Associate Professor Lijun Chang
People_

Associate Professor Lijun Chang

B.Eng (RUC, China), PhD (CUHK)
Associate Professor
ARC Future Fellow (2019--2022)
ARC DECRA Fellow (2015--2017)
Phone
+61 2 9036 9756
Associate Professor Lijun Chang

Dr Lijun Chang is an Associate Professor in the School of Computer Science at the University of Sydney. Prior to that, he was a Future Fellow at the University of Sydney and a DECRA Fellow at the University of New South Wales. He received a Bachelors degree in Computer Science & Technology from Renmin University of China, and a Ph.D from the Chinese University of Hong Kong. Lijun joined the University of Sydney as a Lecturer in August 2017.

Graph Analytics, Graph Mining, Graph Algorithms, Network Science

Coach of USYD's Programming Competition Teams

INFO5011:Problem Solving and Competitive Programming

COMP5313: Large Scale Networks

COMP9120: Database Management Systems

Project titleResearch student
Efficient Dynamic Graph ProcessingYu KONG
Finding cohesive subgraphs in large bipartite graphsRashmika MATHTHAKA GAMAGE
Solving Graph Similarity Problem using Deep Learning modelsMouyi XU

Publications

Books

  • Chang, L., Qin, L. (2018). Cohesive Subgraph Computation over Large Sparse Graphs. Cham: Springer. [More Information]

Journals

  • Yao, K., Chang, L., Yu, J. (2024). Identifying similar-bicliques in bipartite graphs. VLDB Journal. [More Information]
  • Chang, L., Feng, X., Yao, K., Qin, L., Zhang, W. (2023). Accelerating Graph Similarity Search via Efficient GED Computation. IEEE Transactions On Knowledge And Data Engineering, 35(5), 4485-4498. [More Information]
  • Yao, K., Chang, L., Qin, L. (2023). Identifying Large Structural Balanced Cliques in Signed Graphs. IEEE Transactions On Knowledge And Data Engineering. [More Information]

Conferences

  • Dai,, Y., Qiao,, M., Chang, L. (2022). Anchored Densest Subgraph. Proceedings of the ACM SIGMOD International Conference on Management of Data, : IEEE Computer Society.
  • Yao, K., Chang, L., Qin,, L. (2022). Computing Maximum Structural Balanced Cliques in Signed Graphs. Proceedings - International Conference on Data Engineering, : IEEE Computer Society.
  • Li,, W., Qiao,, M., Qin,, L., Chang, L., Zhang,, Y., Lin,, X. (2022). On Scalable Computation of Graph Eccentricities. Proceedings of the ACM SIGMOD International Conference on Management of Data, : IEEE Computer Society.

2024

  • Yao, K., Chang, L., Yu, J. (2024). Identifying similar-bicliques in bipartite graphs. VLDB Journal. [More Information]

2023

  • Chang, L., Feng, X., Yao, K., Qin, L., Zhang, W. (2023). Accelerating Graph Similarity Search via Efficient GED Computation. IEEE Transactions On Knowledge And Data Engineering, 35(5), 4485-4498. [More Information]
  • Yao, K., Chang, L., Qin, L. (2023). Identifying Large Structural Balanced Cliques in Signed Graphs. IEEE Transactions On Knowledge And Data Engineering. [More Information]
  • Wang, X., Wen, D., Qin, L., Chang, L., Zhang, Y., Zhang, W. (2023). ScaleG: A Distributed Disk-Based System for Vertex-Centric Graph Processing. IEEE Transactions On Knowledge And Data Engineering, 35(2), 2019-2033. [More Information]

2022

  • Dai,, Y., Qiao,, M., Chang, L. (2022). Anchored Densest Subgraph. Proceedings of the ACM SIGMOD International Conference on Management of Data, : IEEE Computer Society.
  • Zhu, Y., Zhang, Q., Qin, L., Chang, L., Yu, J. (2022). Cohesive Subgraph Search Using Keywords in Large Networks. IEEE Transactions On Knowledge And Data Engineering, 34(1), 178-191. [More Information]
  • Wen, D., Yang, B., Qin, L., Zhang, Y., Chang, L., Li, R. (2022). Computing K-Cores in Large Uncertain Graphs: An Index-Based Optimal Approach. IEEE Transactions On Knowledge And Data Engineering, 34(7), 3126-3138. [More Information]

2021

  • Yao, K., Chang, L. (2021). Efficient size-bounded community search over large networks. 47th International Conference on Very Large Data Bases, VLDB 2021, Copenhagen: VLDB Endowment. [More Information]

2020

  • Chang, L., Qiao, M. (2020). Deconstruct Densest Subgraphs. 29th International World Wide Web Conference (WWW 2020), Taipei: International World Wide Web Conferences Steering Committee. [More Information]
  • Cai, M., Chang, L. (2020). Efficient closest community search over large graphs. 25th International Conference on Database Systems for Advanced Applications, DASFAA 2020, South Korea: Springer Science+Business Media. [More Information]
  • Chang, L. (2020). Efficient maximum clique computation and enumeration over large sparse graphs. VLDB Journal, 29(5), 999-1022. [More Information]

2019

  • Chang, L., Qin, L. (2019). Cohesive subgraph computation over large sparse graphs. 35th IEEE International Conference on Data Engineering (ICDE 2019), Piscataway: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
  • Alsahafy, M., Chang, L. (2019). Computing Maximum Independent Sets over Large Sparse Graphs. 20th International Conference on Web Information Systems Engineering (WISE 2019), Cham: Springer. [More Information]
  • Li, W., Qiao, M., Qin, L., Zhang, Y., Chang, L., Lin, X. (2019). Eccentricities on small-world networks. VLDB Journal, 28(5), 765-792. [More Information]

