Table G – Sustainable Design

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Sustainable Design Stream

ARCH9031
Research Report
12   
Note: Department permission required for enrolment
Departmental Permission will be required to enrol in this unit. Available to Masters students only.
Semester 1
Semester 2
ARCH9045
Dissertation 1
12    P 48 credit points and a WAM of at least 75
C ARCH9046
N PLAN9010, ARCH9060, PLAN9011, PLAN9018, ARCH9031

Note: Department permission required for enrolment
Departmental Permission will be required to enrol in this unit.
Semester 1
Semester 2
ARCH9046
Dissertation 2
12    C ARCH9045
Semester 1
Semester 2
ARCH9080
Urban Ecology, Design and Planning
6    N PLAN9048
Semester 2
DESC9014
Building Construction Technology
6      Semester 1
DESC9015
Building Energy Analysis
6      Semester 1
DESC9067
Mechanical Services
6      Semester 2
DESC9138
Architectural and Audio Acoustics
6      Semester 1
DESC9147
Sustainable Building Design Principles
6      Semester 1
DESC9148
Sustainable Building Design Practice
6      Semester 2
DESC9150
Sustainability Research Project

This unit of study is not available in2015

6      Semester 1
Semester 2
DESC9153
Graduate Internship
6   
Note: Department permission required for enrolment
Masters students only. Graduate Diploma students with permission of the Program Coordinator. Advanced Standing will not be granted for this unit of study.
Intensive December
Intensive July
Intensive November
Semester 1
Semester 2
DESC9164
Lighting Technologies
6    N DESC9063
Semester 2
DESC9169
Daylight in Buildings
6    N DESC9106
Semester 1
DESC9195
Building Economics
6    P DESC9200 Introduction to Architectural Science
Intensive September
DESC9197
Energy Management and Code Compliance
6    P DESC9200 Introduction to Architectural Science, DESC9014 Building Construction Technology
Semester 2a
DESC9200
Introduction to Architectural Science
6      Semester 1
DESC9201
Indoor Environmental Quality (IEQ)
6      Semester 2
DESC9300
Research in Arch. & Design Science
6    N ARCF9001

Note: Department permission required for enrolment

Semester 1
Semester 2
MARC4002
Sustainable Architecture Research Studio
12   
Note: Department permission required for enrolment
This studio cannot be taken in the same semester with MARC4001 or MARC4003. Students may incur materials costs in this unit.
Semester 1
Semester 2
PHYS5033
Environmental Footprints and IO Analysis
6   

Minimum class size of 5 students.
Semester 1
Semester 2
PHYS5034
Life Cycle Analysis
6   

Minimum class size of 5 students.
Semester 2
PLAN9068
History & Theory of Planning & Design
6    N ARCH9062, PLAN9031, ARCH9031
Semester 1
SUST5001
Introduction to Sustainability
6      Semester 1
Semester 2
SUST5003
Energy and Resources
6    C SUST5001
Semester 1

Sustainable Design Stream

ARCH9031 Research Report

Credit points: 12 Teacher/Coordinator: Program Director Session: Semester 1,Semester 2 Classes: Independent research under academic supervision. Assessment: Research proposal (10%), 10000 to 15000 word Report (90%). Final reports due by the end of the first week of the formal examination period. Mode of delivery: Supervision
Note: Department permission required for enrolment
Note: Departmental Permission will be required to enrol in this unit. Available to Masters students only.
The report is a substantial piece of research conducted over one semester. It takes the form of report (between 10000 and 15000 words) on an approved subject of your choice. The report is an opportunity to advance your knowledge and skills in a particular area. The objective of the report is to allow you to develop research and analytic skills by undertaking an in depth study of your own selection. The expected learning outcomes of the report include the ability to think critically about a problem and develop an appropriate research methodology or analytical approach to address it; identify and access appropriate sources of information, research and literature relevant to the issues; undertake relevant primary and secondary research; and present your findings in a way that demonstrates academic and professional competence. A report generally includes a literature review to delineate a problem; a statement of research aims or objectives, as well as research questions; an explanation of research methods; presentation and analysis of data; and discussion of conclusions. Permission to continue the Report may be subject to a satisfactory research proposal being approved by your supervisor by week 3 of semester. Reports are due at the end of the first week of exams for the semester in which you are enrolled. The assessment is based solely on the submission of your report. The report is generally marked by two examiners, neither of whom is your supervisor.
ARCH9045 Dissertation 1

