Intelligent Information Engineering MPE

Master of Professional Engineering (Intelligent Information Engineering)

To qualify for the award of the Master of Professional Engineering in this specialisation, a candidate must complete 144 credit points, including:
(a) 60 credit points of Core units as listed below
(b) ENGG5217 Practical Experience
(c) 24 credit points of Foundation units
(d) 36 credit points of Specialist Elective units
(e) 12 credit points of Management Elective units
(f) A minimum of 12 credit points of Project or Research Pathway units as detailed below
(g) Candidates undertaking the Research Pathway, replace 12 credit points of elective units with Research Pathway units

Core units

Year One

COMP9001 Introduction to Programming

Credit points: 6 Teacher/Coordinator: John Stavrakakis Session: Semester 1,Semester 2 Classes: lectures, laboratories, seminars Assessment: through semester assessment (50%), final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is an essential starting point for software developers, IT consultants, and computer scientists to build their understanding of principle computer operation. Students will obtain knowledge and skills with procedural programming. Crucial concepts include defining data types, control flow, iteration, functions, recursion, the model of addressable memory. Students will be able to reinterpret a general problem into a computer problem, and use their understanding of the computer model to develop source code. This unit trains students with software development process, including skills of testing and debugging. It is a prerequisite for more advanced programming languages, systems programming, computer security and high performance computing.
COMP9123 Data Structures and Algorithms

Credit points: 6 Teacher/Coordinator: Andreas Van Renssen Session: Semester 1 Classes: lectures, tutorials Prohibitions: INFO1105 OR INFO1905 OR COMP2123 OR COMP2823 Assessment: through semester assessment (50%), final exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit will teach some powerful ideas that are central to solving algorithmic problems in ways that are more efficient than naive approaches. In particular, students will learn how data collections can support efficient access, for example, how a dictionary or map can allow key-based lookup that does not slow down linearly as the collection grows in size. The data structures covered in this unit include lists, stacks, queues, priority queues, search trees, hash tables, and graphs. Students will also learn efficient techniques for classic tasks such as sorting a collection. The concept of asymptotic notation will be introduced, and used to describe the costs of various data access operations and algorithms.
ELEC9602 Digital Logic

Credit points: 6 Teacher/Coordinator: A/Prof Xiaoke Yi Session: Semester 1 Classes: Lectures, Tutorials, Laboratories Prohibitions: ELEC5722 Assumed knowledge: This unit of study assumes some knowledge of digital data representation and basic computer organisation. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
The purpose of this unit is to equip students with the skills to design simple digital logic circuits which comprise modules of larger digital systems.
The following topics are covered: logic operations, theorems and Boolean algebra, number systems (integer and floating point), combinational logic analysis and synthesis, sequential logic, registers, counters, bus systems, state machines, simple CAD tools for logic design, and the design of a simple computer.
ELEC9703 Fundamentals of Elec and Electronic Eng

Credit points: 6 Teacher/Coordinator: Dr Yash Shrivastava Session: Semester 1 Classes: Lectures, Laboratories, Tutorials Prohibitions: ELEC5710 OR ELEC1103 Assumed knowledge: Basic knowledge of differentiation & integration, and HSC Physics Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study aims to develop knowledge of the fundamental concepts and building blocks of electrical and electronics circuits. This is a foundation unit in circuit theory. Circuit theory is the electrical engineer's fundamental tool.
The concepts learnt in this unit will be made use of heavily in many units of study (in later years) in the areas of electronics, instrumentation, electrical machines, power systems, communication systems, and signal processing.
Topics: a) Basic electrical and electronic circuit concepts: Circuits, circuit elements, circuit laws, node and mesh analysis, circuit theorems, energy storage, capacitors and inductors, circuits with switches, transient response, sine waves and complex analysis, phasors, impedance, ac power. ; b) Project management, teamwork, ethics; c) Safety issues
ELEC9103 Simulations and Numerical Solutions in Eng

