Trademark Acknowledgement

PerkinElmer® and Tri-Carb® are registered trademarks of PerkinElmer, Inc.
IPA™ is a trademark of PerkinElmer, Inc.
Quantulus™ GCT is a trademark of PerkinElmer, Inc.
Ultima Gold™ is a trademark of PerkinElmer, Inc.
QuantaSmart™ is a trademark of PerkinElmer, Inc.
Replay™ is a trademark of PerkinElmer, Inc.
SpectraView™ is a trademark of PerkinElmer, Inc.
Varisette™ is a trademark of PerkinElmer, Inc.
Teflon® is a registered trademark of E.I. DuPont Company.
Lotus® is a registered trademark of Lotus Development Corporation.
Microsoft® and Windows® are registered trademarks of Microsoft Corporation.
Explanation of Symbols

Signification des symboles

Erklärung der Symbole

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Symbol</th>
<th>Symboles</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alternating current</td>
<td>Courant alternatif</td>
<td>Wechselstrom</td>
</tr>
<tr>
<td></td>
<td>Protective Earth Ground</td>
<td>Mise à la terre</td>
<td>Schutz - Erdung</td>
</tr>
<tr>
<td></td>
<td>On (Supply)</td>
<td>Marche (alimentation)</td>
<td>Ein</td>
</tr>
<tr>
<td></td>
<td>Off (Supply)</td>
<td>Arrêt (alimentation)</td>
<td>Aus</td>
</tr>
<tr>
<td></td>
<td>Caution - Risk of Electrical Shock</td>
<td>Attention: Risque de choc électrique</td>
<td>Vorsicht - Gefährliche Spannung</td>
</tr>
<tr>
<td></td>
<td>Caution (refer to accompanying documents)</td>
<td>Attention: Voir les documents ci-joints</td>
<td>Vorsicht - Siehe Begleitinformation</td>
</tr>
<tr>
<td></td>
<td>Serial Out</td>
<td>Sortie série</td>
<td>Serieller Ausgang</td>
</tr>
<tr>
<td></td>
<td>Printer</td>
<td>Imprimante</td>
<td>Drucker</td>
</tr>
<tr>
<td></td>
<td>Monitor</td>
<td>Moniteur</td>
<td>Bildschirm</td>
</tr>
<tr>
<td>Symbol</td>
<td>Symbol</td>
<td>Symboles</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>Fuse Label / Current Warning</td>
<td>Étiquette d'advertissement relatif au type et au courant du fusible</td>
<td>Sicherung/Stromstärke</td>
</tr>
<tr>
<td></td>
<td>Warning High Leakage Current, Ensure Proper Grounding</td>
<td>Avertissement: Courant de fuite élevé, Mettre correctement à la terre</td>
<td>Warnung: Hoher Leckstrom-Ordnungsgemäße Erdung sicherstellen</td>
</tr>
<tr>
<td></td>
<td>Warning Laser Product Avoid Direct Exposure to Beam</td>
<td>Avertissement: Appareil à laser exposition au faisceau dangereuse</td>
<td>Warnung: Laserstrahlung, nicht in den lichtstrahl blicken, unsicht bare laserstrahlung.</td>
</tr>
<tr>
<td></td>
<td>Pinch Hazard</td>
<td>Pincement Hasard</td>
<td>Vorsicht-Verletzungsgefahr!</td>
</tr>
<tr>
<td></td>
<td>Hot Surface</td>
<td>Surface Chaude</td>
<td>Heiße Oberfläche</td>
</tr>
<tr>
<td></td>
<td>Waste Electrical & Electronic Equipment</td>
<td>Dispositions relatives à la composition des équipements électriques et électroniques</td>
<td>Überschüssige elektrische und elektronische Ausrüstung</td>
</tr>
</tbody>
</table>
Regulatory Compliance

This equipment must be used only by authorized personnel, in a controlled laboratory environment.

Refer all detailed questions to the PerkinElmer, Inc., Operation and Reference manuals.

This equipment must only be used with IEC listed accessories (computer, printer, monitor, etc.).

