Ecology and Evolutionary Biology Descriptions

ECOLOGY AND EVOLUTIONARY BIOLOGY

Advanced coursework and projects will be available in 2020 for students who complete this major.

Ecology and Evolutionary Biology major

A major in Ecology and Evolutionary Biology requires 48 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 12 credit points of 2000-level core units
(iii) 12 credit points of 3000-level core units
(iv) 6 credit points of 3000-level selective units
(v) 6 credit points of 3000-level interdisciplinary project units

Units of study

The units of study are listed below.

1000-level units of study

Core
BIOL1006 Life and Evolution

Credit points: 6 Teacher/Coordinator: Dr Matthew Pye, A/Prof Charlotte Taylor Session: Semester 1 Classes: Two lectures per week; 11 x 3-hour lab classes; a field excursion Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1906 or BIOL1996 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Writing task (10%), laboratory report (20%), laboratory notebook (10%), during semester tests and quizzes (20%), summative final exam (40%) Practical field work: 11 x 3-hour lab classes, a field excursion Mode of delivery: Normal (lecture/lab/tutorial) day
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals. By doing this unit of study, you will develop the ability to examine novel biological systems and understand the complex processes that have shaped those systems.
Textbooks
Knox, B., Ladiges, P.Y., Evans, B.K., Saint, R. (2014) Biology: an Australian focus, 5e, McGraw-Hill education, North Ryde, N.S.W
BIOL1906 Life and Evolution (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Matthew Pye, A/Prof Charlotte Taylor Session: Semester 1 Classes: Two lectures per week; 11 x 3-hour lab classes; a field excursion Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1996 Assumed knowledge: 85 or above in HSC Biology or equivalent. Assessment: Writing task (10%), project report (20%), laboratory notebook (10%), during semester tests and quizzes (20%), summative final exam (40%) Practical field work: 11 x 3-hour lab classes, a field excursion Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, proteins) to whole ecosystems in which myriads of species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. This unit explores how new species continue to arise while others go extinct and discusses the role of mutations as the raw material on which selection acts. It explains how information is transferred between generations through DNA, RNA and proteins, transformations which affect all aspects of biological form and function. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. You will participate in inquiry-led practical classes investigating single-celled organisms and the diversity of form and function in plants and animals.
Life and Evolution (Advanced) has the same overall structure as BIOL1006 but material is discussed in greater detail and at a more advanced level. Students enrolled in BIOL1906 participate in a research project with a focus on developing skills in critical evaluation, experimental design, data analysis and communication.
Textbooks
Knox, B., Ladiges, P.Y., Evans, B.K., Saint, R. (2014) Biology: an Australian focus, 5e, McGraw-Hill education, North Ryde, N.S.W
BIOL1996 Life and Evolution (SSP)

Credit points: 6 Teacher/Coordinator: Dr Mark de Bruyn Session: Semester 1 Classes: Lectures as per BIOL1906; one 3-hour practical per week Prohibitions: BIOL1001 or BIOL1911 or BIOL1991 or BIOL1006 or BIOL1906 or BIOL1993 or BIOL1998 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (50%), practical reports (25%), seminar presentation (15%), lab note book (5%), prelaboratory quizzes (5%) Practical field work: null Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Biology is an immensely diverse science. Biologists study life at all levels, from the fundamental building blocks (genes, and proteins) to whole ecosystems in which myriad species interact. Evolution is the unifying concept that runs through the life sciences, from the origin and diversification of life to understanding behaviour, to dealing with disease. Evolution through natural selection is the framework in biology in which specific details make sense. Science builds and organises knowledge of life and evolution in the form of testable hypotheses. The practical work syllabus for BIOL1996 is different from that of BIOL1906 (Advanced) and consists of a special project-based laboratory.
Textbooks
Please see unit outline on LMS
BIOL1007 From Molecules to Ecosystems

Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Quizzes (10%), communication assessments (40%), skills tests (10%), summative final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
Textbooks
Please see unit outline on LMS
BIOL1907 From Molecules to Ecosystems (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Claudia Keitel Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Quizzes (10%), communication assessments (40%), skills tests (10%), summative exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . This unit of study has the same overall structure as BIOL1007 but material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)

Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2 Classes: Two lectures per week and online material Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (40%), project report which includes written report and presentation (60%) Practical field work: As advised and required by the project; approximately 30-36 hours of research project in the laboratory or field Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be a synthetic biology project investigating genetically engineered organisms. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS

2000-level units of study

Core
BIOL2022 Biology Experimental Design and Analysis

Credit points: 6 Teacher/Coordinator: A/Prof Clare McArthur Session: Semester 2 Classes: Two lectures per week and one 3-hour practical per week. Prerequisites: 6cp from (BIOL1XXX or MBLG1XXX or ENVX1001 or ENVX1002 or DATA1001 or MATH1XX5) Prohibitions: BIOL2922 or BIOL3006 or BIOL3906 or ENVX2001 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: Practical reports/presentations (60%), one 2-hour exam (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
This unit provides foundational skills essential for doing research in biology and for critically judging the research of others. We consider how biology is practiced as a quantitative, experimental and theoretical science. We focus on the underlying principles and practical skills you need to explore questions and test hypotheses, particularly where background variation (error) is inherently high. In so doing, the unit provides you with an understanding of how biological research is designed, analysed and interpreted using statistics. Lectures focus on sound experimental and statistical principles, using examples in ecology and other fields of biology to demonstrate concepts. In the practical sessions, you will design and perform, analyse (using appropriate statistical tools) and interpret your own experiments to answer research questions in topics relevant to your particular interest. This unit of study provides a suitable foundation for senior biology units of study.
Textbooks
Recommended: Ruxton, G. and Colegrave, N. 2016. Experimental design for the life sciences. 4th Ed. Oxford University Press
BIOL2922 Biol Experimental Design and Analysis Adv

This unit of study is not available in 2019

Credit points: 6 Teacher/Coordinator: A/Prof Clare McArthur Session: Semester 2 Classes: Two lectures per week and one 3-hour practical per week. Prerequisites: [An annual average mark of at least 70 in the previous year] and [6cp from (BIOL1XXX or MBLG1XXX or ENVX1001 or ENVX1002 or DATA1001 or MATH1XX5)] Prohibitions: BIOL2022 or BIOL3006 or BIOL3906 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: Practical reports/presentations (60%), one 2-hour exam (40%). Mode of delivery: Normal (lecture/lab/tutorial) day
The content of BIOL2922 will be based on BIOL2022 but qualified students will participate in alternative components at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Required: Ruxton, G. and Colegrave, N. 2016. Experimental design for the life sciences. 4th Ed. Oxford
BIOL2024 Ecology and Conservation

Credit points: 6 Teacher/Coordinator: Prof Peter Banks Session: Semester 2 Classes: Two lectures and one 3-hour practical per week. Prohibitions: BIOL2924 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: Practical reports/presentations (50%), one 2-hour exam (50%). Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study examines the ecological principles driving the major ecosystems of the world and ecological processes behind the world's major conservation issues. It aims to develop in students the core foundations for an understanding of Ecology and its application in conservation. Lectures will focus on the ecology of the major terrestrial and marine biomes of the world. Application of ecological theory and methods to practical conservation problems will be integrated throughout the unit of study. Practical sessions will provide hands-on experience in ecological sampling and data handling to understand the ecology of marine and terrestrial environments, as well as ecological simulations to understand processes. This unit of study provides a suitable foundation for senior biology units of study.
Textbooks
Recommended: Essentials of Ecology 4th edition (2014). Townsend, CR, Begon, M, Harper, JL . John
BIOL2924 Ecology and Conservation (Advanced)

Credit points: 6 Teacher/Coordinator: Prof Peter Banks Session: Semester 2 Classes: Two lectures and one 3-hour practical per week. Prerequisites: An annual average mark of at least 70 in the previous year Prohibitions: BIOL2024 Assumed knowledge: BIOL1XXX or MBLG1XXX Assessment: Practical reports/presentations (50%), one 2-hour exam (50%). Mode of delivery: Normal (lecture/lab/tutorial) day
The content of BIOL2924 will be based on BIOL2024 but qualified students will participate in alternative components at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Recommended: Essentials of Ecology 4th edition (2014). Townsend, CR, Begon, M, Harper, JL . John