Credit points: 6 Teacher/Coordinator: Mahyar Shirvanimoghaddam Session: Semester 2 Classes: Lectures, Laboratories, Project Work - own time Prohibitions: ELEC5723 OR ELEC2103 OR COSC1001 OR COSC1901 Assumed knowledge: ELEC9703. Understanding of the fundamental concepts and building blocks of electrical and electronics circuits and aspects of professional project management, teamwork, and ethics. Assessment: Through semester assessment (25%) and Final Exam (75%) Mode of delivery: Normal (lecture/lab/tutorial) day
Objectives: How to apply the software package Matlab to achieve engineering solutions; Critical assessment of various computer numerical techniques; Professional project management, teamwork, ethics.
This unit assumes an understanding of the fundamental concepts and building blocks of electrical and electronics circuits. As well as covering the specific topics described in the following paragraphs, it aims to develop skills in professional project management and teamwork and promote an understanding of ethics.
Basic features of Matlab. The Matlab desktop. Interactive use with the command window. Performing arithmetic, using complex numbers and mathematical functions. Writing script and function m-files. Matrix manipulations. Control flow. Two dimensional graphics. Application of Matlab to simple problems from circuit theory, electronics, signals and systems and control. Investigation of the steady state and transient behaviour of LCR circuits.
Matlab based numerical solutions applicable to numerical optimisation, ordinary differential equations, and data fitting. Introduction to symbolic mathematics in Matlab. Applications, including the derivation of network functions for simple problems in circuit analysis. Introduction to the use of Simulink for system modelling and simulation.
ELEC9302 Signals and Systems

Credit points: 6 Teacher/Coordinator: Dr Liwei Li Session: Semester 2 Classes: Lectures, Laboratories, Tutorials, E-Learning Prohibitions: ELEC5721 Assumed knowledge: Basic knowledge of differentiation & integration, differential equations, and linear algebra. Assessment: Through semester assessment (30%) and Final Exam (70%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to teach some of the basic properties of many engineering signals and systems and the necessary mathematical tools that aid in this process. The particular emphasis is on the time and frequency domain modeling of linear time invariant systems. The concepts learnt in this unit will be heavily used in many units of study (in later years) in the areas of communication, control, power systems and signal processing. A basic knowledge of differentiation and integration, differential equations, and linear algebra is assumed.
ELEC9601 Computer Systems

Credit points: 6 Teacher/Coordinator: David Boland Session: Semester 2 Classes: Lectures, Laboratories, Tutorials Prohibitions: ELEC5711 Assumed knowledge: HSC Mathematics extension 1 or 2 Assessment: Through semester assessment (60%) and Final Exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study introduces the fundamental digital concepts upon which the design and operation of modern digital computers are based. A prime aim of the unit is to develop a professional view of, and a capacity for inquiry into, the field of computing.
Topics covered include: data representation, basic computer organisation, the CPU, elementary gates and logic, machine language, assembly language and high level programming constructs.
ELEC9704 Electronic Devices and Circuits

Credit points: 6 Teacher/Coordinator: A/Prof Craig Jin Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prohibitions: ELEC5720 OR ELEC2104 Assumed knowledge: Ohm's Law and Kirchhoff's Laws; action of Current and Voltage sources; network analysis and the superposition theorem; Thevenin and Norton equivalent circuits; inductors and capacitors, transient response of RL, RC and RLC circuits; the ability to use power supplies, oscilloscopes, function generators, meters, etc. Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
Modern Electronics has come to be known as microelectronics which refers to the Integrated Circuits (ICs) containing millions of discrete devices. This course introduces some of the basic electronic devices like diodes and different types of transistors. It also aims to introduce students the analysis and design techniques of circuits involving these discrete devices as well as the integrated circuits.
Completion of this course is essential to specialize in Electrical, Telecommunication or Computer Engineering stream.

Year Two

ENGG5202 Sustainable Design, Eng and Mgt

Credit points: 6 Teacher/Coordinator: Maria Tomc Session: Semester 1 Classes: Lectures, Tutorials Assumed knowledge: General knowledge in science and calculus and understanding of basic principles of chemistry, physics and mechanics Assessment: Through semester assessment (70%) and Final Exam (30%) Mode of delivery: Normal (lecture/lab/tutorial) day
The aim of this unit of study is to give students an insight and understanding of the environmental and sustainability challenges that Australia and the planet are facing and how these have given rise to the practice of Sustainable Design, Engineering and Management. The objective of this course is to provide a comprehensive overview of the nature and causes of the major environmental problems facing our planet, with a particular focus on energy and water, and how engineering is addressing these challenges.
ENGG5204 Engineering Professional Practice