RFI Compliance

This equipment has been tested and found to comply with the limits of IEC 61326-1: Edition 2.0 2012.

Any changes or modifications not expressly approved by PerkinElmer, Inc., could adversely affect compliance.

Use only shielded interface cables with this equipment.

If the instrument is received in a damaged condition, request an immediate inspection by the carrier and local technical service representative. PerkinElmer, Inc., is not responsible for damage occurring during transit. However, PerkinElmer, Inc., will assist in ensuring a satisfactory settlement from the carrier.

Upon receipt of all damage/inspection reports, PerkinElmer, Inc., will arrange for either instrument repair or replacement.

For proper ventilation of this equipment, a distance of 15cm must be maintained from this unit to any other surface.

⚠️ **Warning:** If the equipment is used in a manner not specified herein, the protection provided by the equipment may be impaired.
Ce matériel doit être utilisé seul par Personnel autorisé, a commandé dans un l’environnement du Laboratoire.

Reportez à toutes questions détaillées au PerkinElmer, Inc., et manuels de la Référence.

Reportez à tout service, a formé à un PerkinElmer, Inc., le personnel du service seul.

Ce matériel, faut seul est utilisé avec IEC a Inscrit des Accessoires. (Ordinateur, Imprimeur, Moniteur, [etc]).

RFI Acquiescement

Ce matériel a été testé et a trouvé conformer à avec les limites de IEC 61326-1: Edition 2.0 2012.

Tous changements ou modifications pas expressément approuvé Instrumente par PerkinElmer, Inc., pouvait, [incorrigeable] effectue l’acquiescement.

Utilisez seul a protégé des câbles de l’interface avec ce matériel.

Si l’instrument est reçu dans une condition endommagée, demande une inspection immédiate par le porteur et représentant du service local technique. PerkinElmer, Inc., n’est pas responsable pour dégât produit pendant passage. De quelque manière que, PerkinElmer, Inc., aidera dans assurer un règlement satisfaisant du porteur.

Rapporte sur reçu de toute inspection du dégât, PerkinElmer, Inc., arranger la réparation de l’instrument a l’un ou l’autre ou remise en place.

Pour ventilation adéquate de ce matériel, une distance de 15cm doit être maintenue, de cette unité à toute autre surface.

⚠️ Avertissement: Si cet appareil est utilisé d’une façon non spécifiée dans le présent document, la protection qu’il procure pourrait s’en trouver altérée.
Bitte nur gleichwertige Ersatzsicherungen des angegebenen Typs verwenden.

Das Gerät erst nach der Einarbeitung durch einen von PerkinElmer, Inc., geschulten Vertreter benutzen.

Reparatur- und Servicearbeiten sind nur von durch PerkinElmer, Inc., geschulten Personen durchzuführen.

An das Gerät darf nur IEC-registriertes Zubehör angeschlossen werden (Computer, Drucker, Monitor usw).

Funkentstörung

Durch Änderungen oder Umbauten, die nicht ausdrücklich von PerkinElmer, Inc., genehmigt wurden, wird die Zulassung u.U. hinfällig.

Mit diesem Gerät nur isolierte Schnittstellenkabel verwenden.

Weist das Gerät bei der Entgegennahme Schäden auf, verlangen Sie bitte eine sofortige Inspektion durch den Spediteur und den zuständigen Kundendienstvertreter. PerkinElmer, Inc., ist für Transportschäden nicht
haftbar, setzt sich jedoch gern dafür ein, mit dem Spediteur eine befriedigende Lösung auszuarbeiten.

Für ordnungsgemäße Ventillation darf dieses Gerät nicht näher als 15cm von einer Wand entfernt aufgestellt werden.

Warnung: Wird das Gerät auf eine Weise benutzt, die hierin nicht angegeben wird, kann der vom Gerät gebotene Schutz beeinträchtigt werden.