Credit points: 12 Teacher/Coordinator: An academic supervisor is required. Discuss with your program coordinator. Session: Semester 1,Semester 2 Classes: Research under academic supervision Prerequisites: 48 credit points and a WAM of at least 75 Corequisites: ARCH9046 Prohibitions: PLAN9010, ARCH9060, PLAN9011, PLAN9018, ARCH9031 Assessment: 15,000 to 25,000 word dissertation (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
Note: Departmental Permission will be required to enrol in this unit.
ARCH9045 and ARCH9046 Dissertation 1 and 2 are only available to candidates with permission from an appropriate supervisor. Planning students should take PLAN9010 and PLAN9011 Planning Dissertations 1 and 2. Students enrol either full time over one semester (ARCH9045 and ARCH9046) or part time over two semesters (ARCH9045 then ARCH9046). The units are not assessed separately - a single dissertation is required. The appointment of a supervisor will depend on the topic chosen for the dissertation by the student. Students and their supervisors should complete an Independent Study Approval form and return it to the Student Administration Centre to effect enrolment. The aim of the dissertation is to train the student in how to undertake advanced study. The student should learn how to examine published and unpublished data, survey and experimental results, set objectives, organise a program of work, analyse information, evaluate this in relation to existing knowledge and document the work; and to allow the student to pursue an area of interest in greater depth than is possible in coursework or to investigate an area of interest which is not covered in coursework. The dissertation will normally involve a critical review of published material in a specified subject area, but it may also be an experimental or theoretical investigation, a feasibility study, a case study, a computer program, or other work demonstrating the student's analytical ability. The dissertation should be 15,000 to 25,000 words in length. The dissertation should contain a literature review, a research methodology, analysis of data, a discussion of results and conclusions. The dissertation will be judged on the extent and quality of the student's work, and in particular on how critical, perceptive and constructive the student has been in assessing his or her own work and that of others. Three typed A4 sized copies of the dissertation are required to be presented for examination. These may be in either temporary or permanent binding. If in temporary binding they must be able to withstand ordinary handling and postage. The preferred method is "perfect binding"; spring back, ring back or spiral binding is not permitted. Students are required to submit one copy in permanent binding on acid free paper for the library, including any emendations recommended by the examiners. For more details see the requirements for the PhD thesis in the Postgraduate Research Studies Handbook. Dissertations are due at the end of the first week of exams for the semester in which you are enrolled for Dissertation 2. The assessment is based solely on the submission of your dissertation. The dissertation is generally marked by two examiners.
ARCH9046 Dissertation 2

Credit points: 12 Teacher/Coordinator: An academic supervisor is required. Discuss with your program coordinator. Session: Semester 1,Semester 2 Classes: Research under academic supervision. Corequisites: ARCH9045 Assessment: 15,000 to 25,000 word dissertation (100%) Mode of delivery: Supervision
ARCH9045 and ARCH9046 Dissertation 1 and 2 are only available to candidates with permission from an appropriate supervisor. Planning students should take PLAN9010 and PLAN9011 Planning Dissertations 1 and 2. Students enrol either full time over one semester (ARCH9045 and ARCH9046) or part time over two semesters (ARCH9045 then ARCH9046). The units are not assessed separately - a single dissertation is required. The appointment of a supervisor will depend on the topic chosen for the dissertation by the student. Students and their supervisors should complete an Independent Study Approval form and return it to the Student Administration Centre to effect enrolment. The aim of the dissertation is to train the student in how to undertake advanced study. The student should learn how to examine published and unpublished data, survey and experimental results, set objectives, organise a program of work, analyse information, evaluate this in relation to existing knowledge and document the work; and to allow the student to pursue an area of interest in greater depth than is possible in coursework or to investigate an area of interest which is not covered in coursework. The dissertation will normally involve a critical review of published material in a specified subject area, but it may also be an experimental or theoretical investigation, a feasibility study, a case study, a computer program, or other work demonstrating the student's analytical ability. The dissertation should be 15,000 to 25,000 words in length. The dissertation should contain a literature review, a research methodology, analysis of data, a discussion of results and conclusions. The dissertation will be judged on the extent and quality of the student's work, and in particular on how critical, perceptive and constructive the student has been in assessing his or her own work and that of others. Three typed A4 sized copies of the dissertation are required to be presented for examination. These may be in either temporary or permanent binding. If in temporary binding they must be able to withstand ordinary handling and postage. The preferred method is "perfect binding"; spring back, ring back or spiral binding is not permitted. Students are required to submit one copy in permanent binding on acid free paper for the library, including any emendations recommended by the examiners. For more details see the requirements for the PhD thesis in the Postgraduate Research Studies Handbook. Dissertations are due at the end of the first week of exams for the semester in which you are enrolled for Dissertation 2. The assessment is based solely on the submission of your dissertation. The dissertation is generally marked by two examiners.
ARCH9080 Urban Ecology, Design and Planning

