Unit of study table

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Master of Professional Engineering (Biomedical)

To qualify for the award of the Master of Professional Engineering in this specialisation, a candidate must complete 144 credit points, including core and elective units of study as listed below.

Core units

Year One

AMME9261
Fluid Mechanics 1
6    A Students are expected to be familiar with first year basic maths: integral calculus, differential calculus and linear algebra.
N AMME5200
Semester 1
AMME9500
Engineering Dynamics
6    A University level Maths and Physics, especially covering the area of Mechanics, and familiarity with the MATLAB programming environment.
N AMME5500
Semester 1
AMME9700
Instrumentation
6    A Programming Skills, 1st Year maths skills
N AMME5700
Semester 1
ENGG9801
Engineering Computing
6    N ENGG5801 OR ENGG1801
Semester 1
Summer Main
AMME9262
Thermal Engineering 1
6    A Students are expected to be familiar with basic, first year, integral calculus, differential calculus and linear algebra.
N AMME5200
Semester 2
AMME9301
Mechanics of Solids 1
6    A Physics, statics, Differential Calculus, Linear Algebra, Integral Calculus and Modelling.
N AMME5301
Semester 2
AMME9302
Materials 1
6    N AMME5302 OR CIVL5501
Semester 2
BMET9901
Anatomy and Physiology for Engineers
6    A 6cp minimum of Junior level Biology
N AMME5901 OR AMME9901 OR MECH2901 OR BMET2901
Semester 2

Year Two

AMME9501
System Dynamics and Control
6    A AMME5500 OR AMME9500. Students are assumed to have a good background knowledge in ordinary differential equations, Laplace transform methods, linear algebra and mathematical modeling of mechanical systems.
P AMME9500
N AMME8501
Semester 1
BMET9990
Biomedical Product Development
6    A 1000 level chemistry, 2000 level biology, and specific knowledge of cell biology at least at the1000 level, and preferably at the 2000 level.
N AMME4990 OR BMET4990 OR AMME5990 OR AMME9990
Semester 1
MECH9261
Fluid Mechanics 2
6    A Linear Mathematics, Vector Calculus, Differential Equations and Fourier Series
P AMME9261 OR AMME9200
N MECH8261
Semester 1
MECH9362
Materials 2
6    A Mechanics of solids: statics, stress, strain
P (AMME9302 OR AMME5302) AND (AMME9301 OR AMME5301)
N MECH8362
Semester 1
BMET5921
Biomedical Engineering Technology 2
6    A 1000-level biology, 1000-level materials science and some engineering design
N MECH3921 OR BMET3921 OR AMME5921
Semester 2
ENGG5103
Safety Systems and Risk Analysis
6      Semester 2
MECH9361
Mechanics of Solids 2
6    A Linear Mathematics, Vector Calculus, Differential Equations and Fourier Series
P AMME9301 OR AMME5301
N MECH8361
Semester 2
Select 6 credit points from Biomedical recommended electives block.

Year Three

ENGG5217
Practical Experience
   N ENGP1000 OR ENGP2000 OR ENGP3000 OR ENGG4000 OR CHNG5205 OR AMME5010


Students should have completed one year of their MPE program before enrolling in this unit.
Intensive April
Intensive August
Intensive December
Intensive February
Intensive January
Intensive July
Intensive June
Intensive March
Intensive May
Intensive November
Intensive October
Intensive September
BMET9961
Biomechanics and Biomaterials
6    A AMME9901 or BMET9901 or 6 credit points of junior biology, 6 credit points of junior chemistry, 6 credit points of junior materials science, 6 credit points of engineering design, Chemistry, biology, materials engineering, and engineering design at least at the Junior level.
N AMME5961 OR AMME9961 OR MECH4961 OR BMET4961
Semester 2
BMET9971
Tissue Engineering
6    A AMME9901 or BMET9901 or [6 credit points of 1000-level biology and 6 credit points of 1000-level chemistry]
P (AMME5921 or BMET5921)
N AMME5971 OR AMME9971 OR AMME4971 OR BMET4971
Semester 1
BMET9981
Applied Biomedical Engineering
6    A AMME9301 AND AMME9302 AND AMME9500 AND MECH9361
N AMME4981 or BMET4981 OR AMME5981 OR AMME9981
Semester 1
Select at least 12 credit points from the Project or Research Pathway block.
Select up to 18 credit points from Biomedical recommended electives block.

Elective units

Candidates must complete 24 credit points from the following Biomedical elective units.
AERO9301
Applied Finite Element Analysis
6    A BE in area of Aerospace Engineering or related Engineering field.
P AERO9360 or AERO8360 or MECH9361 or MECH8361
Semester 1
AMME5202
Computational Fluid Dynamics
6    A Partial differential equations; Finite difference methods; Taylor series; Basic fluid mechanics including pressure, velocity, boundary layers, separated and recirculating flows. Basic computer programming skills.

Note: Department permission required for enrolment

Semester 1
AMME5271
Computational Nanotechnology
6    A Understanding of basic principles of Newtonian mechanics, physics and chemistry, fluid mechanics and solid mechanics.