Safety Compliance

This equipment has been tested and found to comply with the IEC 61010-1-Edition 3.0 2010. Any changes or modifications not expressly approved by PerkinElmer, Inc., could adversely affect compliance.

conformité de sécurité

Cet équipement a été testé et déclaré conforme à la norme CEI 61010-1, troisième édition (2010) norme de sécurité.

Les changements ou modifications non expressément approuvés par PerkinElmer, Inc., pourraient nuire à la conformité.

Sicherheitsrichtlinien

Alle Änderungen oder Modifikationen, die nicht ausdrücklich von PerkinElmer, Inc. genehmigt wurde, könnte sich negativ auf die Compliance.
Table of Contents

Chapter 1

About the Tri-Carb

- Instrument Specifications .. 1
- Physical Dimensions ... 3
- Electrical Requirements ... 4
- Environmental Requirements ... 4
- Energy Range ... 5
- Efficiency .. 5
- Chi-Square ... 5
- Detectors .. 6
- Sample Changer ... 6
- External Standard ... 6
- Sample Cassettes .. 6
- Protocol Flags ... 7
- Bar Code Reader ... 8
- Shielding .. 8
- Sample Vials .. 9
- Tri-Carb System Configurations ... 9
- Recommended Safety Procedures .. 10
- Customer Service .. 11
- Moving the Tri-Carb Instrument ... 11
- Decontamination .. 12
- Preventative Maintenance ... 12
- Overview of System Hardware .. 12
- System Computer .. 12
- Front of Tri-Carb ... 13
- Back of Tri-Carb .. 14
- Right Side of the Tri-Carb ... 15
Chapter 2

How To... ... 17
 How to Get Started ... 18
 Performing Self-Normalization and Calibration (SNC) 19
 SNC Cassette Loading ... 20
 How to Create an Assay .. 22
 How to Create a Password To Protect Assays 25
 How to Associate an Assay to a Protocol 27
 How to Count Samples .. 30
 How to Disassociate an Assay from a Protocol 31
 How to Edit an Assay .. 32
 How to Print an Assay ... 33
 How to Manually Print a Report 33
 How to Link a Quench Set to a Sample Puclide 34
 How to Set Up a Quench Standards Assay 36
 How to Run an Alpha/Beta Standards Assay 37
 How to Run an Alpha/Beta Assay 39
 How to Use the Replay Feature 40
 How to Calculate Radioactive Decay 42

Chapter 3

System Software ... 43
 Main Window ... 44
 SpectraView Window ... 45
 Instrument Status Bar .. 47
 Protocols Tree .. 48
 Replay Tree .. 50
 Output Window .. 51
 Menu Bar .. 52
 File Menu .. 52
 Run Menu .. 55
 View Menu .. 58
 Security Menu .. 59
 Libraries Menu .. 60
 Tools Menu .. 65
 IPA Menu .. 71
 Diagnostics Menu .. 74
 Window Menu ... 76
 Help Menu .. 77
 Spectral Displays ... 78
 Spectral Mapping .. 79
 Spectrum Unfolding ... 80
 SpectraView Window ... 81
 Reports ... 81
 Printed Reports .. 81
 Electronic Reports ... 82
Chapter 4

Assays ... 83
 Assay Types ... 83
 CPM Assays .. 83
 DPM Assays .. 84
 Full Spectrum (FS) DPM Assays 86
 Direct DPM Assays .. 87
 Alpha/Beta Assays ... 89
 Alpha/Beta Standards Assays 92
 Quench Standards Assays 93
 Single Photon Counting (SPC) Assays 94
 Defining an Assay ... 96
 Count Conditions .. 97
 Count Corrections .. 102
 Report Definition .. 106
 Report Output ... 115
 Special Files .. 120
 Worklist .. 125
 Assay Details .. 130

Chapter 5

Libraries ... 133
 Sample Nuclides Library 134
 Quench Standards Library 137
 Alpha/Beta Nuclides Library 141
 Alpha/Beta Standards Library 144

Chapter 6

Normalization, Calibration, and IPA 149
 When to Perform These Procedures 150
 Defining an Instrument Performance Assessment 151
 IPA Charts & Tables .. 155
 IPA Reports .. 158
 Performing Self-Normalization and Calibration (SNC) 159
 SNC Cassette Loading .. 160
Chapter 7