2018

  • Bi, F., Chang, L., Lin, X., Zhang, W. (2018). An Optimal and Progressive Approach to Online Search of Top-K Influential Communities. Proceedings of the VLDB Endowment, 11(9), 1056-1068. [More Information]
  • Subotic, P., Jordan, H., Chang, L., Fekete, A., Scholz, B. (2018). Automatic index selection for large-scale datalog computation. Proceedings of the VLDB Endowment, 12(2), 141-153. [More Information]
  • Chang, L., Qin, L. (2018). Cohesive Subgraph Computation over Large Sparse Graphs. Cham: Springer. [More Information]

2017

  • Chang, L., Li, W., Zhang, W. (2017). Computing a near-maximum independent set in linear time by Reducing-Peeling. ACM Special Interest Group on Management of Data Conference (SIGMOD 2017), New York: Association for Computing Machinery (ACM). [More Information]
  • Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W. (2017). Effective and Efficient Dynamic Graph Coloring. Proceedings of the VLDB Endowment, 11(3), 338-351. [More Information]
  • Wen, D., Qin, L., Zhang, Y., Chang, L., Lin, X. (2017). Efficient Structural Graph Clustering: An Index-Based Approach. VLDB Journal, 11(3), 243-255. [More Information]

2016

  • Feng, X., Chang, L., Lin, X., Qin, L., Zhang, W. (2016). Computing Connected Components with linear communication cost in pregel-like systems. 32nd IEEE International Conference on Data Engineering (ICDE 2016), Piscataway: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
  • Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W. (2016). Diversified top-k clique search. VLDB Journal, 25(2), 171-196. [More Information]
  • Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W. (2016). Efficient subgraph matching by postponing Cartesian products. 2016 ACM SIGMOD International Conference on Management of Data, New York: Association for Computing Machinery (ACM). [More Information]

2015

  • Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W. (2015). Diversified top-k clique search. 31st IEEE International Conference on Data Engineering 2015, Seoul: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
  • Bi, F., Chang, L., Zhang, W., Lin, X. (2015). Efficient string similarity search: A cross pivotal based approach. 20th International Conference on Database Systems for Advanced Applications (DASFAA 2015), Cham: Springer. [More Information]
  • Chang, L., Lin, X., Qin, L., Yu, J., Pei, J. (2015). Efficiently computing Top-K shortest path join. 18th International Conference on Extending Database Technology - EDBT 2015, Konstanz, Germany: OpenProceedings.org. [More Information]

2014

  • Qiao, M., Cheng, H., Chang, L., Yu, J. (2014). Approximate Shortest Distance Computing: A Query-Dependent Local Landmark Scheme. IEEE Transactions On Knowledge And Data Engineering, 26(1), 55-68. [More Information]
  • Han, Y., Chang, L., Zhang, W., Lin, X., Wang, L. (2014). Efficiently retrieving top-k trajectories by locations via traveling time. 25th Australasian Database Conference - ADC 2014, Berlin, Germany: Springer Verlag. [More Information]
  • Qin, L., Yu, J., Chang, L., Cheng, H., Zhang, C., Lin, X. (2014). Scalable big graph processing in MapReduce. 2014 ACM SIGMOD International Conference on Management of Data, New York: Association for Computing Machinery (ACM). [More Information]

2013

  • Qiao, M., Cheng, H., Qin, L., Yu, J., Yu, P., Chang, L. (2013). Computing weight constraint reachability in large networks. VLDB Journal, 22(3), 275-294. [More Information]
  • Chang, L., Yu, J., Qin, L., Lin, X., Liu, C., Liang, W. (2013). Efficiently computing k-edge connected components via graph decomposition. 2013 ACM SIGMOD Conference on Management of Data (SIGMOD 2013), New York, United States: Association for Computing Machinery (ACM). [More Information]
  • Chang, L., Yu, J., Qin, L. (2013). Fast Maximal Cliques Enumeration in Sparse Graphs. Algorithmica, 66(1), 173-186. [More Information]

2012

  • Qiao, M., Cheng, H., Chang, L., Yu, J. (2012). Approximate shortest distance computing: A query-dependent local landmark scheme. 28th IEEE International Conference on Data Engineering (ICDE), USA: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
  • Qin, L., Yu, J., Chang, L. (2012). Computing structural statistics by keywords in databases. IEEE Transactions On Knowledge And Data Engineering, 24(10), 1731-1746. [More Information]
  • Qin, L., Yu, J., Chang, L. (2012). Diversifying Top-K Results. Proceedings of the VLDB Endowment, 5(11), 1124-1135. [More Information]

2011

  • Qin, L., Yu, J., Chang, L. (2011). Computing Structural Statistics by Keywords in Databases. 2011 IEEE 27th International Conference on Data Engineering, ICDE 2011, United States of America: Institute of Electrical and Electronics Engineers (IEEE). [More Information]
  • Chang, L., Yu, J., Qin, L., Zhu, Y., Wang, H. (2011). Finding Information Nebula over Large Networks. 20th ACM Conference on Information and Knowledge Management (CIKM 2011), New York: Association for Computing Machinery (ACM). [More Information]
  • Qin, L., Yu, J., Chang, L. (2011). Scalable keyword search on large data streams. VLDB Journal, 20(1), 35-57. [More Information]

Selected Grants

2022

  • Directionality-Aware Cohesive Subgraph Search over Directed Graphs, Chang L, Australian Research Council (ARC)/Discovery Projects (DP)

2018

  • Advanced Search of Cohesive Subgraphs in Big Graphs, Chang L, Australian Research Council (ARC)/Future Fellowships (FT)