Note: Department permission required for enrolment

Semester 2
AMME5310
Engineering Tribology
6    A (AMME2302 OR AMME9302) AND (AMME2301 OR AMME9301) AND (MECH3261 OR MECH9261 or MECH8261)

Note: Department permission required for enrolment

Semester 1
AMME5520
Advanced Control and Optimisation
6    A Strong understanding of feedback control systems, specifically in the area of system modelling and control design in the frequency domain.
P AMME3500 OR AMME9501 or AMME8501
Semester 1
AMME5790
Introduction to Biomechatronics
6    A Knowledge in mechanical and electronic engineering; adequate maths and applied maths skills; background knowledge of physics, chemistry and biology; Some programming capability: MATLAB, C, C++, software tools used by engineers including CAD and EDA packages.
P (MECH3921 OR BMET3921) OR MTRX3700 OR (AMME5921 OR BMET5921)
N AMME4790


AMME5790 is the last in a series of practical Mechatronic and Electrical courses taken over three years. It takes these engineering concepts, along with the associated mathematical, electronic and mechanical theory and applies this knowledge to a series of practical, albeit specialised biomechatronic applications that will be encountered by Mechatronic Engineers who enter this broad field on graduation.
Semester 2
AMME5902
Computer Aided Manufacturing
6   
Note: Department permission required for enrolment

Semester 2
AMME5912
Crash Analysis and Design
6    A Computer Aided Drafting, Basic FEA principles and Solid Mechanics

Note: Department permission required for enrolment

Semester 1
BMET5907
Orthopaedic and Surgical Engineering
6    A Basic concepts in engineering mechanics - statics, dynamics, and solid mechanics. Basic concepts in materials science, specifically with regard to types of materials and the relation between properties and microstructure. A basic understanding of human biology and anatomy.
P (AMME2302 OR AMME9302 OR AMME1362) AND (MECH2901 OR BMET2901 OR AMME9901 OR BMET9901) AND (MECH3921 OR BMET3921 OR AMME5921 OR BMET5921)
N MECH4902 OR MECH5907
Semester 2
BMET5931
Nanomaterials in Medicine
6    A [[(BIOL1xxx OR MBLG1xxx) AND CHEM1xxx AND PHYS1xxx] OR [(AMME1961 OR BMET1961)] AND (MECH2901 OR BMET2901)]] AND (NANO2xxx OR AMME1362)
N AMME5931
Semester 1
BMET5951
Fundamentals of Neuromodulation
6    A ELEC1103 or equivalent, (MECH2901 OR BMET2901 OR AMME9901 OR BMET9901), and (MECH3921 or BMET3921 or AMME5921 OR BMET5921)
N AMME5951
Semester 1
BMET5958
Nanotechnology in Biomedical Engineering
6    P (96 cp of 2000 level or higher BE units) or AMME5921 or BMET5921
N AMME5958
Semester 2
BMET5962
Introduction to Mechanobiology
6    A 6 credit points of 1000-level biology, 6 credit points of 1000-level chemistry and 6 credit points of 2000-level physiology or equivalent
N AMME5962
Semester 2
BMET5992
Regulatory Affairs in the Medical Industry
6    A 6cp of 1000-level Chemistry, and 6cp of Biology units
P (96 cp of 2000 level or higher BE units) or AMME5921 or BMET5921
N AMME4992 OR AMME5992
Semester 2
BMET5995
Advanced Bionics
6    P (96 cp of 2000 level or higher BE units) or AMME5921 or BMET5921
N AMME5995
Semester 1
BMET9660
Biomanufacturing
6    N BMET3660 or AMME3660
Semester 1
ENGG5011
Engineering Foundation Studies A
6   
Note: Department permission required for enrolment

Intensive February
Intensive July
Semester 1
Semester 2
ENGG5202
Sustainable Design, Eng and Mgt
6    A General knowledge in science and calculus and understanding of basic principles of chemistry, physics and mechanics
Semester 1
ENGG5203
Quality Engineering and Management
6    A First degree in Engineering or a related discipline
Semester 2
MECH5255
Air Conditioning and Refrigeration
6    A Students are expected to be familiar with the basic laws of thermodynamics, fluid mechanics and heat transfer.
P MECH3260 OR MECH9260 or MECH8260
N MECH4255
Semester 2
MECH5275
Renewable Energy
6    A The student will need a sound background in advanced level fluid mechanics, thermodynamics and heat transfer. In particular, students should be able to analyse fluid flow in turbomachinery; perform first and second law thermodynamic analysis of energy conversion systems, including chemically reacting systems; and perform advanced level calculations of conductive and convective and radiative heat transfer, including radiative spectral analysis.
P (MECH3260 AND MECH3261) OR (AERO3260 AND AERO3261) OR (MECH9260 AND MECH9261) OR (MECH8260 and MECH8261) OR (AERO9260 AND AERO9261) OR (AERO8260 and AERO8261). Students claiming to have prerequisite knowledge based on study at other institutions must contact the unit of study coordinator before enrolling in this unit and may be required to sit a pre-exam to demonstrate that they have the necessary knowledge and skills to undertake this advanced level unit.