3000-level units of study

Core
BIOL3007 Ecology

Credit points: 6 Teacher/Coordinator: A/Prof Dieter Hochuli Session: Semester 2 Classes: Two 1-hour lectures and one 3-hour practical per week. Prerequisites: [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3907 Assessment: One 2-hour exam, group presentations, one essay, one project report (100%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit explores the dynamics of ecological systems, and considers the interactions between individual organisms and populations, organisms and the environment, and ecological processes. Lectures are grouped around four dominant themes: Interactions, Evolutionary Ecology, The Nature of Communities, and Conservation and Management. Emphasis is placed throughout on the importance of quantitative methods in ecology, including sound planning and experimental designs, and on the role of ecological science in the conservation, management, exploitation and control of populations. Relevant case studies and examples of ecological processes are drawn from marine, freshwater and terrestrial systems, with plants, animals, fungi and other life forms considered as required. Students will have some opportunity to undertake short term ecological projects, and to take part in discussions of important and emerging ideas in the ecological literature.
Textbooks
Begon M, Townsend CR, Harper JL (2005) Ecology, From individuals to ecosystems. Wiley-Blackwell.
BIOL3907 Ecology (Advanced)

Credit points: 6 Teacher/Coordinator: A/Prof Dieter Hochuli Session: Semester 2 Classes: Two lectures per week, weekly tutorial and 3-hour practical per week Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3007 Assessment: One 2-hour exam, presentations, one essay, one project report (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
This unit has the same objectives as BIOL3007 Ecology, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted, and selection is made from the applicants on the basis of their previous performance. Students taking this unit of study participate in alternatives to some elements of the standard course and will be encouraged to pursue the objectives by more independent means in a series of research tutorials. Specific details of this unit of study and assessment will be announced in meetings with students in week 1 of semester 2. This unit of study may be taken as part of the BSc (Advanced) program.
Textbooks
As for BIOL3007
BIOL3005 Evolutionary Biology

Credit points: 6 Teacher/Coordinator: Prof Ben Oldroyd Session: Semester 1 Classes: Lectures 2 hours per week 13 weeks, tutorial or laboratory 4 hours per week for 13 weeks, field trip 24 hours, once during semester. Prerequisites: (12cp of BIOL2XXX) or [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3044 or BIOL3025 or BIOL3925 or BIOL3944 or PLNT3003 or PLNT3903 Assumed knowledge: Students should be familiar with the structure of DNA molecules and the genetic code, understand the concept of a phylogenetic tree and have basic laboratory skills like pipetting and PCR. A knowledge of elementary statistics and algebra is assumed. Completion of intermediate units in genetics and genomics (i.e.GEGE2X01) and diverisity (e.g. botany or zoology) is highly recommended. Assessment: Oral presentation in a debate format (10%), Short reports in practical classes (10%), Draft scientific report (10%), Scientific report (20%), Final exam (50%). Practical field work: 24-hour period over a weekend during semester. Mode of delivery: Normal (lecture/lab/tutorial) day
Evolution is the biological process that has generated the biodiversity on this planet. It explains the common ancestry of all life on earth, why all organisms use the same genetic code, and why major life forms are constrained to a relatively small number of basic body plans such as four limbs in tetrapods. Thus, the principles of evolution and population genetics underpin all biology, including ecology, medicine and agriculture. For example, it is only because rats and humans share an evolutionary past that we can use rats as models for human medical research. In this unit, you will explore the mechanisms that generate evolutionary change at both contemporary and ancient scales. You will learn how to use DNA sequences to reconstruct the relationships among organisms and to estimate evolutionary timescales. Evolution is an ongoing process, so you will use genetic techniques to discover whether populations are divided into subpopulations. By completing this unit, you will develop skills in genomics, phylogenetic analysis, population genetics and conservation genetics. You will learn about fundamental aspects of evolution such as adaptation, sexual selection, and the origins of life. You will gain general skills in computer literacy, data management and statistical genetics.
Interdisciplinary Project
SCPU3001 Science Interdisciplinary Project

