2017

2016
Pham, S., Pham, C., Hancock, G. (2016). A Direct Strength Method (DSM) of Design for Channel Sections in Shear with Square and Circular Web Holes. *Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2016)*, Rolla, Missouri: Missouri University of Science and Technology.

Nguyen, V., Hancock, G., Pham, C. (2016). Analyses of thin-walled sections under localised loading for general end boundary conditions - Part 1: Pre-buckling. *Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2016)*, Rolla, Missouri: Missouri University of Science and Technology.

Nguyen, V., Hancock, G., Pham, C. (2016). Analyses of thin-walled sections under localised loading for general end boundary conditions - Part 2: Buckling. *Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2016)*, Rolla, Missouri: Missouri University of Science and Technology.

Pham, C. (2016). Elastic Shear Buckling of Plates and Thin-Walled Channel Sections with Centrally Located Holes. *7th International Conference on Coupled Instabilities in Metal Structures (CIMS 2016)*, Lisbon, Portugal: DECivil/IST/UL - University of Lisbon.

Zelenkin, D., Pham, C., Hancock, G. (2016). Experimental and Numerical Studies on the Effect of Flange Restraints on Tension Field Action In Cold-Formed C-Sections in Shear. *8th International Conference on Steel And Aluminium Structures*, Hong Kong: University of Hong Kong.

Pham, C., Pelosi, A., Earls, T., Hancock, G. (2016). Experimental Investigation of Cold-Formed C-Sections with Central Square Holes in Shear. *Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2016)*, Rolla, Missouri: Missouri University of Science and Technology.

Talebian, N., Gilbert, B., Pham, C., Chariere, R. (2016). Local and distortional biaxial bending capacity of cold-formed steel storage rack uprights. *7th International Conference on Coupled Instabilities in Metal Structures (CIMS 2016)*, Baltimore: Johns Hopkins University.

Huynh, L., Pham, C., Rasmussen, K. (2016). Mechanical Properties of Cold-Rolled Aluminium Alloy 5052 Channel Sections. *8th International Conference on Steel And Aluminium Structures*, Hong Kong: University of Hong Kong.

Hancock, G., Pham, C. (2016). New section shapes using high-strength steels in cold-formed steel structures in Australia. In Cheng Yu (Eds.), *Recent Trends in Cold-Formed Steel Construction*, (pp. 221-239), Duxford: Elsevier. [More Information](http://dx.doi.org/10.1016/B978-0-08-100160-8.00011-6)

Huynh, L., Pham, C., Rasmussen, K. (2016). Stub Column Tests and Finite Element Modelling of Cold-Rolled Aluminium Alloy 5052 Channel Sections. *8th International Conference on Steel And Aluminium Structures*, Hong Kong: University of Hong Kong.

2015

Pham, C. (2015). Buckling Studies of Thin-Walled C-Section with Square Holes in Shear using the Spline Finite Strip Method. *Eighth International Conference on Advances in Steel Structures*, Lisbon, Portugal: DECivil/IST/UL - University of Lisbon.

Nguyen, V., Hancock, G., Pham, C. (2015). Development of the Program THIN-WALL-2 for the Buckling Analysis of Thin-Walled Sections under Generalised Loading. *Eighth International Conference on Advances in Steel Structures*, Lisbon, Portugal: DECivil/IST/UL - University of Lisbon.

Hancock, G., Pham, C. (2015). Relationship between the semi-analytical finite strip methods for buckling of thin-walled sections under uniform and localised loading. *Eighth International Conference on Advances in Steel Structures*, Lisbon, Portugal: DECivil/IST/UL - University of Lisbon.

2014

Hancock, G., Pham, C. (2014). Buckling Analysis of Thin-Walled Sections under Localised Loading Using the Semi-Analytical Finite Strip Method. *The 7th International Conference on Thin-Walled Structures*, online: ICTWS.

