Hancock, G., Pham, C. (2014). Developments in the finite strip method for buckling analysis of plates and channel sections under localised loading. 22nd International Specialty Conference on Cold-Formed Steel Structures, St Louis, Missouri: Missouri University of Science & Technology.

Nguyen, V., Hancock, G., Pham, C. (2015). Development of the Program THIN-WALL-2 for the Buckling Analysis of Thin-Walled Sections under Generalised Loading. Eighth International Conference on Advances in Steel Structures, Lisbon, Portugal: DECivil/ISt/UL - University of Lisbon.

Pham, C., Hancock, G. (2015). Numerical Investigation of Longitudinally Stiffened Web Channels Predominantly in Shear. The 7th International European Conference on Steel and Composite Structures (Eurosteel), Berlin: Ernst & Sohn Verlag fÃ¼r Architektur und technische Wissenschaften GmbH.

Hancock, G., Pham, C. (2014). Buckling Analysis of Thin-Walled Sections under Localised Loading Using the Semi-Analytical Finite Strip Method. the 7th International Conference on Thin-Walled Structures, online: ICTWS.

Hancock, G., Pham, C. (2014). Developments in the finite strip method for buckling analysis of plates and channel sections under localised loading. 22nd International Specialty Conference on Cold-Formed Steel Structures, St Louis, Missouri: Missouri University of Science & Technology.

Lim, J., Hancock, G., Clifton, G., Pham, C. (2014). Direct Strength Method for Ultimate Strength of Bolted Moment-Connections between Cold-Formed Steel Channel Members. 22nd International Specialty Conference on Cold-Formed Steel Structures, St Louis, Missouri: Missouri University of Science & Technology.

Bruneau, L., Pham, C., Hancock, G. (2014). Experimental study of longitudinally stiffened web channels subjected predominantly to shear. 22nd International Specialty Conference on Cold-Formed Steel Structures, St Louis, Missouri: Missouri University of Science & Technology.

Pham, C., Bruneau, L., Hancock, G. (2014). New Developments in the Direct Strength Method of Design for Cold-Formed Sections Subject to Shear. The 7th International European Conference on Steel and Composite Structures (Eurosteel), Berlin: Ernst & Sohn Verlag fÃ¼r Architektur und technische Wissenschaften GmbH.
2012

Pham, C., Hancock, G. (2012). Direct Strength Design of High Strength Complex C-Sections in Pure Bending. *7th International Conference on Advances in Steel Structures (ICASS 2012)*, Nanjing: Southeast University Press.

Hancock, G., Pham, C. (2012). Direct Strength Method of Design for Shear of Cold-formed Channels based on a Shear Signature Curve. *21st International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: Missouri University of Science and Technology.

Pham, S., Pham, C., Hancock, G. (2012). Direct Strength Method of Design for Shear: The Third Dimension. *Sixth International Conference on Coupled Instabilities in Metal Structures CIMS2012*, Scotland: Loughborough University.

Pham, C., Hancock, G. (2012). Elastic Shear Buckling of Cold-Formed Channels: Comparisons of Semi-Analytical Finite Strip and Spline Finite Strip Methods. *Sixth International Conference on Coupled Instabilities in Metal Structures CIMS2012*, Scotland: Loughborough University.

Pham, S., Pham, C., Hancock, G. (2012). Shear Buckling of Thin-Walled Channel Sections with Complex Stiffened Webs. *21st International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: Missouri University of Science and Technology.

2011

Hancock, G. (2011). Harmonising the Australian Standard AS 4100 Steel Structures. In Lau Hieng Ho (Eds.), *Advances in Steel and Aluminium Structures*, (pp. 3-10). Singapore: Research Publishing.

2010
Pham, C., Hancock, G. (2010). Direct Strength Design of Cold-Formed C-Sections for Shear. *20th International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: Missouri University of Science and Technology.

Pham, C., Hancock, G. (2010). Direct Strength Design of Cold-Formed Sections for Shear and Combined Actions. *International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010)*, Brazil: Federal University of Rio de Janeiro.

Pham, C., Hancock, G. (2010). Experimental Investigation of High Strength Cold-Formed SupaCee Sections in Shear. *International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010)*, Brazil: Federal University of Rio de Janeiro.

Pham, C., Hancock, G. (2010). Finite Element Analyses of High Strength Cold-Formed SupaCee Sections in Shear. *International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010)*, Brazil: Federal University of Rio de Janeiro.

2009

Pham, C., Hancock, G. (2009). Shear buckling of thin-walled channel sections with intermediate web stiffener. *Sixth International Conference on Advances in Steel Structures*, Hong Kong: Hong Kong Institute of Steel Construction.

2008
Pham, C., Hancock, G. (2008). Buckling Studies of Thin-Walled Channel Sections in Shear. *Fifth International Conference on Thin-Walled Structures*, Brisbane, Australia: Queensland University of Technology.

Pham, C., Hancock, G. (2008). Buckling Studies of Thin-Walled Channel Sections under Combined Bending and Shear. *Nineteen International Specialty Conference*, St Louis,
Missouri: Missouri University of Science & Technology.

Kwon, Y., Kim, B., Hancock, G. (2008). Compression tests for high strength cold-formed steel columns undergoing interaction between local and distortional buckling. *Fifth International Conference on Coupled Instabilities in Metal Structures CIMS2008 (volume 2)*, Sydney Australia: The University Publishing Service, University of Sydney.

Pham, C., Hancock, G. (2008). Direct Strength Design of Cold-Formed Purlins. *Fifth International Conference on Thin-Walled Structures*, Brisbane, Australia: Queensland University of Technology.

Hancock, G. (2008). The Sixth Equation that Changed the World. *Fifth International Conference on Coupled Instabilities in Metal Structures CIMS2008 (volume 2)*, Sydney Australia: The University Publishing Service, University of Sydney.

2007

2006

Yap, D., Hancock, G. (2006). Experimental Study of a Complex High Strength Cold-Formed Cross-Shaped Steel Section. *International Colloquium on Stability and Ductility of Steel Structures (SDSS 2006)*, Portugal: IST Press.

Yap, D., Hancock, G. (2006). Post-Buckling in the Distortional Mode and Buckling Mode Interaction of Cold-Formed Thin-Walled Sections with Edge Stiffeners. *18th International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: University of Missouri-Rolla.

2005

Hancock, G. (2005). Developments in the Direct Strength Design of Cold-Formed Steel Structural Members.

Hancock, G., Cook, D., Moisy, R., Yen, A. (2005). Direct Strength Design of Hot-Rolled and Cold-Formed Steel Compression Members.

Hancock, G., Cook, D., Moisy, R., Yen, A. (2005). Direct Strength Design of Hot-Rolled and Cold-Formed Steel Compression Members. *4th International Conference on Advances in Steel Structures*, Shanghai, China: University of Missouri-Rolla, Rolla, MO, 65409-1060, United States.

2004

Yang, D., Hancock, G. (2004). Numerical Simulations Of High Strength Steel Box-Shaped Columns. *17th International Specialty Conference on Cold-Formed Steel Structures*, Orlando, FL, United States: University of Missouri-Rolla, Rolla, MO, 65409-1060, United States.

2003

2002

Yang, D., Hancock, G., Rasmussen, K. (2002). Compression Tests of Cold-Reduced High Strength Steel Long Columns. *Sixteenth International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.

Hancock, G., Young, B. (2002). Design of Channels subjected to Concentrated Bearing Load. *Sixteenth International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.

Hancock, G., Quispe, L. (2002). Direct Strength Method for the Design of Purlins. *Sixteenth International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.

2001