Credit points: 6 Teacher/Coordinator: Assoc Prof Roderick Simpson Session: Semester 2 Classes: Lectures 1hr/wk for weeks 1-9, Tutorial 2hrs/wk weeks 1-9, 3hrs/wk weeks 10-13 Prohibitions: PLAN9048 Assessment: Assignment (25%), Presentation (25%), Case-study related report (50%) Mode of delivery: Block mode
This unit will introduce the conceptual bases for sustainable development and explore how principles of sustainability can be introduced into land use planning and urban design, including environmental management and multi-criteria evaluation methodologies in three modules:
Module 1 will examine the evolution of urban areas in relation to their biophysical setting using the Sydney metropolitan area as a case study. This will lead to an understanding and appreciation of the urban ecology of the city in terms of the flows of materials, resources and energy, and the challenges presented by climate change and peak oil.
Module 2 will introduce principles of sustainability and the history and development of concepts of urban sustainability.
Module 3 will introduce methods and frameworks for evaluating and measuring sustainability.
DESC9014 Building Construction Technology

Credit points: 6 Teacher/Coordinator: Michael Muir Session: Semester 1 Classes: 5 day intensive (9am - 5pm) Assessment: Two assignments (40%) and (60%) Mode of delivery: Block mode
This unit covers three related areas of investigation: basic building construction practices, advanced building construction practices & sustainable construction. It begins by introducing a number of recurrent themes in construction in Australia at the present time including the idea of building culture, the various modes of delivery and variety of classifications of buildings and building elements, rational construction & construction detailing from first principles. There follows a review of construction techniques of domestic scaled buildings using, where appropriate, examples of well documented and/or accessible exemplars. The second part of the unit reviews current approaches to building technologies employed in more complex public and commercial scaled buildings, particularly with regard to processes of structural system selection, fa├žade systems design and construction and material performance. The fundamentals of heat transfer and effects of external conditions on indoor comfort, aspects of the BCA and integration of services into the building fabric relevant to building services engineers will also be reviewed. Again, accessible exemplars will be covered. Finally the unit will review current issues related to key attributes of buildings which make them sustainable, particularly with regard to material selection, appropriate detailing for energy and resources conservation and building reuse and recycling.
DESC9015 Building Energy Analysis

Credit points: 6 Teacher/Coordinator: Dr Francesco Fiorito Session: Semester 1 Classes: 5 day intensive (9am-5pm) Assessment: Assignment 1 (40%), Assignmnet 2 (60%) Mode of delivery: Block mode
The aim of the unit is to acquaint students with the range of analytical and design tools available for low energy building design; to provide the opportunity for students to become proficient at using some of these tools. Among the techniques and tools explored are: climate data analysis; graphical and model techniques for solar studies; steady state and dynamic heat flow analysis; simplified methods for sizing passive solar elements; computer models of thermal performance; modelling ventilation; estimating energy consumption. Emphasis is given to tools which assist the design of the building fabric rather than building systems. At the end of the unit it is expected that students will: be aware of the importance of quantitative analysis in the design of low energy buildings; have an understanding of the theoretical basis of a range of analytical techniques; be familiar with the range of techniques available for building energy analysis; be able to apply many of these to design analysis; be familiar with the range of thermal analysis computer software available; and be able to use a software package to analyse the thermal performance of a typical small scale building. All of the assignments are designed to provide students with hands-on experience of each of the analysis tools.
DESC9067 Mechanical Services