Advanced Features ... 163
 Priostat .. 164
 Group Priostat .. 164
 Sample Priostat ... 165
 Replay Feature .. 181
 Replay Conditions Tab .. 182
 Report Definition Tab .. 188
 Report Output Tab .. 188
 Special Files Tab ... 188
 Worklist Tab .. 188
 High Sensitivity and Low Level Counting 189
 Super Low Level Counting 190
 Alpha/Beta Counting .. 192
 Tandem Processing ... 194
 2D Bar Code Reader Option .. 195
 Bar Code Size and Placement 196

Chapter 8

Maintenance and Troubleshooting 197
 Preventative Maintenance ... 197
 Inspection .. 198
 Cleaning ... 198
 Storing Data .. 198
 Back Up Hard Drive ... 198
 Folder Contents .. 199
 Power Failure Recovery .. 199
 Troubleshooting Operational Errors 199
 Troubleshooting IPA Errors 201
 Troubleshooting Warnings and Messages 203
Appendix A

Calculations
- Background Correction ... 217
- Background Threshold ... 217
- Chi-Square Calculation ... 218
- Disintegrations Per Minute (DPM) .. 218
- Efficiency ... 219
- Figure of Merit (FOM) Calculation .. 219
- Half-life Correction .. 219
- IPA Background .. 219
- Low Count Reject (LCR) ... 220
- LUM (% Luminescence) ... 220
- Radioactivity Units ... 220
- 2 Sigma % (%2s) .. 221
- Radionuclide Decay Calculator ... 222
- % Reference (% Ref) ... 222

Appendix B

Glossary .. 223

Appendix C

Theory
- Low Level Counting Theory .. 235
- Guard Compensation .. 236
- Burst Counting ... 237
- High Sensitivity and Low Level Counting 238
- Operational Considerations .. 241
- High Sensitivity/Low Level Count Mode Setup 244
- Precautions and Limitations ... 245
- Alpha/Beta Counting Theory .. 247
- Alpha/Beta Discriminations Using PSA .. 248
- Optimum Alpha/Beta Discriminator ... 251

Appendix D

Half-Life Correction .. 253

Appendix E

Easy View Function
- Viewing Spectrum Data Using Easy View 257
Chapter 1

About the Tri-Carb

The Tri-Carb® liquid scintillation counter relies on interactions between radioactive decay energy and a scintillator, a component of the “scintillation cocktail.” The scintillator converts ionizing radiation from the radionuclide into photons of light (scintillation). The intensity of light produced during scintillation is proportional to the initial energy of the beta particle.

By placing a vial containing a radionuclide and scintillation cocktail into a dark detection enclosure (the instrument’s detector), the scintillation counter can measure photon intensity. A Photomultiplier Tube (PMT) amplifies the light emitted from sample vials and the amplified signal is converted to pulses of electrical energy registered as counts. The counts accumulated during this process are sorted into separate channels, with the amplitude of the signal determining the energy channel (keV) into which the counts are sorted, and used to generate a sample spectrum. Using this spectrum, the system can perform various count correction calculations and determine Counts Per Minute (CPM) for each sample.

To calculate Disintegrations Per Minute (DPM), the instrument determines a counting efficiency of each sample, and using a quench curve, compares the quench index for samples to that for quench standards. This determines sample counting efficiency, and calculates DPM for unknown samples.

Figure 1-1 and Figure 1-2 provide an overview of this process:
Figure 1-1. Overview of the Scintillation Counting Process (1 of 2).

Figure 1-2 Overview of the Scintillation Counting Process (2 of 2).
The remainder of this chapter discusses the following topics about the Tri-Carb system:

- Instrument Specifications (page 3)
- Tri-Carb System Configurations (page 9)
- Recommended Safety Procedures (page 10)
- Customer Service (page 11)
- Moving the Tri-Carb Instrument (page 11)
- Decontamination (page 12)
- Preventative Maintenance (page 12)
- Overview of System Hardware (page 12)

Instrument Specifications

All Tri-Carb instrument specifications are developed using sources whose activity is referenced to NIST source activity, and PerkinElmer reference methods. Depending on the instrument placement in your laboratory, some specifications may differ from those in this chapter.