Credit points: 6 Teacher/Coordinator: John Currie Session: Semester 1 Classes: Lectures Assumed knowledge: Competences and experience in engineering obtained during an accepted engineering degree Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study is designed to provide graduate engineers studying for a Master of Professional Engineering degree with an introduction to the professional engineering skills necessary to practice as an engineer.
These include the various elements of engineering practice, an understanding of the role of the engineer in industry, basic knowledge of the law of contracts and legal responsibility, teamwork and leadership skills, an understanding of the professional responsibilities of engineers, competence in verbal communication and presentations and in reading and writing reports, and an understanding of ethical considerations. The material, learning and assessment is tailored for graduates from Australian and overseas universities.

Year Three

ENGG5217 Practical Experience

Teacher/Coordinator: Prof David Lowe Session: Intensive April,Intensive August,Intensive December,Intensive February,Intensive January,Intensive July,Intensive June,Intensive March,Intensive May,Intensive November,Intensive October,Intensive September Classes: Practical Experience Prohibitions: ENGP1000 OR ENGP2000 OR ENGP3000 OR ENGG4000 OR CHNG5205 OR AMME5010 Assessment: Through semester assessment (100%) Mode of delivery: Professional practice
Note: Students should have completed one year of their MPE program before enrolling in this unit.
The 3 year MPE requires students to obtain industrial work experience of twelve weeks duration (60 working days) or its equivalent towards satisfying the requirements for award of the degree. Students can undertake their work experience in the final year of the MPE program (Year 3). Students may have prior work in an Engineering field carried out on completion of their undergraduate degree accepted as meeting the requirements of this component.
Students must be exposed to professional engineering practice to enable them to develop an engineering approach and ethos, and to gain an appreciation of engineering ethics. and to gain an appreciation of engineering ethics.
The student is required to inform the Faculty of any work arrangements by emailing the Graduate School of Engineering and Information Technologies. Assessment in this unit is by the submission of a portfolio containing written reports on the involvement with industry. For details of the reporting requirements, go to the faculty's Practical Experience portfolio web site http://sydney.edu.au/engineering/practical-experience/index.shtml

Foundation units

Candidates must complete 24 credit points from the following Foundation units of study.
ELEC9305 Digital Signal Processing

Credit points: 6 Teacher/Coordinator: A/Prof Craig Jin Session: Semester 1 Classes: Lectures, Tutorials, Laboratories, Project Work - own time Prohibitions: ELEC5736 Assumed knowledge: Specifically the following concepts are assumed knowledge for this unit: familiarity with basic Algebra, Differential and Integral Calculus, continuous linear time-invariant systems and their time and frequency domain representations, Fourier transform, sampling of continuous time signals. Assessment: Through semester assessment (43%) and Final Exam (57%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to teach how signals are processed by computers. It describes the key concepts of digital signal processing, including details of various transforms and filter design. Students are expected to implement and test some of these ideas on a digital signal processor (DSP). Completion of the unit will facilitate progression to advanced study in the area and to work in the industrial use of DSP.
The following topics are covered. Review of analog and digital signals. Analog to digital and digital to analog conversion. Some useful digital signals. Difference equations and filtering. Impulse and step response of filters. Convolution representation of filters. The Z-transform. Transfer functions and stability. Discrete time Fourier transform (DTft) and frequency response of filters. Finite impulse response (FIR) filter design: windowing method. Infinite impulse response (IIR) filter design: Butterworth filters, Chebyshev filters, Elliptic filters and impulse invariant design. Discrete Fourier Transform (Dft): windowing effects. Fast Fourier Transform (Fft): decimation in time algorithm. DSP hardware.
ELEC9607 Embedded Systems

Credit points: 6 Teacher/Coordinator: A/Prof Philip Leong Session: Semester 1 Classes: Lectures, Laboratories Prohibitions: ELEC5741 Assumed knowledge: Logic operations, theorems and Boolean algebra, data representation, number operations (binary, hex, integers and floating point), combinational logic analysis and synthesis, sequential logic, registers, counters, bus systems, state machines, simple CAD tools for logic design, basic computer organisation, the CPU, peripheral devices, software organisation, machine language, assembly language, operating systems, data communications and computer networks. Assessment: Through semester assessment (30%) and Final Exam (70%) Mode of delivery: Normal (lecture/lab/tutorial) day
The aim of this unit of study is to teach students about microprocessors and their use. This includes architecture, programming and interfacing of microcomputers, peripheral devices and chips, data acquisition, device monitoring and control and communications.
ELEC9304 Control