Credit points: 6 Teacher/Coordinator: Ashak Nathwani/Prof Richard de Dear Session: Semester 2 Classes: 6 day intensive (9am-5pm) Assessment: Assignment (90%); participation (10%) Mode of delivery: Block mode
This unit reviews the need for and application of Mechanical Services in the built environment - in particular commercial buildings. Mechanical Services are responsible for significant portion of energy and water consumption in buildings. Thus they have become important components of most modern building complexes, with a strong influence on other services and the architecture. This unit provides an introduction to these services by experienced presenters, including from the industry, for recent graduates or diplomats in mechanical engineering and an understanding of fundamental principles and practice for people from backgrounds other than mechanical engineering. Students will acquire skills in appreciation of impact of Mechanical services on the environment, including recent mandatory regulations, together with estimating ventilation, cooling and heating requirements, design of simple ventilation, air conditioning and smoke hazard management systems, combined with an overview of water, refrigerant, ducted systems, with applicable equipment, energy, noise, human comfort, air quality criteria. Principles of heat transfer and fluid flow are applied to applications of mechanical ventilation, air conditioning and smoke hazard magagement, to satisfy regulations and standards, occupant and community expectations. The practical basis of the programme leads to a design assignment involving selecting equipment and systems to provide mechanical services in a building.
DESC9138 Architectural and Audio Acoustics

Credit points: 6 Teacher/Coordinator: Dr Densil Cabrera Session: Semester 1 Classes: Lecture 3 hrs/wk Assessment: Exercise-based assignments (1 x 35%, 1 x 65%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit introduces the fundamental concepts and issues of audio and architectural acoustics. Unit content: basic acoustical concepts, quantities and units; principles of sound propagation; sound absorption and room acoustics; physiological and psychological acoustics; noise measurement and specification; and principles and specification of sound insulation. By completing this unit students will be able to understand acoustical terminology, and perform calculations applicable to sound in the environment, in buildings, and in audio contexts. They will have the ability to critically assess claims of acoustical performance. This unit will provide the theoretical foundation of advanced units in audio and acoustics.
DESC9147 Sustainable Building Design Principles

Credit points: 6 Teacher/Coordinator: Daniel Ryan Session: Semester 1 Classes: 5 day intensive (9am-5pm) Assessment: 2 x assignmenst (1 x 35%, 1 X 65%)) Mode of delivery: Block mode
This unit aims to develop a critical understanding in students of building design principles that reduce the impact of the built environment on energy, water and material resource flows.Students will gain an overview of technical strategies that reduce the environmental impact of buildings and develop an awareness of the benchmarks and metrics used to judge the implementation of environmental design principles. The unit pays particular attention to design principles that relate to the environmental performance of the building fabric and the thermal and hydraulic systems of buildings.
DESC9148 Sustainable Building Design Practice

Credit points: 6 Teacher/Coordinator: Michael Muir Session: Semester 2 Classes: 5 day intensive (9am-5pm) Assessment: Individual Sustainable Design Case Study (40%); Individual Schematic Sustainable Design (60%) Mode of delivery: Block mode
Unit content: Sustainable design frameworks; understanding energy, material and water flows between buildings and their environment; the principles of passive solar heating strategies in cold and temperate climates; strategies for controlling solar and other loads on the building fabric; principles of cooling by natural ventilation; low energy mechanical cooling strategies; hybrid and mixed-mode cooling strategies; water sensitive design; environmental and health impacts of building materials; embodied energy of building materials. By the completion of the unit students will be expected to demonstrate their knowledge of the relevant properties of building materials and construction elements which impact upon the environmental performance of buildings and to demonstrate their competence at applying this knowledge to the formulation of appropriate sustainable design strategies.
DESC9150 Sustainability Research Project

This unit of study is not available in 2015

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 1,Semester 2 Classes: Individual supervision Assessment: Project (100%) Mode of delivery: Supervision
The unit will provide an opportunity for students to undertake supervised research on a topic related to Sustainable Design through intensive study of a particular aspect of sustainable building design. The study may take the form of a state-of-the-art review, case studies, modelling, field study, or a position paper on a particular issue. Students contemplating going on to do a research degree could use this unit to explore and develop a potential M.Phil or Ph.D research topic. Students are expected to demonstrate their ability to undertake, document and report upon a small piece of structured research related to Sustainable Design. The unit will broaden students' understanding of the principles of sustainable design and the techniques of research in the discipline of architectural science.
DESC9153 Graduate Internship