Hancock, G., Pham, C. (2014). Developments in the finite strip buckling analysis of plates and channel sections under localised loading. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

Lim, J., Hancock, G., Clifton, G., Pham, C. (2014). Direct Strength Method for Ultimate Strength of Bolted Moment-Connections between Cold-Formed Steel Channel Members. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

Bruneau, L., Pham, C., Hancock, G. (2014). Experimental study of longitudinally stiffened web channels subjected predominantly to shear. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

Pham, C., Bruneau, L., Hancock, G. (2014). New Developments in the Direct Strength Method of Design for Cold-Formed Sections Subject to Shear. *The 7th International European Conference on Steel and Composite Structures (Eurosteel)*, Berlin: Ernst & Sohn Verlag fÂ¼r Architektur und technische Wissenschaften GmbH.

Pham, C., Hancock, G. (2014). Numerical Investigation of Longitudinally Stiffened Web Channels Predominantly in Shear. *The 7th International Conference on Thin-Walled Structures*, online: ICTWS.

Pham, C., Chin, Y., Boutros, P., Hancock, G. (2014). The Behaviour of Cold-Formed C-Sections with Square Holes in Shear. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

2013

2012

Pham, C., Hancock, G. (2012). Direct Strength Design of High Strength Complex C-Sections in Pure Bending. *7th International Conference on Advances in Steel Structures (ICASS 2012)*, Nanjing: Southeast University Press.

Hancock, G., Pham, C. (2012). Direct Strength Method of Design for Shear of Cold-formed Channels based on a Shear Signature Curve. *21st International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: Missouri University of Science and Technology.

Pham, S., Pham, C., Hancock, G. (2012). Direct Strength Method of Design for Shear: The Third Dimension. *Sixth International Conference on Coupled Instabilities in Metal Structures CIMS2012*, Scotland: Loughborough University.

Pham, C., Hancock, G. (2012). Elastic Shear Buckling of Cold-Formed Channels: Comparisons of Semi-Analytical Finite Strip and Spline Finite Strip Methods. *Sixth International Conference on Coupled Instabilities in Metal Structures CIMS2012*, Scotland: Loughborough University.

Pham, S., Pham, C., Hancock, G. (2012). Shear Buckling of Thin-Walled Channel Sections with Complex Stiffened Webs. *21st International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: Missouri University of Science and Technology.

2011
Pham, C., Hancock, G. (2011). Elastic Buckling of Cold-Formed Channel Sections in Shear. 6th International Conference on Thin Walled Structures, Mem Martins, Portugal: ECCS European Convention for Conctructional Steelwork. [More Information]

Pham, C., Hancock, G. (2011). Tension Field Action for Cold-Formed Channel Sections in Shear. 6th International Conference on Thin Walled Structures, Mem Martins, Portugal: ECCS European Convention for Constructional Steelwork.

2010
Pham, C., Hancock, G. (2010). Direct Strength Design of Cold-Formed C-Sections for Shear. 20th International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Missouri University of Science and Technology.

Pham, C., Hancock, G. (2010). Direct Strength Design of Cold-Formed C-Sections in Combined Bending and Shear. 20th International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Missouri University of Science and Technology.

Pham, C., Hancock, G. (2010). Direct Strength Design of Cold-Formed Sections for Shear and Combined Actions. International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010), Brazil: Federal University of Rio de Janeiro.

Pham, C., Hancock, G. (2010). Experimental Investigation of High Strength Cold-Formed SupaCee Sections in Shear. International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010), Brazil: Federal University of Rio de Janeiro.

Pham, C., Hancock, G. (2010). Finite Element Analyses of High Strength Cold-Formed SupaCee Sections in Shear. International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010), Brazil: Federal University of Rio de Janeiro.

2009

Pham, C., Hancock, G. (2009). Shear buckling of thin-walled channel sections with intermediate web stiffener. Sixth International Conference on Advances in Steel Structures, Hong Kong: Hong Kong Institute of Steel Construction.

2008
Pham, C., Hancock, G. (2008). Buckling Studies of Thin-Walled Channel Sections in Shear. Fifth International Conference on Thin-Walled Structures, Brisbane, Australia: Queensland University of Technology.

Pham, C., Hancock, G. (2008). Buckling Studies of Thin-Walled Channel Sections under Combined Bending and Shear. Nineteen International Specialty Conference, St Louis, Missouri: Missouri University of Science & Technology.

Pham, C., Hancock, G. (2008). Direct Strength Design of Cold-Formed Purlins. Fifth International Conference on Thin-Walled Structures, Brisbane, Australia: Queensland University of Technology. [More Information]