Note: Department permission required for enrolment

Semester 2
MECH5304
Materials Failure
6    A Fundamental knowledge in materials science and engineering: 1) atomic and crystal structures 2) metallurgy 3) structure-property relationship 4) mechanics of engineering materials 5) solid mechanics
P (MECH9361 OR MECH3361 or MECH8361) AND (MECH9362 or MECH8362 OR MECH3362)
Semester 2
MECH5310
Advanced Engineering Materials
6    P MECH3362 OR MECH9362 or MECH8362
N MECH4310
Semester 1
MECH5416
Advanced Design and Analysis
6    A ENGG1802 - Eng Mechanics, balance of forces and moments; AMME2301 - Mechanics of Solids, 2 and 3 dimensional stress and strain; AMME2500 - Engineering Dynamics - dynamic forces and moments; MECH2400 - Mechanical Design 1, approach to design problems and report writing, and preparation of engineering drawing; MECH3460 - Mechanical design 2, means of applying fatigue analysis to a wide range of machine components
P (AMME2301 OR AMME9301) AND (AMME2500 OR AMME9500) AND (MECH2400 OR MECH9400)
N MECH4460
Semester 1
MECH5720
Sensors and Signals
6    A Strong MATLAB skills
P MTRX3700
N MECH4720
Semester 2
MTRX5700
Experimental Robotics
6    A Knowledge of statics and dynamics, rotation matrices, programming and some electronic and mechanical design experience is assumed.
P (AMME3500 OR AMME9501 or AMME8501) AND MTRX3700
Semester 1

Project units

All candidates are required to complete a minimum of 12 credit points of Project or Research units during the final year of study.
Candidates achieving an average mark of 70% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Extended Capstone Project.
Extended Capstone Project candidates take Capstone Project units AMME5020 and AMME5022 (total 18 cp) in place of Capstone Project AMME5021 and 6 cp of elective units.
AMME5020
Capstone Project A
6    P 96 cp from MPE degree program or 48 cp from the MPE(Accel) program or 24 cp from the ME program (including any credit for previous study).
N AMME5222 OR AMME5223 OR AMME5010
Semester 1
Semester 2
AMME5021
Capstone Project B
6    P 96 credit points from the MPE degree program or 48 cp from the MPE(Accel) program or 24 credit points from the ME degree program (including any credit for prior study)
N AMME5022 OR AMME5222 OR AMME5223 OR AMME5010
Semester 1
Semester 2
AMME5022
Capstone Project B Extended
12    P 24 credit points in the Master of Engineering and WAM >=70, or 96 credit points in the Master of Professional Engineering and WAM >=70 or 48cp from MPE(Accel) program and WAM >=70
N AMME5021 OR AMME5222 OR AMME5223

Note: Department permission required for enrolment

Semester 1
Semester 2

Research pathway

Candidates achieving an average mark of 75% or higher over 48 credit points of units of study in the Year Two Table or equivalent are eligible for the Research Pathway.
Research pathway candidates take Dissertation units AMME5222 and AMME5223 (total 24 cp) in place of Capstone Project units and 12 cp of elective units.
AMME5222
Dissertation A
12    N AMME5020 OR AMME5021 OR AMME5022

Note: Department permission required for enrolment
In order to enrol in a dissertation project, students must first secure an academic supervisor in an area that they are interested. Students must have acieved a WAM of 75% or greater in their prior year of study. The topic of your project must be determined in discussion with the supervisor.
Semester 1
Semester 2
AMME5223
Dissertation B
12    N AMME5020 OR AMME5021 OR AMME5022

Note: Department permission required for enrolment
In order to enrol in a dissertation project, students must first secure an academic supervisor in an area that they are interested. Students must have acieved a WAM of 75% or greater in their prior year of study. The topic of your project must be determined in discussion with the supervisor.
Semester 1
Semester 2

Major Industrial Project

Candidates undertaking the Major Industrial Project take AMME5010 in place of ENGG5217 Practical Experience, AMME5020/5021 Capstone Project A & B and 12 credit points of Specialist Elective units of study.
AMME5010
Major Industrial Project
24    A Students must have a credit (>65%) average in prior semester enrolment
N AMME5020 OR AMME5021 OR AMME5022 OR AMME5222 OR AMME5223 OR ENGG5217

Note: Department permission required for enrolment

Semester 1
Semester 2

Exchange units

Exchange units require the approval of the Program Director. With approval, up to 12 credit points of Exchange units may taken in place of other units, towards the requirements ofthe degree.
ENGG5231
Engineering Graduate Exchange A
6      Intensive January
Intensive July
ENGG5232
Engineering Graduate Exchange B
6      Intensive January
Intensive July

For more information on degree program requirements visit CUSP (https://cusp.sydney.edu.au).