Credit points: 6 Teacher/Coordinator: Pauline Ross Session: Intensive December,Intensive February,Intensive January,Intensive July,Semester 1,Semester 2 Classes: The unit consists of one seminar/workshop per week with accompanying online materials and a project to be determined in consultation with the partner organisation and completed as part of team with academic supervision. Prerequisites: Completion of 2000-level units required for at least one Science major. Assessment: group plan, group presentation, reflective journal, group project Mode of delivery: Normal (lecture/lab/tutorial) day
This unit is designed for students who are concurrently enrolled in at least one 3000-level Science Table A unit of study to undertake a project that allows them to work with one of the University's industry and community partners. Students will work in teams on a real-world problem provided by the partner. This experience will allow students to apply their academic skills and disciplinary knowledge to a real-world issue in an authentic and meaningful way. Participation in this unit will require students to submit an application to the Faculty of Science.
ECOL3888 to be developed for offering in 2020
Selective
BIOL3034 Evolution of the Australian Biota

Credit points: 6 Teacher/Coordinator: A/Prof Murray Henwood Session: Semester 1 Classes: Lecture 2 hrs/wk; practical class/discussion group 3-4 hrs/wk Prerequisites: (12cp of BIOL2XXX) or [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3044 or BIOL3944 or BIOL3025 or BIOL3925 or PLNT3003 or PLNT3903 Assessment: Final theory exam (50%), Research project proposal - outline and scope (10%), Participation in group discussion/presentation (10%), Presentation of completed research project (30%) Mode of delivery: Normal (lecture/lab/tutorial) day
The diverse Australian biota presents a compelling story of how history and environmental processes have shaped its evolution and the distribution of species over the landscape. For example, the high level of endemism, and the dominance of eucaplypts and wattles are distinctive, along with the complex interactions among species, including humans. This unit of study will consider the historical and contemporary processes of change that have led to, and currently influence, the biological diversity of Australia across a range of temporal and spatial scales. You will examine the timing and tempo of the evolution of major groups of plants and animals of Australia, and how these have been influenced by, and continue to interact with, significant earth history events and other organisms. By understanding the past, and the spatial distributions of species, you will be equipped to inform management and conservation decisions about the future of ecosystems and the plants and animals that comprise them. By doing this unit you will develop a deep understanding of the origin and diversity of the plants and animals of Australia. You will become proficient at the techniques and concepts used to infer past events, map current species distributions and to anticipate future changes in biological diversity.
BIOL3008 Marine Field Ecology

Credit points: 6 Teacher/Coordinator: A/Prof Ross Coleman Session: Intensive July Classes: Intensive 8-day field course held in the pre-semester break. Prerequisites: 12 credit points of Intermediate BIOL, or (6 credit points of Intermediate BIOL and (MBLG2072 or MBLG2972)) Prohibitions: BIOL3908 or BIOL2028 or BIOL2928 Assessment: Discussion groups, research project proposal, biodiversity survey report, data analysis and checking, research project report (100%). Mode of delivery: Block mode
Note: Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any senior BIOL units of study may also be considered. Students must apply via the School of Life Environmental Sciences rather than directly through Sydney Student Unit of Study Selection. Information on how to apply will be on the SOLES Student Portal on Canvas: https://canvas.sydney.edu.au/courses/7931
This field course provides a practical introduction to the experimental analysis of marine populations and assemblages. Students gain experience using a range of intertidal sampling techniques and develop a detailed understanding of the logical requirements necessary for manipulative ecological field experiments. No particular mathematical or statistical skills are required for this subject. Group experimental research projects in the field are the focus of the unit during the day, with lectures and discussion groups about the analysis of experimental data and current issues in experimental marine ecology occurring in the evening.
Textbooks
No textbook is prescribed but Coastal Marine Ecology of Temperate Australia. Eds. Underwood, A.J. and Chapman, M.G. 1995. University of New South Wales Press, provides useful background reading.
BIOL3908 Marine Field Ecology (Advanced)