Credit points: 6 Teacher/Coordinator: Associate Dean (Education) Session: Intensive December,Intensive July,Intensive November,Semester 1,Semester 2 Classes: Fieldwork Assessment: Log book signed by practice supervisor and 2,000 word report on the benefits of the internship (100%); pass/fail only Mode of delivery: Professional practice
Note: Department permission required for enrolment
Note: Masters students only. Graduate Diploma students with permission of the Program Coordinator. Advanced Standing will not be granted for this unit of study.
The aims of the internship are to provide a direct link between the academic core of the course and the disciplines and methods of practice; to enable candidates to experience aspects of practice and provide the opportunity for them to work in areas of the field outside their specific expertise; to enable candidates to observe, analyse and comment on the interaction between theoretical and practical issues of their Program as it is practiced, and to establish connections between practice and the development of relevant research programs. The internship is intended to provide the opportunity for students to work in various situations in their Program's area. A secondary intention is that students use the opportunities of placement to broaden their own experience beyond the limitations of their chosen discipline. Candidates must find a suitable professional placement. Permission to enrol is given after the proposed placement has been approved by the Program Director. The host organisation will nominate a supervisor for the student for the internship. The student must complete at least 120 hours of full or part-time experience, supervised by a practicing designer (or other professional depending upon the field). A log-book of each day's work, signed by the supervisor must be submitted on completion. A 2,000-word report on the benefits of the internship must also be produced. At the end of the internship the student will: demonstrate that they have completed a program of work (through a log-book); present a report; analyse their experiences and compare these to the theoretical content of the units they have completed, and suggest appropriate research directions so as to improve the complementarity of theory to practice.
DESC9164 Lighting Technologies

Credit points: 6 Teacher/Coordinator: Dr Wendy Davis Session: Semester 2 Classes: 5 day intensive. Prohibitions: DESC9063 Assessment: Two assignments (2 x 50%) Mode of delivery: Block mode
This unit covers the technologies employed in generating, distributing, and controlling light in illuminated environments. Students learn the advantages and disadvantages of different hardware options for various lighting applications. A brief history of lighting technologies and the physical processes involved with electrically generating light are included in this unit. Practical characteristics of currently popular lamp types, as well as emerging lighting technologies, are presented. The effects of integral luminaires and other light fittings on the resulting illumination are covered, as are the electrical requirements of different lighting technologies. This unit also includes calculation techniques for predicting the illumination in spaces from lighting products. The selection, operation, and implications of lighting control options are discussed. The underlying principles and practical consequences of the different characteristics of various lighting technologies are emphasized to enable students to independently evaluate future innovations in lighting technologies.
DESC9169 Daylight in Buildings

Credit points: 6 Teacher/Coordinator: Dr Francesco Fiorito Session: Semester 1 Classes: Five day intensive. (9am-5pm) Prohibitions: DESC9106 Assessment: Group Report (30%), Individual Assignment (70%) Mode of delivery: Block mode
Daylight can be used in buildings to reduce the energy spent on electric lighting and create aesthetically appealing interiors. Design decisions that affect the success of daylighting in a building span every phase of the design process, from site selection to the application of interior finishes. This unit discusses the role of daylight in indoor illuminated environments. Calculations to predict the quantity and distribution of daylight in spaces and predict the effects of shading devices are covered. Students learn about the local and global variables that influence daylight availability, recognize the challenges and opportunities with daylight in interior spaces, and the appropriate use of daylighting technologies. Modelling tools (Radiance based) will be used in order to assess the efficacy of selected daylight strategies.
DESC9195 Building Economics

Credit points: 6 Teacher/Coordinator: Professor Richard de Dear Session: Intensive September Classes: 5 Weeks Lectures/Tutorials; 6 hours additional Tutorials Prerequisites: DESC9200 Introduction to Architectural Science Assessment: Individual Written Assignment 1 (30%); Group Written Assignment 2 (40%); Project Critique/Class Presentation (30%) Mode of delivery: Block mode
Investors associated with the property industry require at the outset Return On Investment (ROI) evaluations before committing capital. This unit of study examines the economic principles as they apply to buildings, from capital growth and life cycle management perspectives. The focus is on economic and financial practices required for high performing building assets, contract procurement strategies, cash flow analysis, return on investment for retro-fitting, and economic appraisals of existing or new building assets. This unit will develop an understanding of carbon accounting in relation to building management and its importance to sustainable built asset portfolios. The unit, taught by case studies, will equip students with an understanding of economic principles and professional tools necessary for the procurement and management of real estate property, facilities and buildings at optimum economic and environmental performance.
Textbooks
Langston, C. A. (2005). Life-cost approach to building evaluation. Sydney: UNSW Press Dell'Isola, A. J., & Kirk, S. J. (1995). Life cycle costing for design professionals. New York: McGraw-Hill Manser, J. E. (1994). Economics: A foundation course for the built environment. London: Spon.
DESC9197 Energy Management and Code Compliance

