2016


2015

Nguyen, V., Hancock, G., Pham, C. (2015). Development of the Program THIN-WALL-2 for the Buckling Analysis of Thin-Walled Sections under Generalised Loading. *Eighth International Conference on Advances in Steel Structures*, Lisbon: DECivil/IST/UL - University of Lisbon.


Hancock, G., Pham, C. (2015). Relationship between the semi-analytical finite strip methods for buckling of thin-walled sections under uniform and localised loading. *Eighth International Conference on Advances in Steel Structures*, Lisbon: DECivil/IST/UL - University of Lisbon.

2014
Hancock, G., Pham, C. (2014). Buckling Analysis of Thin-Walled Sections under Localised Loading Using the Semi-Analytical Finite Strip Method. *the 7th International Conference on Thin-Walled Structures*, online: ICTWS.

Hancock, G., Pham, C. (2014). Developments in the finite strip buckling analysis of plates and channel sections under localised loading. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

Lim, J., Hancock, G., Clifton, G., Pham, C. (2014). Direct Strength Method for Ultimate Strength of Bolted Moment-Connections between Cold-Formed Steel Channel Members. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.


Bruneau, L., Pham, C., Hancock, G. (2014). Experimental study of longitudinally stiffened web channels subjected predominantly to shear. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

Pham, C., Bruneau, L., Hancock, G. (2014). New Developments in the Direct Strength Method of Design for Cold-Formed Sections Subject to Shear. *The 7th International European Conference on Steel and Composite Structures (Eurosteel)*, Berlin: Ernst & Sohn Verlag fÄ¼r Architektur und technische Wissenschaften GmbH.

Pham, C., Hancock, G. (2014). Numerical Investigation of Longitudinally Stiffened Web Channels Predominantly in Shear. *the 7th International Conference on Thin-Walled Structures*, online: ICTWS.

Pham, C., Chin, Y., Boutros, P., Hancock, G. (2014). The Behaviour of Cold-Formed C-Sections with Square Holes in Shear. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

2013


2012

Pham, C., Hancock, G. (2012). Direct Strength Design of High Strength Complex C-Sections in Pure Bending. *7th International Conference on Advances in Steel Structures (ICASS 2012)*, Nanjing: Southeast University Press.
Pham, C., Hancock, G. (2010). Direct Strength Method of Design for Shear of Cold-formed Channels based on a Shear Signature Curve. 21st International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Missouri University of Science and Technology.

Pham, S., Pham, C., Hancock, G. (2012). Direct Strength Method of Design for Shear: The Third Dimension. Sixth International Conference on Coupled Instabilities in Metal Structures CIMS2012, Scotland: Loughborough University.


Pham, C., Hancock, G. (2012). Elastic Shear Buckling of Cold-Formed Channels: Comparisons of Semi-Analytical Finite Strip and Split Finite Strip Methods. Sixth International Conference on Coupled Instabilities in Metal Structures CIMS2012, Scotland: Loughborough University.

Pham, S., Pham, C., Hancock, G. (2012). Shear Buckling of Thin-Walled Channel Sections with Complex Stiffened Webs. 21st International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Missouri University of Science and Technology.


2011

Pham, C., Hancock, G. (2011). Elastic Buckling of Cold-Formed Channel Sections in Shear. 6th International Conference on Thin Walled Structures, Mem Martins, Portugal: ECCS European Convention for Constructional Steelwork.


Hancock, G. (2011). Harmonising the Australian Standard AS 4100 Steel Structures. In Lau Hieng Ho (Eds.), Advances in Steel and Aluminium Structures, (pp. 3-10). Singapore: Research Publishing.

Pham, C., Hancock, G. (2011). Tension Field Action for Cold-Formed Channel Sections in Shear. 6th International Conference on Thin Walled Structures, Mem Martins, Portugal: ECCS European Convention for Constructional Steelwork.

2010

Pham, C., Hancock, G. (2010). Direct Strength Design of Cold-Formed C-Sections for Shear. 20th International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Missouri University of Science and Technology.

Pham, C., Hancock, G. (2010). Direct Strength Design of Cold-Formed C-Sections in Combined Bending and Shear. 20th International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Missouri University of Science and Technology.

Pham, C., Hancock, G. (2010). Direct Strength Design of Cold-Formed Sections for Shear and Combined Actions. International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010), Brazil: Federal University of Rio de Janeiro.


Pham, C., Hancock, G. (2010). Experimental Investigation of High Strength Cold-Formed SupaCee Sections in Shear. International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010), Brazil: Federal University of Rio de Janeiro.

Pham, C., Hancock, G. (2010). Finite Element Analyses of High Strength Cold-Formed SupaCee Sections in Shear. International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010), Brazil: Federal University of Rio de Janeiro.


2009


Pham, C., Hancock, G. (2009). Shear buckling of thin-walled channel sections with intermediate web stiffener. Sixth International Conference on Advances in Steel Structures, Hong Kong: Hong Kong Institute of Steel Construction.

2008

Pham, C., Hancock, G. (2008). Buckling Studies of Thin-Walled Channel Sections in Shear. Fifth International Conference on Thin-Walled Structures, Brisbane, Australia: Queensland University of Technology.

Pham, C., Hancock, G. (2008). Buckling Studies of Thin-Walled Channel Sections under Combined Bending and Shear. Nineteen International Specialty Conference, St Louis, Missouri: Missouri University of Science & Technology.

Kwon, Y., Kim, B., Hancock, G. (2008). Compression tests for high strength cold-formed steel columns undergoing interaction between local and distortional buckling. Fifth International Conference on Coupled Instabilities in Metal Structures CIMS2008 (volume 2), Sydney Australia: The University Publishing Service, University of Sydney.

Pham, C., Hancock, G. (2008). Direct Strength Design of Cold-Formed Purlins. Fifth International Conference on Thin-Walled Structures, Brisbane, Australia: Queensland University of Technology.
Steel Structures, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.

Hancock, G., Young, B. (2002). Design of Channels subjected to Concentrated Bearing Load. Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.

Hancock, G., Quispe, L. (2002). Direct Strength Method for the Design of Purlins. Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.


Teh, L., Hancock, G. (2002). Strength and Behaviour of Fillet Welded Connections in G450 Sheet Steel. Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.

Teh, L., Hancock, G. (2002). Strength and Behaviour of Flare-Bevel and Flare-Vee Welded Connections in G450 Sheet Steel. Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.


Harris, E., Hancock, G. (2002). Sway Stability Testing of High Rise Rack Sub-Assemblages. Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.


Hancock, G., Yang, D., Rogers, C. (2002). The Behaviour of High Strength G550 Steel Sections as used in Residential Construction. Second International Symposium on Steel Structures, Seoul: Korean Society of Steel Construction.

2001


