int value;
 String label;

 //methods
}

Methods are:
- Constructor
 public Node(int value, String label);
- Getters
 public Node getLeft();
 public Node getRight();
 public int getValue();
 public String getLabel();
- Recursive method(s)
Code an algorithm

◆ Write a method in the Node class
 ■ The target node is implicit parameter on which we recurse
 ■ Inside the method, call recursively on left and right
 ■ Always check first to be sure target != null
 ◆ Combine results of recursive calls to get return value from method

Tree height

```java
public int height() {
    if ((left == null) && (right == null)) {
        return 1;
    } else if ((left != null) && (right == null)) {
        return 1 + left.height();
    } else if ((left == null) && (right != null)) {
        return 1 + right.height();
    } else if ((left != null) && (right != null)) {
        int leftheight = left.height();
        int rightheight = right.height();
        if (leftheight > rightheight) {
            return 1 + leftheight;
        } else {
            return 1 + rightheight;
        }
    }
    // never reached, needed for Java compiler
    return 1;
}
```

Rewritten code

◆ By careful thought about null cases and default values for those, one can often rewrite the code to have less repetition

```java
public int height() {
    int leftheight = 0;
    int rightheight = 0;
    if (left != null) {
        leftheight = left.height();
    }
    if (right != null) {
        rightheight = right.height();
    }
    if (leftheight > rightheight) {
        return 1 + leftheight;
    } else {
        return 1 + rightheight;
    }
}
```

Coding example

◆ We will write a method to calculate the number of left-child nodes in a tree.

```java
public class Node {
    private Node leftChild;
    private Node rightChild;
    // and getters and setters
    public Node() {
        leftChild = null; rightChild = null; }  
    public int countLeftChildren() {
        return 0;  // code here
    }
}
```

Coding example

◆ What is the base case?
 ◆ - the node is a leaf
 ◆ What do we do in the base case?
 ◆ - check to see if this is a leftChild -- oops, too late
 ◆ We must count every time we go to the left child.

Coding example

◆ Where do we begin?
 ◆ - the root
 ◆ When do we stop?
 ◆ - when all nodes have been traversed
Coding example

```java
public class Node {
    // ...
    public int countLeftChildren() {
        int nleft = 0;
        if (leftChild != null) {
            nleft++;
            nleft += leftChild.countLeftChildren();
        }
        if (rightChild != null) {
            nleft += rightChild.countLeftChildren();
        }
        return nleft;
    }
    // ...
}
```

Coding example

- In the previous code
 - where is the base case?
 - where is the recursion?
 - what order traversal is this?

Composite Design Pattern

- In many situations, we want tree structures where the different nodes have very different characteristics and structures, but also there is some common behaviour
 - For example, in a GUI, there are buttons, textfields, etc, arranged in nested panels
 - The key is to use a Composite design pattern

Design Patterns

- Description of communication objects and classes that are customized to solve a general design problem in a particular context.
- Accumulation of experience by clever designers
 - Useful terminology for communication among designers and coders
 - Design pattern is to design as code cliché is to code

Composite Design Pattern

- Represent part-whole hierarchies as objects.

```
+-----------------+
| Composite       |
+-----------------+
|                 |
+-----------------+
| Manager         |
+-----------------+
| worker1 manager |
+-----------------+
| worker2         |
+-----------------+
| worker3         |
+-----------------+
| worker4         |
+-----------------+
| Component       |
+-----------------+
```

Composite Design Pattern

- The composite pattern defines a common interface for a tree-like hierarchy of objects. Some of these objects (composite objects) may be composed of other objects from the same hierarchy.
 - i.e., ignore the difference between composite objects and individual objects

```
+-----------------+
| AbstractComposite |
+-----------------+
| operator(): do something |
| add(AbstractComponent) |
| remove(AbstractComponent) |
| getChild(int) |
+-----------------+
```
Composite Design Pattern
- When a method is called on a composite object, the method needs to call the corresponding method of each of its constituent objects.
- If these constituent objects are stored in a collection, the method needs to traverse this collection and call the corresponding method.

AbstractComposite
operator(): do something
add(AbstractComponent)
Remove(AbstractComponent)
getChildren(int)

AbstractComponent
operator(): do something

Example: Expression Tree

- An expression tree shows the structure of an algebraic expression.
- The above tree structure gives the structure of $\sqrt{b^2 - 4ac}$.

Example: Expression Tree

- An expression tree shows the structure of an algebraic expression.
- The above tree structure gives the structure of $\sqrt{b^2 - 4ac}$.

How can we represent the Expression Tree?
- Each node is an object, but it is not helpful if the tree contains different kind of nodes.
- What are the common methods in these nodes?
 - public double eval();
- How will they differ?
 - Some nodes contain literals
 - eval() will simply return the value
 - Some nodes contain expressions (addition/subtraction)
 - eval() will need prior computation of its constituent expressions

Use Inheritance to Model Node Types (Expression)
- The Expression interface enforces the design.
- All classes which implement it must provide an eval() method.
- The above is an example of the composite design pattern.
- LiteralExpression is a simple type.
- AddExpression and SubExpression are composite types.

Command Language in Turtle Graphics
- Program to control a “turtle” moving around a grid.
- Move forward, turn, toggle (changes drawing colour), and these can be put in repeating groups.

Use Inheritance to Model Node Types (TurtleGraphics)
- The Command interface enforces the design.
- All classes which implement it must provide an execute() method.
- The above is an example of the composite design pattern.
- Forward, TurnRight, TurnLeft and Toggle are simple types.
- Repeat is a composite type.
Command.java

```java
public interface Command {
    public void execute(TurtleFrame win);
}
```

Forward.java

```java
public class Forward implements Command, TurtleTokens {
    private int numSteps;
    public Forward(int numSteps) {
        this.numSteps = numSteps;
    }
    public void execute(TurtleFrame win) {
        win.forward(numSteps);
    }
}
```

Repeat.java

```java
public class Repeat implements Command, TurtleTokens {
    private Command seq;
    private int repetitions;
    public Repeat(Command seq, int repetitions) {
        this.seq = seq;
        this.repetitions = repetitions;
    }
    public void execute(TurtleFrame win) {
        for (int i = 0; i < repetitions; i++)
            seq.execute(win);
    }
}
```

Object Diagram

```
REPEAT 3 <several commands> ENDREPEAT
REPEAT 2
FORWARD 8
TURN_LEFT
ENDREPEAT
TOGGLE
ENDREPEAT
```

Summary: Recursion and Composites

- For structures built from Composite design pattern, each class will provide the method, e.g., evaluate():
 - atomic classes can execute evaluate() directly (base cases);
 - composed classes will have code that includes recursive calls of evaluate() on the contained objects.

Inductive reasoning

- To prove correctness of recursive code, use proof by general induction.
- Claim: it works on inputs of size n.
- Prove this, using assumption that it works on all inputs whose size is smaller than n
 - for which we always need a base case, for inputs of size 0 or 1.
What have we done?

- Trees
- Recursive algorithms on Trees
- Alternative coding styles
- Composite Design Pattern
- Recursive algorithms on composites