Credit points: 6 Teacher/Coordinator: Dr Yash Shrivastava Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prohibitions: ELEC5735 Assumed knowledge: Specifically the following concepts are assumed knowledge for this unit: familiarity with basic Algebra, Differential and Integral Calculus, Physics; solution of linear differential equations, Matrix Theory, eigenvalues and eigenvectors; linear electrical circuits, ideal op-amps; continuous linear time-invariant systems and their time and frequency domain representations, Laplace transform, Fourier transform. Assessment: Through semester assessment (43%) and Final Exam (57%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is mainly concerned with the application of feedback control to continuous-time, linear time-invariant systems. It aims to give the students an appreciation of the possibilities in the design of control and automation in a range of application areas. The concepts learnt in this unit will be made use of heavily in many units of study in the areas of communication, control, electronics, and signal processing.
The following specific topics are covered: Modelling of physical systems using state space, differential equations, and transfer functions, dynamic response of linear time invariant systems and the role of system poles and zeros on it, simplification of complex systems, stability of feedback systems and their steady state performance, Routh-Hurwitz stability criterion, sketching of root locus and controller design using the root locus, Proportional, integral and derivative control, lead and lag compensators, frequency response techniques, Nyquist stability criterion, gain and phase margins, compensator design in the frequency domain, state space design for single input single-output systems, pole placement state variable feedback control and observer design.
ELEC9506 Data Communications and the Internet

Credit points: 6 Teacher/Coordinator: A/Prof Yonghui Li Session: Semester 2 Classes: Lectures, Tutorials, Laboratories Prohibitions: ELEC5740 Assessment: Through semester assessment (50%) and Final Exam (50%) Mode of delivery: Normal (lecture/lab/tutorial) day
Students undertaking this unit should be familiar with fundamental digital technologies and representations such as bit complement and internal word representation. Students should also have a basic understanding of the physical properties of communication channels, techniques and limitations. Furthermore, students should be able to apply fundamental mathematical skills.
The unit will cover the following specific material: Communication reference models (TCP/IP, ATM and OSI). Circuit switched and packet switched communication. Network node functions and building blocks. LAN, MAN and WAN technologies. ATM systems. Protocols fundamental mechanisms. The TCP/IP core protocols (IP, ICMP, DHCP, ARP, TCP, UDP etc. ). Applications and protocols (ftP, Telnet, SMTP, HTTP etc. ).

Specialist Elective units

Candidates must complete 36 credit points from the following table of Specialist Elective units of study.
ELEC5304 Intelligent Visual Signal Understanding

Credit points: 6 Teacher/Coordinator: Wanli Ouyang Session: Semester 1 Classes: Lectures, Laboratories Assumed knowledge: Mathematics (e.g. probability and linear algebra) and programming skills (e.g. Matlab/Java/Python/C++) Assessment: through semester assessment (30%) and final exam (70%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study introduces basic and advanced concepts and methodologies in image processing and computer vision. This course mainly focuses on image processing and analysis methods as well as intelligent systems for processing and understanding multidimensional signals such as images, which include basic topics like multidimensional signal processing fundamentals and advanced topics like visual feature extraction and image classification as well as their applications for face recognition and object/scene recognition. It mainly covers the following areas: multidimensional signal processing fundamentals, image enhancement in the spatial domain and frequency domain, edge processing and region processing, imaging geometry and 3D stereo vision, object recognition and face recognition.
ELEC5305 Acoustics, Speech and Signal Processing