The specifications for your Tri-Carb system are defined in the following sections.

These specifications include the following:

- Physical Dimensions (page 4)
- Electrical Requirements (page 4)
- Environmental Requirements (page 4)
- Energy Range (page 5)
- Efficiency (page 5)
- Chi-Square (page 5)
- Detectors (page 6)
- Sample Changer (page 6)
- External Standard (page 6)
- Sample Cassettes (page 6)
- Protocol Flags (page 7)
- Bar Code Reader (page 8)
- Shielding (page 8)
- Sample Vials (page 9)
Physical Dimensions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>19 inches (48 cm)</td>
</tr>
<tr>
<td>Width</td>
<td>40.6 inches (103 cm)</td>
</tr>
<tr>
<td>Depth</td>
<td>32.36 inches (82 cm)</td>
</tr>
</tbody>
</table>
| **Weight** | 470 pounds (214 kg) without refrigeration unit
 515 pounds (234 kg) with refrigeration unit |

Electrical Requirements

Instrument:

<table>
<thead>
<tr>
<th></th>
<th>60 Hz</th>
<th>50 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (VAC):</td>
<td>100, 120</td>
<td>200, 240</td>
</tr>
<tr>
<td>Amperage (Amps):</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Installation Category II, Pollution Degree 2

<table>
<thead>
<tr>
<th></th>
<th>60 Hz</th>
<th>50 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuse (Amps):</td>
<td>4.0 (type S) (5 X 20 mm)</td>
<td>2.5 (type T) (5 X 20 mm)</td>
</tr>
<tr>
<td>Wattage (Watts):</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

Refrigeration Unit (Optional):

<table>
<thead>
<tr>
<th></th>
<th>60 Hz</th>
<th>50 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (VAC):</td>
<td>117</td>
<td>240</td>
</tr>
<tr>
<td>Amperage (Amps):</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Fuse (Amps):</td>
<td>Circuit Breaker</td>
<td>Circuit Breaker</td>
</tr>
<tr>
<td>Wattage (Watts):</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

Environmental Requirements

Operating Ambient Temperature:	15°C to 35°C (59°F to 95°F)
Operating Relative Humidity:	30% to 85% (Non-condensing; system for indoor use only)
Altitude:	Up to 2000 meters (6561 feet)
Energy Range
This table represents the preset regions for the following nuclides:

<table>
<thead>
<tr>
<th>Preset Regions (keV)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritium</td>
<td>0–18.6</td>
</tr>
<tr>
<td>Carbon-14</td>
<td>0–156</td>
</tr>
<tr>
<td>Phosphorus-32</td>
<td>5–1700</td>
</tr>
<tr>
<td>Iodine-125</td>
<td>0–70</td>
</tr>
</tbody>
</table>

You can define preset regions for any nuclide in the Sample Nuclides Library. Refer to Sample Nuclides Library (page 134) for more information.

Efficiency
For Tritium (3H) in the range 0–18.6 keV, the minimum acceptable efficiency is 63% (58% for Model GCT 6220). For Carbon-14 (14C) in the range 0–156 keV, the minimum acceptable efficiency is 95% (94% for Model GCT 6220). These values were generated by PerkinElmer. Exact values obtained at other instrument locations may vary. Counting Efficiency is a parameter measured as part of Instrument Performance Assessment (IPA).

Counting efficiencies, backgrounds and Figure of Merit are determined in IPA using optimized window settings of 1–18.6 keV for Tritium and 4–156 keV for 14C. These windows will yield slightly lower counting efficiencies. To determine a full range counting efficiencies, CPM assays with counting regions of 0–18.6 keV for Tritium and 0–156 keV for 14C must be utilized.