Credit points: 6 Teacher/Coordinator: A/Prof Ross Coleman. Session: Intensive July Classes: One 8-day field course held in the pre-semester break, plus four 1-hour tutorials during semester 2. Prerequisites: Distinction average in either- 12cp Intermediate BIOL, or (6cp Intermediate BIOL and(MBLG2072 or MBLG2972)) Prohibitions: BIOL3008 or BIOL2028 or BIOL2928 Assessment: Discussion groups, research project proposal, biodiversity report, data analysis and checking, research project report (100%). Mode of delivery: Block mode
Note: Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any senior BIOL units of study may also be considered. Students must apply via the School of Life Environmental Sciences rather than directly through Sydney Student Unit of Study Selection. Information on how to apply will be on the SOLES Student Portal on Canvas nvas: https://canvas.sydney.edu.au/courses/7931
This unit has the same objectives as Marine Field Ecology BIOL3008, and is suitable for students wishing to pursue certain aspects of marine field ecology in a greater depth. Entry is restricted and selection is made from applicants on the basis of past performance. Students taking this unit of study will be expected to take part in a number of additional tutorials after the field course on advanced aspects of experimental design and analysis and will be expected to incorporate these advanced skills into their analyses and project reports. This unit may be taken as part of the BSc(Advanced).
Textbooks
As for BIOL 3008.
BIOL3009 Terrestrial Field Ecology

Credit points: 6 Teacher/Coordinator: Prof Glenda Wardle Session: Intensive July Classes: Note: One 7-day field trip held in the pre-semester break (week immediately prior to start of Semester 2) and four 4-hour practical classes on Friday mornings during weeks 1-4 of Semester 2 Prerequisites: [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3909 or BIOL2009 or BIOL2909 Assumed knowledge: Basic ecological concepts of species and communities, and experimental deisgn and analysis. Assessment: Field practical skills (10%), field survey methods quiz (10%), research project proposal and brief presentation (10%), sampling project report (20%), specimen collection (10%), major research project report (50%) Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any senior BIOL units of study may also be considered. Students must apply via the School of Life Environmental Sciences rather than directly through Sydney Student Unit of Study Selection. Information on how to apply will be on the SOLES Student Portal on Canvas: https://canvas.sydney.edu.au/courses/7931
This intensive field-based course provides practical experience in terrestrial ecology suited to a broad range of careers in ecology, environmental consulting and wildlife management. Students learn a broad range of ecological sampling techniques and develop a detailed understanding of the logical requirements necessary for manipulative ecological field experiments. The field work takes place in native forest and incorporates survey techniques for plants, small mammals and invertebrates and thus provides a good background for ecological consulting work and an introduction into large-scale project management. Students attend a week-long field course and participate in a large-scale research project as well as conducting their own research project. Emphasis is placed on critical thinking in the context of environmental management and technical skills are developed in the area of data handling and analysis, report writing and team work. Invited experts contribute to the lectures and discussions on issues relating to the ecology, conservation and management of Australia's terrestrial flora and fauna.
BIOL3909 Terrestrial Field Ecology (Advanced)