Credit points: 6 Teacher/Coordinator: A/Prof Craig Jin Session: Semester 2 Classes: Lectures, Tutorials, Project work Assumed knowledge: (ELEC2302 OR ELEC9302) AND (ELEC3305 OR ELEC9305). Linear algebra, fundamental concepts of signals and systems as covered in ELEC2302/ELEC9302, fundamental concepts of digital signal processing as covered in ELEC3305/9305. It would be unwise to attempt this unit without the assumed knowledge- if you are not sure, please contact the instructor. Assessment: through semester assessment (75%) and final exam (25%) Mode of delivery: Normal (lecture/lab/tutorial) day
The course is designed to meet the needs of the increasing demand for advanced signal processing in the areas of acoustics and speech, biology and medicine, sonar and radar, communication and networks. Modern systems typically incorporate large sensor arrays, multiple channels of information, and complex networks. The course will cover topics in compressed sensing, multiresolution analysis, array signal processing, and adaptive processing such as kernel recursive least squares. The course will develop concrete examples in areas such as microphone arrays and soundfield analyses, medical signal processing, tomography, synthetic aperture radar and speech and audio. The concepts learnt in this unit will be heavily used in various engineering applications in sensor arrays, wearable medical systems, communication systems, and adaptive processing for complex financial, power, and network systems. The Defense, Science, and Technology Organisation will contribute to this course with teaching support and data.
ELEC5306 Video Intelligence and Compression

Credit points: 6 Teacher/Coordinator: Wanli Ouyang Session: Semester 1 Classes: lectures, laboratories Assumed knowledge: Basic understanding of digital signal processing (filtering, DFT) and programming skills (e.g. Matlab/Java/Python/C++) Assessment: Through semester assessment (40%), Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study introduces digital image and video compression algorithms and standards. This course mainly focuses on fundamental and advanced methods for digital video compression. It covers the following areas: digital video fundamentals, digital image and video compression standards, and video codec optimization.
ELEC5307 Advanced Signal Processing with Deep Learning

Credit points: 6 Teacher/Coordinator: Luping Zhou Session: Semester 2 Classes: Lectures, laboratories Assumed knowledge: Mathematics (e.g., probability and linear algebra) and programming skills (e.g. Matlab/Java/Python/C++) Assessment: Through semester assessment (40%), Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study introduces deep learning for a broad range of multi-dimensional signal processing applications. It covers deep learning technologies for image super-resolution and restoration, image categorization, object localization, image segmentation, face recognition, person detection and re-identification, human pose estimation, action recognition, object tracking as well as image and video captioning.
ELEC5516 Electrical and Optical Sensor Design

Credit points: 6 Teacher/Coordinator: Dr Liwei Li Session: Semester 1 Classes: Lectures, Tutorials, E-Learning, Laboratories Assumed knowledge: Math Ext 1, fundamental concepts of signal and systems, fundamental electrical circuit theory and analysis Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
The course focuses on environmentally friendly, intelligent sensors for multiple parameters monitoring to be used in power network and broadband network. The concepts learnt in this unit will be heavily used in various engineering applications in power systems, fiber optic systems and health monitoring. These concepts include: 1) Theory, design and applications of optical fiber sensors. 2) Sensor technologies for the growth of smart grid in power engineering. 3) Actuators and motors for electrical sensor and its applications. 4) Wearable sensor technologies for ehealth monitoring.
ELEC5517 Software Defined Networks

Credit points: 6 Teacher/Coordinator: Dong Yuan Session: Semester 2 Classes: Lectures, Laboratories, Project Work - own time Assumed knowledge: ELEC3506 OR ELEC9506 Assessment: through semester assessment (60%) and final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study will introduce an emerging networking paradigm- Software Defined Networks (SDNs). By separating the control logics from the physical networks, the software defined networks allow an automated and programmable software program to logically control and manage the network. This unit introduces the basic principles of software defined networks, its architecture, abstraction, SDN programming, programmable control plane and data plane protocols, network update, network virtualisation, traffic management as well as its applications and implementations. Student will learn and practice SDN programming, testing and debugging on SDNs platforms through experiments and group projects. It is assumed that the students have some knowledge on data communications and networks.
ELEC5622 Signals, Software and Health

Credit points: 6 Teacher/Coordinator: Luping Zhou Session: Semester 2 Classes: Project Work - in class, Project Work - own time, Presentation, Tutorials, Laboratories Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit aims to introduce students to the main issues involved in producing systems that use sensor data, such as those from physiology and activity tracking, often combined with patients self-reports. As sensing devices become ubiquitous, data processing, storage and visualisation techniques are becoming part of all health systems, both institutionalised and individually driven.
The unit is related to, but distinct, to health informatics- an area that focuses on the the use of computing to deliver cost efficient healthcare and the area of bioinformatics, that explores the role of computing in understanding biology at the cellular level (e. g. genome). This unit focuses on the technical and non-technical problems of developing increasingly ubiquitous devices and systems that can be used for personal and clinical monitoring.
ELEC5701 Technology Venture Creation