Credit points: 6 Teacher/Coordinator: Professor Richard de Dear Session: Semester 2a Classes: 5 Weeks Lectures, Lab, Tutorial; 6 hrs additional Tutorials Prerequisites: DESC9200 Introduction to Architectural Science, DESC9014 Building Construction Technology Assessment: Assignment 1 (40%); Assignment 2 (60%) Mode of delivery: Block mode
Objectives of this unit are to give students an understanding of energy consumption issues in buildings against the backdrop of escalating energy and carbon emission reduction targets for buildings such as Net Zero Energy Buildings (NZEB). In order to meet these targets, new design and operational management techniques are needed, including energy auditing, retro-fitting and energy efficiency optimisation techniques. This unit is primarily concerned with the management and control of electrical power delivered via the grid, plus on- and off-site renewables. The unit will concentrate on processes and considerations involved in undertaking an energy audit and this will also be the focus of Assignment 1. Options for demand management strategies such as demand response and outsourcing will also be examined. Active energy systems and their fundamentals associated with lighting, air conditioning, hot water, ventilation, vertical transportation, and plug-load will be reviewed. Finally, methods of assessing energy performance including computer simulation will be covered. Application of standards such as Net Zero Energy, Passive House, and BCA Section J-JV3 will also be elaborated. A modelling exercise suitable for presentation to a principal certifying authority, thus demonstrating building compliance with the targets and standards, will be performed by students in this unit.
Textbooks
Karsten Voss, Eike Musall Net Zero Energy Buildings, Green Buildings, 2nd edition, November 2012. Parlour, R., P, Building services: a guide to integrated design: engineering for architects, Pymble, N.S.W.: Integral Publishing, 2000
DESC9200 Introduction to Architectural Science

Credit points: 6 Teacher/Coordinator: Dr Francesco Fiorito Session: Semester 1 Classes: 5 day intensive (9am-5pm) Assessment: Assignment (40%), Exam (60%) Mode of delivery: Block mode
This unit aims to explore the scientific concepts of heat, light and sound, and from this develops foundational principles and methods applicable to buildings. It is divided into five topics: climate and resources: thermal environment: building services: lighting; and acoustics. Students will gain an understanding of the terminology, physical values and metrics in each of these topics, and how they apply to the design and function of buildings. Theoretical models to predict key physical values in buildings are presented and used in assessments. Learning is supported by measurement exercises. This unit has a focused pedagogy intended for all graduate students in Architectural Science. It is a common core unit for all of the programs (Audio and Acoustics, High Performance Buildings, Illumination Design and Sustainable Design). Students within these programs should undertake this unit in their first semester of study if possible.
DESC9201 Indoor Environmental Quality (IEQ)

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 2 Classes: 5 day intensive (9am-5pm) Assessment: Lab-based assignment (40%); Exam (60%) Mode of delivery: Block mode
Humans' thermal, visual, auditory and olfactory senses determine the perceived quality of a built environment. This unit analyses built environments in context of these human factors. This unit relates human experience of buildings to the main dimensions of Indoor Environmental Quality (IEQ): thermal, acoustic, lighting and indoor pollution. This understanding of human comfort perceptions is contextualised by an understanding of the various approaches to the evaluation of built environmental performance. You will study post-occupancy evaluation tools and workplace productivity metrics. Regulations from Australia and abroad will be explored to understand their impact on acoustics, thermal comfort, lighting, indoor air quality and ventilation. The unit also pays particular attention to sustainability rating tools from around the world, including GreenStar, NABERS, LEED and BREEAM. This unit gives students extensive hands-on experience in laboratory- and field-based methods of IEQ research and building diagnostics. A recurring theme will be instrumental measurements of indoor environments, and how they can be analysed in relation to perceptual and behavioural data collected from occupants of those environments.
DESC9300 Research in Arch. & Design Science