Credit points: 6 Teacher/Coordinator: Prof Glenda Wardle Session: Intensive July Classes: One 7-day field trip held in the pre-semester break (week immediately prior to start of semester 2) and four 4-hour practical classes on Friday mornings during weeks 1-4 of semester 2 Prerequisites: An average mark of 70 or above in (12cp of BIOL2XXX) OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3009 or BIOL2009 or BIOL2909 Assumed knowledge: Basic ecological concepts of species and communities, and experimental design and analysis. Assessment: Field survey methods quiz (10%), sample and data processing (10%), research project proposal and brief presentation (10%), sampling project report (20%), major research project report (50%) Mode of delivery: Block mode
Note: Department permission required for enrolment
Note: Entry into the unit is based on placement availability and selection is competitive based on academic performance in the pre-requisite units of study. Academic performance in any senior BIOL units of study may also be considered. Students must apply via the School of Life Environmental Sciences rather than directly through Sydney Student Unit of Study Selection. Information on how to apply will be on the SOLES Student Portal on Canvas: https://canvas.sydney.edu.au/courses/7931
This unit has the same objectives as BIOL3009 Terrestrial Field Ecology, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted, and selection is made from applicants on the basis of previous performance. Students taking this unit of study will complete an individual research project on a topic negotiated with a member of staff. It is expected that much of the data collection will be completed during the field trip but some extra time may be needed during semester 2. Specific details of this unit of study and assessment will be announced in meetings with students at the beginning of the unit. This unit of study may be taken as part of the BSc (Advanced) program.
BIOL3045 Animal Ecological Physiology

Credit points: 6 Teacher/Coordinator: Prof Frank Seebacher Session: Semester 1 Classes: Two lectures and three practicals per week Prerequisites: [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3945 or BIOL3011 or BIOL3911 or BIOL3012 or BIOL3912 Assessment: Two practical reports (20% and 40% of total marks, respectively), one 1.5-hour exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Animal Ecological Physiology is a conceptually based unit of study that covers physiological interactions between organisms and their environments. The unit explores evolutionary processes that allow animals to persist in variable environments. These concepts are essential to understanding biodiversity and ecological function of animal populations, and how these are likely to change under future climate change. The unit will be suitable for those with an interest in zoology, as well as students with a particular interest in ecology and evolution. There is a strong focus on experimental biology and incorporating theory into practical classes, during which students design their own experiments. Good working knowledge of statistical analyses is assumed. The unit provides essential skills for conducting and presenting research, and for critical evaluation of published research.
BIOL3046 Animal Behaviour

Credit points: 6 Teacher/Coordinator: Prof Ashley Ward Session: Semester 1 Classes: Two lectures and one 3-hour practical per week. Prerequisites: [12cp of BIOL2XXX] OR [6cp from BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3946 or BIOL3025 or BIOL3925 Assessment: Practical reports, one 2-hour exam (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
The unit will provide a broad overview of the scientific study of animal behaviour. It will consider mechanistic and functional explanations of animal behaviour across contexts including kin selection and altruism, sociality, foraging, aggression and competition, sexual selection and mate choice, the behaviour of predators and prey, and communication and signalling. The information presented and discussed in this unit will reflect the most up-to-date research in each aspect of the field of animal behaviour. Practical sessions are closely aligned with the lecture material and will foster the development of key skills by providing hands-on experience of experimental design, data collection and analysis.
Textbooks
Davies, Krebs, West: An Introduction to Behavioural Ecology, 4th edition, Wiley-Blackwell.
BIOL3946 Animal Behaviour (Advanced)

Credit points: 6 Teacher/Coordinator: Prof Ashley Ward Session: Semester 1 Classes: Two lectures and one 3-hour practical per week. Prerequisites: An average mark of 75 or above in [12cp of BIOL2XXX] OR [6cp of BIOL2XXX and (MBLG2X72 or GEGE2X01 or GENE2002)] Prohibitions: BIOL3046 or BIOL3025 or BIOL3925 Assessment: Practical reports, one 2-hour exam (100%). Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
The content will be based on the standard unit BIOL3046 but qualified students will participate in alternative components at a more advanced level. The unit will provide a broad overview of the scientific study of animal behaviour. It will consider mechanistic and functional explanations of animal behaviour across contexts including kin selection and altruism, sociality, foraging, aggression and competition, sexual selection and mate choice, the behaviour of predators and prey, and communication and signalling. The information presented and discussed in this unit will reflect the most up-to-date research in each aspect of the field of animal behaviour. Practical sessions are closely aligned with the lecture material and will foster the development of key skills by providing hands-on experience of experimental design, data collection and analysis.
Textbooks
Davies, Krebs, West: An Introduction to Behavioural Ecology, 4th edition, Wiley-Blackwell.