Credit points: 6 Teacher/Coordinator: Mahyar Shirvanimoghaddam Session: Semester 2 Classes: Lectures, Workgroups Prohibitions: ENGG5102 Assessment: Through semester assessment (40%) and Final Exam (60%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study prepares graduating students with insight and skills in how to turn a concept into a high technology startup company. The class will provide students with knowledge, practical experience and frameworks to assist in evaluating the market for a technology product or service, the design and viability of business models around it, the formulation of a funding-reading business plan and financials, capital raising options and process, venture capital, building distribution channels, intellectual property protection, putting together an A-grade management team, term sheets and funding documentation, technology sales models and going global. We will look at real world case studies of successful technology companies (and flame outs). Does Twitter have a viable business model? Will Facebook eat its lunch? Is YouTube just burning cash? Will Google rule the world?
During the period of the course, students will form teams and write a business plan around a concept they propose. Each student will assume a role in the team (CEO, CTO, CFO, VP Sales and Marketing). The plan will be judged by a panel of real world venture capitalists, entrepreneurs and angel investors to determine the final grade for the course.
Be warned that a serious commitment will be required in developing the concept into a viable business plan. The outcome, however, will be very rewarding to those students interested in starting the next Google.
This course is taught by instructors experienced in technology startups and venture capital. The course will include a number of guest lectures by industry.

Management Elective units

Candidates must complete 12 credit points from the following Management Elective units of study.
ENGG5203 Quality Engineering and Management

Credit points: 6 Teacher/Coordinator: Dr Peter Cafe Session: Semester 2 Classes: Presentation, Project Work - in class, Project Work - own time Assumed knowledge: First degree in Engineering or a related discipline Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This subject is designed to support Engineers in the implementation of engineering tasks in the workplace. It addresses the use of quality control and management as well as systems assurance processes. It is designed to enable engineers entering practice from other related disciplines or with overseas qualifications to do so in a safe and effective way. The study program will include management of quality in research, design and delivery of engineering works and investigation, as well as of safe work practices and systems assurance.
ENGG5205 Professional Practice in Project Management

Credit points: 6 Teacher/Coordinator: Louis Taborda Session: Semester 1,Semester 2 Classes: Workshops, Seminars, E-Learning Assessment: Through semester assessment (75%) and Final Exam (25%) Mode of delivery: Normal (lecture/lab/tutorial) day, Online
Note: This is a core unit for all Master of Professional Engineering students as well as all students pursuing Project Management studies (including Master of Project Management, Graduate Certificate in Project Management and Graduate Diploma in Project Management). No prerequisite or assumed knowledge.
This unit of study teaches the fundamental knowledge on the importance, organisational context and professional practice in project management. It serves as an introduction to project management practices for non-PM students. For PM students, this unit lays the foundation to progress to advanced PM subjects. Although serving as a general introduction unit, the focus has been placed on scope, time, cost, and integration related issues.
Specifically, the unit aims to: Introduce students to the institutional, organisational and professional environment for today's project management practitioners as well as typical challenges and issues facing them; Demonstrate the importance of project management to engineering and organisations; Demonstrate the progression from strategy formulation to execution of the project; Provide a set of tools and techniques at different stages of a project's lifecycle with emphasis on scope, time, cost and integration related issues; Highlight examples of project success/failures in project management and to take lessons from these; Consider the roles of project manager in the organization and management of people; Provide a path for students seeking improvements in their project management expertise.
ENGG5214 Management of Technology

Credit points: 6 Teacher/Coordinator: Prof Ron Johnston Session: Semester 2 Classes: Lectures, Tutorials, Project Work - in class Assumed knowledge: Sound competence in all aspects of engineering, and some understanding of issues of engineering management Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is designed to develop competence in the management of technology. It will address all aspects of the management of technology, the nature and importance of technological change and innovation, within the context of the global knowledge economy, the management of the new product development process, the role of technology in manufacturing and service competitiveness, the role of IT in logistics management, supply chain strategies, and communication, and the characteristics of high technology markets.
ENGG5215 International Eng Strategy and Operations

