2017

Nguyen, V., Hancock, G., Pham, C. (2017). Analyses of thin-walled sections under localised loading for general end boundary conditions $i_{1,1/2}$ Part 1: Pre-buckling. Thin-Walled Structures, 119, 956-972.

Nguyen, V., Hancock, G., Pham, C. (2017). Analyses of thin-walled sections under localised loading for general end boundary conditions $i_{1,1/2}$ Part 2: Buckling. Thin-Walled Structures, 119, 973-987.

Hancock, G. (2017). Coupled Instabilities in Metal Structures (CIMS) $i_{1,1/2}$ What have we learned and where are we going? [In Press]. Thin-Walled Structures.

Nguyen, V., Hancock, G., Pham, C. (2017). New developments in the direct strength method (DSM) for the design of cold-formed steel sections under localised loading. Steel Construction - Design and Research, 10(3), 227-233.

2016

Pham, S., Pham, C., Hancock, G. (2016). A Direct Strength Method (DSM) of Design for Channel Sections in Shear with Square and Circular Web Holes. Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2016), Rolla, Missouri: Missouri University of Science and Technology.

Rendall, M., Hancock, G., Rasmussen, K. (2016). Identifying shear buckling coefficients for channels with rectangular web stiffeners using the generalised cFSM. Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2016), Rolla, Missouri: Missouri University of Science and Technology.
Rendall, M., Hancock, G., Rasmussen, K. (2016). Modal Analysis of Lipped Channel Sections with Rectangular Web-Stiffeners in Shear. *8th International Conference on Steel And Aluminium Structures*, Hong Kong: University of Hong Kong.

Rendall, M., Hancock, G., Rasmussen, K. (2016). Modal participation for elastic buckling of polygonal tubes in torsion using the generalised CFSM. *7th International Conference on Coupled Instabilities in Metal Structures (CIMS 2016)*, Baltimore: Johns Hopkins University.

Hancock, G. (2016). Recent Developments in the Australian/New Zealand Standard AS/NZS 4600 for Cold-Formed Steel Structures. *Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2016)*, Rolla, Missouri: Missouri University of Science and Technology.

2015

Nguyen, V., Hancock, G., Pham, C. (2015). Development of the Program THIN-WALL-2 for the Buckling Analysis of Thin-Walled Sections under Generalised Loading. *Eighth International Conference on Advances in Steel Structures*, Lisbon, Portugal: DECivil/IST/UL - University of Lisbon.

2014

Hancock, G., Pham, C. (2014). Buckling Analysis of Thin-Walled Sections under Localised Loading Using the Semi-Analytical Finite Strip Method. *7th International Conference on Thin-Walled Structures*, online: ICTWS.

Hancock, G., Pham, C. (2014). Developments in the finite strip buckling analysis of plates and channel sections under localised loading. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

Lim, J., Hancock, G., Clifton, G., Pham, C. (2014). Direct Strength Method for Ultimate Strength of Bolted Moment-Connections between Cold-Formed Steel Channel Members. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

Bruneau, L., Pham, C., Hancock, G. (2014). Experimental study of longitudinally stiffened web channels subjected predominantly to shear. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

Pham, C., Bruneau, L., Hancock, G. (2014). New Developments in the Direct Strength Method of Design for Cold-Formed Sections Subject to Shear. *The 7th International European Conference on Steel and Composite Structures (Eurosteel)*, Berlin: Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH.

Pham, C., Hancock, G. (2014). Numerical Investigation of Longitudinally Stiffened Web Channels Predominantly in Shear. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

2013

2012

Pham, C., Hancock, G. (2012). Direct Strength Design of High
Pham, C., Hancock, G. (2010). Direct Strength Method of Design for Shear of Cold-formed Channels based on a Shear Signature Curve. 21st International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Missouri University of Science and Technology.

Pham, S., Pham, C., Hancock, G. (2012). Direct Strength Method of Design for Shear: The Third Dimension. Sixth International Conference on Coupled Instabilities in Metal Structures CIMS2012, Scotland: Loughborough University.

Pham, C., Hancock, G. (2012). Elastic Shear Buckling of Cold-Formed Channels: Comparisons of Semi-Analytical Finite Strip and Spline Finite Strip Methods. Sixth International Conference on Coupled Instabilities in Metal Structures CIMS2012, Scotland: Loughborough University.

Pham, C., Hancock, G. (2012). Shear Buckling of Thin-Walled Channel Sections with Complex Stiffened Webs. 21st International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Missouri University of Science and Technology.

2011

Hancock, G. (2011). Harmonising the Australian Standard AS 4100 Steel Structures. In Lau Hieng Ho (Eds.), Advances in Steel and Aluminium Structures, (pp. 3-10). Singapore: Research Publishing.

Pham, C., Hancock, G. (2011). Tension Field Action for Cold-Formed Channel Sections in Shear. 6th International Conference on Thin Walled Structures, Mem Martins, Portugal: ECCS European Convention for Constructional Steelwork.

2010

Pham, C., Hancock, G. (2010). Direct Strength Design of Cold-Formed C-Sections for Shear. 20th International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Missouri University of Science and Technology.