Credit points: 6 Teacher/Coordinator: Assoc Prof William Martens Session: Semester 1,Semester 2 Classes: 5 workshop sessions (1 hr/wk for first five weeks) followed by individual student supervision by an appropriate staff member (chosen according to field of research) Prohibitions: ARCF9001 Assessment: Individual project based: 1 x 1,500 word research proposal (30%); 1 x 3,500 word final written report (50%); 1 x final oral report (20%) Mode of delivery: Block mode
Note: Department permission required for enrolment
This unit aims to prepare students for undertaking a research project in the various sub-disciplines of Architectural and Design Science. It begins with the workshop-based presentation of foundations of experimental science relevant to research projects within these sub-disciplines. It highlights principles of experimental design and methods of data collection and analysis. Examples of previous projects undertaken by graduate students in Design Science will be presented, as appropriate, in any of the following areas: Audio and Acoustics, Building Services, Facilities Management, Illumination Design and Sustainable Design). Although this unit has a focused pedagogy intended for all graduate students in Design Science, enrollment may be expected by other coursework students within the Faculty of Architecture, Design and Planning, such as those undertaking the Master of Interaction Design and Electronic Arts (M.IDEA).
MARC4002 Sustainable Architecture Research Studio

Credit points: 12 Teacher/Coordinator: Dr Glen Hill/Daniel Ryan Session: Semester 1,Semester 2 Classes: Lecture and studio contact (technical consultants and demonstrations as required), plus self-directed preparation and assignments, for a minimum total student commitment averaging 18 hours per week. Assessment: Portfolio (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Note: This studio cannot be taken in the same semester with MARC4001 or MARC4003. Students may incur materials costs in this unit.
MARC4002 Studio B Sustainable Architecture will focus on the theories, technologies and techniques that promote the creation of a sustainable built environment. The studio projects will directly explore the interdependent issues of environmental, social and economic sustainability. The studio will prompt students to develop critical positions in regard to sustainability and to extend and explore those positions through the architectural design process. MARC4001 Urban Architecture Research Studio, MARC4002 Sustainable Architecture Research Studio and MARC4003 Digital Architecture Research Studio are all available in both semesters 1 and 2. Students may enrol or pre-enrol freely, but some will be asked to swap to create equal groups. After three semesters each student will have done each of the studios. The studios examine the relationships between architecture and urbanism; architecture and sustainability; and architecture and digital design. Each is based around one or more design projects which address a specialised area of study, supported by lectures and seminars which introduce the relevant theory, knowledge and design precedents. Studios require the investigation of key technical issues and systems, and their innovative integration in the design, with the preparation of appropriate contract documents.On the successful completion of these units, students will have demonstrated: an ability to formulate, interpret and communicate appropriate concepts derived from the study of brief and site; an ability to extend those starting points into a working design proposal; an ability to develop the design proposal in response to critique, and produce a building design which demonstrably embodies understanding of the principles associated with the specialised study area; an ability to communicate the design ideas effectively through appropriate graphic and three-dimensional means using architectural conventions; and an ability to cohesively design and execute a comprehensive presentation of the project. These units are core to the Master of Architecture.
PHYS5033 Environmental Footprints and IO Analysis

Credit points: 6 Teacher/Coordinator: Dr Arne Geschke and Prof Manfred Lenzen Session: Semester 1,Semester 2 Classes: 2-hour lecture interspersed with hands-on exercises per week Assessment: Comprehensive diary/notes from lectures, including a quantitative example (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Minimum class size of 5 students.
This unit of study will provide an introduction to economic input-output theory and input-output analysis, with a focus on environmental applications such as carbon footprints and life-cycle analysis. The unit first explores national and global economic and environmental accounting systems and their relationships to organisational accounting. Second, it will present variants of the basic accounts, such as global multi-regional input-output systems and social accounting systems. Third, it will introduce the basic input-output calculus conceived by Nobel Prize Laureate Wassily Leontief, and provide concrete examples for how to apply this calculus to data published by statistical offices. The unit will then show how to integrate economic and environmental accounts, and generate boundary-free environmental footprint assessments. Students will walk away from this unit equipped with all skills needed to calculate footprints, and prepare sustainability reports for any organisation, city, region, or nation, using organisational data, economic input-output tables and environmental accounts.
PHYS5034 Life Cycle Analysis