Credit points: 6 Teacher/Coordinator: John Currie Session: Semester 2 Classes: Lectures, Tutorials, Project Work - in class Assumed knowledge: Sound competence in all aspects of engineering, and some understanding of issues of engineering management and globalisation Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is designed to introduce students to the global context of much of contemporary engineering and the consequent strategic and operational issues. It will address the nature, characteristics and variety of risks of global businesses, the opportunities and pressures for effective strategies, and the many management challenges in international business. In particular it will focus on Australian consulting, logistics and construction engineering firms that are operating on a global basis.
ENGG5216 Management of Engineering Innovation

Credit points: 6 Teacher/Coordinator: Prof Ron Johnston Session: Semester 1 Classes: Lectures, Tutorials, Presentation, Project Work - in class Assumed knowledge: Sound competence in all aspects of engineering, and some understanding of issues of engineering management Assessment: Through semester assessment (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is designed as enable students to grapple with the challenges of engaging in, facilitating and managing innovation and technology commercialisation. Key learning outcomes are: developing an understanding of the processes of management, and in particular of innovation, dealing with uncertain and inadequate information, how to communicate effectively to and motivate a group of people to work out what to do, and how to do it.
Content will include the challenges of modern management; understanding of the new rules of international competitiveness; effects of globalisation on Australia's economic performance; the competitiveness of Australian firms; the generation of employment and wealth; the changing requirements of the engineer; the engineer as manager and strategist; the role of innovation in business management; product innovation and commercialisation; IP recognition and management; starting a high-tech company.

Project units

All candidates are required to complete a minimum of 12 credit points of Project or Research units during the final year of study.
Candidates achieving an average mark of 70% or higher over 48 credit points of units of study are eligible for the Extended Capstone Project.
Extended Capstone Project candidates take Capstone Project units ELEC5020 and ELEC5022 (total 18 CP) in place of Capstone Project ELEC5021 and 6 credit points of elective units.
ELEC5020 Capstone Project A

Credit points: 6 Teacher/Coordinator: Dr Yash Shrivastava Session: Semester 1,Semester 2 Classes: Project Work - own time Prerequisites: 96 cp from MPE degree program or 48 cp from the MPE(Accel) program or 24 cp from the ME program (including any credit for previous study). Assessment: Through semester assessment (100%) Mode of delivery: Supervision
The capstone project requires the student to plan and execute a substantial research-based project, using their technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice thus demonstrating the achievement of AQF Level 9.
The Capstone Project aims to provide students with the opportunity to carry out a defined piece of independent research or design work in a setting and in a manner that fosters the development of engineering skills in research or design. These skills include the capacity to define a research or design question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research or design in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone Project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Capstone Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research or major design project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor or be of an original nature, but in either case the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to be considered when developing project scope. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally, the ability to plan such a project to achieve results within constraints, and also the identification of promising areas and approaches for future research, are key assessment criteria.
ELEC5021 Capstone Project B

Credit points: 6 Teacher/Coordinator: Dr Yash Shrivastava Session: Semester 1,Semester 2 Classes: Project Work - own time Corequisites: ELEC5020 Prohibitions: ELEC5022 OR ELEC5222 OR ELEC5223 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
The capstone project requires the student to plan and execute a substantial research-based project, using their technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice thus demonstrating the achievement of AQF Level 9.
The Capstone Project aims to provide students with the opportunity to carry out a defined piece of independent research or design work in a setting and in a manner that fosters the development of engineering skills in research or design. These skills include the capacity to define a research or design question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research or design in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone Project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Capstone Project B covers the second of stage writing up and presenting the research results.
Students are asked to write a thesis based on a research or major design project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor or be of an original nature, but in either case the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to be considered when developing project scope. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally, the ability to plan such a project to achieve results within constraints, and also the identification of promising areas and approaches for future research, are key assessment criteria.
ELEC5022 Capstone Project B Extended