Note: This feature may be optional. See model/option table (Appendix H) for details.

Chi-Square
Chi-Square acceptable range: 7.63 to 36.19, performed as 20, 0.5 minute repeat counts, and tested at the 99% confidence limits. Chi-Square is a parameter measured as part of IPA.

Note: This feature may be optional. See model/option table (Appendix H) for details.
Detectors
Two diametrically opposed high performance Photomultiplier Tubes (PMTs) are coupled to a light-tight, reflective optical chamber. These detectors are located below the sample changer at the rear of the instrument.

Sample Changer
The sample changer automatically moves samples into position, and load them into the detector for counting. After the count is completed, the sample is automatically unloaded, and the next sample is loaded.

The sample changer typically moves cassettes in a forward (counterclockwise) direction using a pair of synchronously driven transport belts. If necessary, these belts can run in the reverse (clockwise) direction, such as during recovery from a power failure.

The instrument can hold up to (depending on the configuration):
- 408 large vials
- 720 small vials
- 720 4 mL vials

The Varisette™ option allows users to count large vial and small vial samples in dedicated cassettes. This feature may be optional; see the model/option table (Appendix H) for details.

External Standard
^{133}Ba, nominal less than 20μCi (for all Tri-Carb models except Quantulus GCT).

^{133}Ba, nominal less than 1μCi (for Tri-Carb Quantulus GCT models).

Sample Cassettes
Cassettes are plastic racks that hold sample vials, and allow them to be moved on the sample changer deck. Samples are placed into cassettes that accommodate standard or small vials without adapters (4 mL vials require cassettes with adapters). A standard vial cassette can accommodate up to 12, 15–20 mL vials, and the mini-vial cassettes up to 18, 6–7 mL mini-vials. A protocol flag attached to the cassette identifies protocol and assay conditions defined for use with samples. Individual cassettes are identified by unique numbers (cassette IDs) located at the end of each cassette. The protocol flag and cassette ID are automatically read by the instrument to provide Positive Sample Identification (PID) when using Worklists.
Protocol Flags

Protocol flags are numbered, plastic devices that contain an encoded, reflective metal that the instrument uses to identify appropriate assay counting parameters for a sample set. The counting parameters that the instrument uses correspond to the parameters defined during the assay definition process (predefined by PerkinElmer for the Direct DPM assay). These assay parameters become a functional part of a protocol once an assay is associated to a protocol number.

Prior to counting samples, attach the correct protocol flag (e.g. the protocol flag number associated to the assay) to the first cassette to be counted. Verify the cycle flag is in the reset position (Figure 1-3). When a protocol number is recognized, a cycle flag at left indicates the assay is being counted for the first time. If multiple cycles are defined for an assay, the cycle counting starts over. The system will push the cycle flag to the right after the cassette is counted. Subsequent protocol counting is considered to be the following cycles of the same samples. Reset the cycle flag each time new samples are placed in the cassette(s).
CHAPTER 1

Bar Code Reader

The 2D Bar Code Reader is an optional feature providing automated sample tracking for the Tri-Carb system. To use the reader, a 2D bar code is placed on a sample’s vial cap, and the label read before the sample is loaded. Refer to the following sections for more information about the Bar Code Reader option:

- Configure Barcode Reader on page 70
- Barcode Settings on page 131
- Sample Name on page 126 (part of the Worklist tab description)
- 2D Bar Code Reader Option on page 195

Note: Linear 1D bar codes are also supported, provided they can fit onto the top of a vial cap. Use the bar code reader’s software to configure the reader to accommodate linear 1D bar codes (see the software’s help for instructions). Disable all other bar codes not used for maximum speed and efficiency.

Shielding

The detector assembly is surrounded by two inches (minimum) of lead.
Sample Vials

Vials and caps must conform to the following sizes. Caps must not exceed the diameter of the vials.