Pham, C., Hancock, G. (2010). Direct Strength Design of Cold-Formed C-Sections in Combined Bending and Shear. 20th International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Missouri University of Science and Technology.

Pham, C., Hancock, G. (2010). Direct Strength Design of Cold-Formed Sections for Shear and Combined Actions. International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010), Brazil: Federal University of Rio de Janeiro.

Pham, C., Hancock, G. (2010). Experimental Investigation of High Strength Cold-Formed SupaCee Sections in Shear. International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010), Brazil: Federal University of Rio de Janeiro.

Pham, C., Hancock, G. (2010). Finite Element Analyses of High Strength Cold-Formed SupaCee Sections in Shear. International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010), Brazil: Federal University of Rio de Janeiro.

2009

Pham, C., Hancock, G. (2009). Shear buckling of thin-walled channel sections with intermediate web stiffener. Sixth International Conference on Advances in Steel Structures, Hong Kong: Hong Kong Institute of Steel Construction.

2008

Pham, C., Hancock, G. (2008). Buckling Studies of Thin-Walled Channel Sections in Shear. Fifth International Conference on Thin-Walled Structures, Brisbane, Australia: Queensland University of Technology.

Pham, C., Hancock, G. (2008). Buckling Studies of Thin-Walled Channel Sections under Combined Bending and Shear. Nineteen International Specialty Conference, St Louis, Missouri: Missouri University of Science & Technology.

Kwon, Y., Kim, B., Hancock, G. (2008). Compression tests for high strength cold-formed steel columns undergoing interaction between local and distortional buckling. Fifth International Conference on Coupled Instabilities in Metal Structures.
CIMS2008 (volume 2), Sydney Australia: The University Publishing Service, University of Sydney.

Pham, C., Hancock, G. (2008). Direct Strength Design of Cold-Formed Purlins. Fifth International Conference on Thin-Walled Structures, Brisbane, Australia: Queensland University of Technology. [More Information]

Hancock, G. (2008). The Sixth Equation that Changed the World. Fifth International Conference on Coupled Instabilities in Metal Structures CIMS2008 (volume 2), Sydney Australia: The University Publishing Service, University of Sydney.

2007

2006

Yap, D., Hancock, G. (2006). Experimental Study of a Complex High Strength Cold-Formed Cross-Shaped Steel Section. International Colloquium on Stability and Ductility of Steel Structures (SDSS 2006), Portugal: IST Press.

Yap, D., Hancock, G. (2006). Post-Buckling in the Distortional Mode and Buckling Mode Interaction of Cold-Formed Thin-Walled Sections with Edge Stiffeners. 18th International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: University of Missouri-Rolla.

2005

Hancock, G. (2005). Developments in the Direct Strength Design of Cold-Formed Steel Structural Members.

Hancock, G., Cook, D., Moisy, R., Yen, A. (2005). Direct Strength Design of Hot-Rolled and Cold-Formed Steel Compression Members.

Hancock, G., Cook, D., Moisy, R., Yen, A. (2005). Direct Strength Design of Hot-Rolled and Cold-Formed Steel Compression Members. 4th International Conference on Advances in Steel Structures, Shanghai, China: University of Missouri-Rolla, Rolla, MO, 65409-1060, United States.

2004

Yang, D., Hancock, G. (2004). Developments In Design For Distortional Buckling Of Thin-Walled Members. The Fourth International Conference on Thin-Walled Structures - ICTWS 4, Institute of Physics Publishing.

Yang, D., Hancock, G. (2004). Numerical Simulations Of High Strength Steel Box-Shape Columns. 17th International Specialty Conference on Cold-Formed Steel Structures, Orlando, FL, United States: University of Missouri-Rolla, Rolla, MO, 65409-1060, United States.

2003

Young, B., Hancock, G. (2003). Cold-formed steel channels subjected to concentrated bearing load. Journal of Structural Engineering, 129(8), 1003-1010. <a
Rise Rack Sub-Assemblages.

2002

Yang, D., Hancock, G., Rasmussen, K. (2002). Compression Tests of Cold-Reduced High Strength Steel Long Columns. Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.

Hancock, G., Young, B. (2002). Design of Channels subjected to Concentrated Bearing Load. Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.

Hancock, G., Quispe, L. (2002). Direct Strength Method for the Design of Purlins. Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.

Teh, L., Hancock, G. (2002). Strength and Behaviour of Fillet Welded Connections in G450 Sheet Steel. Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.

Teh, L., Hancock, G. (2002). Strength and Behaviour of Flare-Bevel and Flare-Vee Welded Connections in G450 Sheet Steel. Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.

Harris, E., Hancock, G. (2002). Sway Stability Testing of High Rise Rack Sub-Assemblies. Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Rolla, Missouri: Department of Civil Engineering, University of Missouri-Rolla.

Hancock, G., Yang, D., Rogers, C. (2002). The Behaviour of High Strength G550 Steel Sections as used in Residential Construction. Second International Symposium on Steel Structures, Seoul: Korean Society of Steel Construction.

2001