Credit points: 12 Teacher/Coordinator: Dr Yash Shrivastava Session: Semester 1,Semester 2 Classes: Project Work - own time Prerequisites: 24 credit points in the Master of Engineering and WAM >=70 or 96 credit points in the Master of Professional Engineering and WAM >=70 or 48cp from MPE(Accel) program and WAM >=70 Prohibitions: ELEC5021 OR ELEC5222 OR ELEC5223 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
The capstone project requires the student to plan and execute a substantial research-based project, using their technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice thus demonstrating the achievement of AQF Level 9.
The Capstone Project aims to provide students with the opportunity to carry out a defined piece of independent research or design work in a setting and in a manner that fosters the development of engineering skills in research or design. These skills include the capacity to define a research or design question, showing how it relates to existing knowledge, identifying the tools needed to investigate the question, carrying out the research or design in a systematic way, analysing the results obtained and presenting the outcomes in a report that is clear, coherent and logically structured. Capstone Project is undertaken across two semesters of enrolment, in two successive Units of Study of 6 credits points each. Capstone Project A covers first steps of thesis research starting with development of research proposal. Capstone Project B covers the second of stage writing up and presenting the research results, and Capstone Project B extended allows the student to investigate a topic of greater depth and scope.
Students are asked to write a thesis based on a research or major design project, which is very often related to some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies or the design, construction and testing of equipment. Direction of thesis work may be determined by the supervisor or be of an original nature, but in either case the student is responsible for the execution of the practical work and the general layout and content of the thesis itself. The final thesis must be the student's individual work, although research is sometimes conducted in the framework of a group project shared with others. Students undertaking research on this basis will need to take care in ensuring the individual quality of their own research work and the final thesis submission. The thesis will be judged on the extent and quality of the student's original work and particularly how critical, perceptive and constructive he or she has been in assessing his/her work and that of others. Students will also be required to present the results of their findings to their peers and supervisors as part of a seminar program.
A thesis at this level will represent a contribution to professional practice or research, however the timeframe available for the thesis also needs to be considered when developing project scopes. Indeed, a key aim of the thesis is to specify a research topic that arouses sufficient intellectual curiosity, and presents an appropriate range and diversity of technical and conceptual challenges, while remaining manageable and allowing achievable outcomes within the time and resources available. It is important that the topic be of sufficient scope and complexity to allow a student to learn their craft and demonstrate their research skills. Equally imperative is that the task not be so demanding as to elude completion. Finally the ability to plan such a project to achieve results within constraints and the identification of promising areas and approaches for future research is a key assessment criterion.

Research Pathway

Candidates achieving an average mark of 75% or higher over 48 credit points of units of study or equivalent are eligible for the Research Pathway.
Research pathway candidates take Dissertation units ELEC5222 and ELEC5223 (total 24 CP) in place of Capstone Project units and 12 credit points of elective units.
ELEC5222 Dissertation A

Credit points: 12 Teacher/Coordinator: Dr Yash Shrivastava Session: Semester 1,Semester 2 Prohibitions: ELEC8901 or ENGG5223 or ENGG5222 or ELEC8902 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
Note: In order to enrol in a project, students must first secure an academic supervisor in an area that they are interested. The topic of your project must be determined in discussion with the supervisor. The supervisor can come from any of the Engineering Departments, however, they need to send confirmation of their supervision approval to the Postgraduate Administrator.
To complete a substantial research project and successfully analyse a problem, devise appropriate experiments, analyse the results and produce a well-argued, in-depth thesis.
ELEC5223 Dissertation B

Credit points: 12 Teacher/Coordinator: Dr Yash Shrivastava Session: Semester 1,Semester 2 Prohibitions: ELEC8901 or ELEC8902 or ENGG5222 or ENGG5223 Assessment: Through semester assessment (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
Note: In order to enrol in a project, students must first secure an academic supervisor in an area that they are interested. The topic of your project must be determined in discussion with the supervisor. The supervisor can come from any of the Engineering Departments, however, they need to send confirmation of their supervision approval to the Postgraduate Administrator.
To complete a substantial research project and successfully analyse a problem, devise appropriate experiments, analyse the results and produce a well-argued, in-depth thesis.

Exchange units

With approval of the Program Director, up to 12 credit points of Exchange units may taken in place of other units, towards the requirements of the degree.

For more information on units of study visit CUSP (https://cusp.sydney.edu.au).