<table>
<thead>
<tr>
<th>Vial Type</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Vials</td>
<td>58.4 mm</td>
<td>63.0 mm</td>
</tr>
<tr>
<td>Vial Height</td>
<td>26.0 mm</td>
<td>28.1 mm</td>
</tr>
<tr>
<td>Cap Diameter</td>
<td>22.0 mm</td>
<td>≤ vial diameter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vial Type</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Vials</td>
<td>53.0 mm</td>
<td>58.0 mm</td>
</tr>
<tr>
<td>Vial Height</td>
<td>14.5 mm</td>
<td>17.8 mm</td>
</tr>
<tr>
<td>Cap Diameter</td>
<td>13.0 mm</td>
<td>≤ vial diameter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vial Type</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mL Vials</td>
<td>53.0 mm</td>
<td>58.0 mm</td>
</tr>
<tr>
<td>Vial Height</td>
<td>12.7 mm</td>
<td>14.5 mm</td>
</tr>
<tr>
<td>Cap Diameter</td>
<td>12.0 mm</td>
<td>≤ vial diameter</td>
</tr>
</tbody>
</table>

Tri-Carb System Configurations

Refer to Appendix H for a table of various configurations for the Tri-Carb instrument based on model number.
Recommended Safety Procedures

To ensure personal safety and to maximize the life of the Tri-Carb instrument, do the following:

1. The AC power cord used to connect the Tri-Carb instrument to the AC mains must be rated for the appropriate input voltage (see page 4 for voltage information). Also use a grounded outlet. The system provides automatic recovery after a power failure.

 Once the power cord is properly connected, the instrument can be turned on and off using the power switch on the right side of the instrument (Figure 1-6, page 15). The power switch also powers the internal computer.

2. Power to the temperature control unit should not be supplied through a power strip. Connect the temperature control unit’s power cord only to a grounded wall outlet with the appropriate voltage (see page 4 for more information).

3. For proper ventilation, a distance of 15 cm (5.9 in) must be maintained from this unit to any other surface.

4. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

5. Do not attempt to make internal adjustments or replacements in the Tri-Carb instrument. Servicing should only be performed by trained PerkinElmer service personnel.

6. Verify that all connections to the Tri-Carb instrument are secure. See page 15 for more information.

7. Do not operate the Tri-Carb instrument or its components in water or any other liquid or fluid.

8. Do not allow flammable materials to contact the Tri-Carb instrument.

9. Keep the Tri-Carb instrument away from sources of radiation (e.g. X-ray equipment, radiation storage vaults, etc.).

10. Do not allow direct sunlight or unscreened fluorescent light to enter the sample changer. Direct sunlight affects optical sensors within the sample changer, and can cause erratic operation. Direct sunlight can also induce fluorescence within your samples, causing erratic results.

11. The Tri-Carb calibration sources contain 14C and/or Tritium standards, and the Tri-Carb instrument also contains a Barium-133 source for use as an external standard. If it is necessary to dispose of these items, do so according to Good Laboratory Practices (GLP).

If the Tri-Carb instrument appears damaged or unsafe, do not operate the instrument. The Tri-Carb may be unsafe if it exhibits any of the following
ABOUT THE TRI-CARB

conditions:

- Shows visible damage.
- Fails to perform the intended measurement.
- Has been subjected to prolonged use or storage in unfavorable conditions (refer to Environmental Requirements on page 4 for proper operating conditions).
- Has been subjected to severe transport stresses.

If the Tri-Carb appears damaged or in need of repair, contact your PerkinElmer service technician.

Customer Service

Company Name and Address:
PerkinElmer
710 Bridgeport Ave.
Shelton, CT 06484 USA
Telephone: (800) 762-4000
Internet: www.perkinelmer.com

Supplies, accessories, and replacement parts can be ordered directly from PerkinElmer. To place an order, request a free catalog, or to review current information on part numbers, product brochures, spare parts, and application notes, refer to the PerkinElmer website (www.perkinelmer.com).