Credit points: 6 Teacher/Coordinator: Dr Christopher Dey Session: Semester 2 Classes: 2-hour lecture and 1-hour tutorial per week Assessment: Major essay, seminar presentation and course diary compilation (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Minimum class size of 5 students.
This unit of study will cover the areas of the philosophy, techniques, applications and standards of Life-Cycle Assessment (LCA). It will include Process Analysis, Input-Output Analysis and Hybrid Analysis. Current LCA tools will be discussed. Case studies and business applications as well as global standards such as the GHG Protocol for accounting for scopes 1,2 and 3 emissions and ISO standards will provide a context. Students will also benefit from also enrolling in PHYS5033 for a sound understanding of input-output based Hybrid LCA methods.
PLAN9068 History & Theory of Planning & Design

Credit points: 6 Teacher/Coordinator: Assoc/Prof Paul Jones Session: Semester 1 Classes: Lecture 2 hrs/wk Prohibitions: ARCH9062, PLAN9031, ARCH9031 Assessment: Assignment 1 short questions (35%); group work local area analysis (30%); analytical essay (25%); attendance and class participation (10%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is in two overlapping modules, each of which is assessed.

Module one enables students to understand how the main concepts and practices of urban planning and development have evolved; appreciate different perspectives about the roles and purposes of planning; undertake basic historical research about Australian urban planning and development issues, and prepare basic stories and arguments about practical planning issues and current theories. There is a strong emphasis on enriching the ability of students to better appreciate urban form, structure and planning practice generally by analysing such form, structure and process through the lens of history (as 'snapshots' in time), and the understanding planning drivers that shape and express such urban change. Interpreting planning practice and what this means and reflects (such as underlying values, norms attitudes, public interest, etc) is a key element of this module.

Concurrent with module one, module two familiarises students with the main ideas and methods that have influenced urban design practice from the late nineteenth century to the present. It covers the dominant urban design theories, principles, conceptual and physical models, analytical methods and drawings from key contributing authors over the period, and explores critically how and why these arose, their interrelationships, spheres of influence, and continuing validity. In this module, key urban design 'classics' are discussed critically as history, design sources and tools.
Students will be able to: critically review and interpret key planning and urban design texts, construct and present basic arguments, orally and in documents; access and engage with key literature and other sources of knowledge; and use basic conceptual frameworks about planning arguments and stories for both the overlapping fields of urban planning and urban design.
This is an introductory core unit for both the Urban Planning and Urban Design degrees.
SUST5001 Introduction to Sustainability

Credit points: 6 Teacher/Coordinator: Associate Professor Tony Masters Session: Semester 1,Semester 2 Classes: One 2 to 2.5 hour interactive lecture per week presented in an intensive format with up to four hours per week spent on a combination of additional (e.g. on-line) learning tasks, small group sessions and consultation with lecturers. Assessment: Essays, oral presentations, short written assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study will introduce students to the concepts and multidisciplinary nature of sustainability, starting with the physical basis of climate change and its impact on the environment and human development. This will be followed by several case studies covering Energy, Health, Development and Environment. The case studies will be presented by industry professionals and will illustrate sustainability issues currently before Australia- their origins, impacts and industry responses. The unit of study will provide students with a holistic systems lens through which to view their learning throughout the Masters program. This will underpin understanding of the integrated nature of sustainability and facilitate the challenging of silo-based assumptions- their own and those of others. The intention is to ground understanding of complex systems in the real world through the use of case studies that will demonstrate organisational change and problem solving in a world with competing values and conflicting views of what it means to live sustainably. Students completing the unit of study will have a "sustainability tool kit" to apply to sustainability issues in their professional and community activities.
SUST5003 Energy and Resources

Credit points: 6 Teacher/Coordinator: Professor Tony Vassallo Session: Semester 1 Classes: One 2 to 2.5 hour interactive lecture per week presented in an intensive format with up to four hours per week spent on a combination of additional (e.g. on-line) learning tasks, small group sessions and consultation with lecturers. Corequisites: SUST5001 Assessment: Essays, classroom presentations, short written assignments (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will examine the critical roles that energy and resource usage play in global, national and local sustainability. The need for developed economies to decarbonise their energy supply and for developing countries to have access to clean energy and sustainable resources will require major changes in technology, policy and business systems. This unit of study will cover the fundamentals of energy and resource supply; sustainable supply and use of energy for industry, business and consumers; life cycle analysis; energy security and alternative energy systems. Students will gain an understanding of: different sources of energy and their uses; the economic, environmental and societal contexts of energy and resource use; the need and scope for a transition from conventional energy sources; sound principles for analysing different resource and energy supply options; the role of international agreements and federal policy in influencing resource and energy use.