Moving the Tri-Carb Instrument

If necessary to move the Tri-Carb instrument a short distance, do the following:

- Remove power to the Tri-Carb instrument.
- Disconnect any cables in the way when moving the instrument (see page 15 for the location of Tri-Carb connectors - left and right).
- Use a cart to transport the Tri-Carb instrument.
- Use at least two people to lift the instrument onto the cart.
- Use caution when transporting the Tri-Carb instrument on the cart.
- When finished moving the instrument, position the Tri-Carb for proper ventilation (ensure a distance of at least 15 cm (5.9 in) between the Tri-Carb and other surfaces).
CHAPTER 1

Decontamination

Decontamination is a necessary precaution when shipping a potentially contaminated system (or parts from that potentially contaminated system) to another site.

- For decontamination instructions, visit: http://www.perkinelmer.com/deconprocedure
- To obtain a copy of the decontamination certificate, visit http://www.perkinelmer.com/deconcertificate

If you have any questions about the decontamination process or certificate, contact your PerkinElmer service representative.

Preventative Maintenance

With the exception of inspection and cleaning, there are no preventative maintenance procedures that users should perform. For more information, refer to page 197 of Chapter 8.

Overview of System Hardware

The following sections contain information about the Tri-Carb instrument’s hardware:

- System Computer
- Front of Tri-Carb (page 13)
- Back of Tri-Carb (page 14)
- Right Side of the Tri-Carb (page 15)

System Computer

The instrument is controlled by an internal Windows-based computer. USB ports are located on the left side of the instrument. All RS-232 communication uses a USB to a RS-232 converter. The instrument can be attached to a network using the Ethernet port connection on the left side. Only IEC 60950 approved devices (monitors, printers, etc.) can be connected to the Tri-Carb instrument. The devices sold with a Tri-Carb instrument are IEC 60950 approved.
Front of Tri-Carb

Figure 1-4 shows the front of the Tri-Carb Liquid Scintillation Analyzer.

Figure 1-4. Front of Tri-Carb.

Note: The left side of the instrument has four USB ports, plus a network and DVI video connection.
Back of Tri-Carb

Figure 1-5 shows the back of the Tri-Carb system—both with and without the refrigeration unit (see model/option table - Appendix H).

Figure 1-5. Back of Tri-Carb.
Right Side of the Tri-Carb

Figure 1-6 shows the location (on the right-hand side of the Tri-Carb) of the power switch, power connector, and fuse holder.

![Figure 1-6. Right Side View of Tri-Carb.](image)

Note: Leave room on the right-hand side of the Tri-Carb to easily access the power switch.

Replacing a Fuse

The fuse holder is located on the right side of the Tri-Carb instrument (Figure 1-6). To replace a fuse, do the following:

1. Power the Tri-Carb instrument off, and disconnect the power cord from the Tri-Carb power connector.
2. Insert a small screwdriver (or similar tool) between the power connector and fuse holder (Figure 1-7). Then, carefully pull the fuse holder out of the instrument.

Figure 1-7. Removing the Fuse Holder.

3. Remove and replace the fuse (or both fuses) in the fuse holder. Always replace a fuse with a new one of the same type (see Electrical Requirements on page 4 for the fuse type).

4. Insert the fuse holder back into the Tri-Carb instrument.
This chapter presents an overview of common tasks performed with QuantaSmart™ software.

The following tasks are discussed:

- How to Get Started (page 18)
- How to Perform Self-Normalization and Calibration (SNC) (page 19)
- How to Create an Assay (page 22)
- How to Create a Password To Protect Assays (page 25)
- How to Associate an Assay to a Protocol (page 27)
- How to Count Samples (page 30)
- How to Disassociate an Assay from a Protocol (page 31)
- How to Edit an Assay (page 32)
- How to Print an Assay (page 33)
- How to Manually Print a Report (page 33)
- How to Link a Quench Set to a Sample Nuclide (page 34)
- How to Set Up a Quench Standards Assay (page 36)
- How to Run an Alpha/Beta Assay (page 39)
- How to Use the Replay Feature (page 40)
- How to Calculate Radioactive Decay (page 42)
CHAPTER 2

How to Get Started

When ready to begin a counting procedure, do the following tasks:

1. Normalize and calibrate the instrument. See Normalization, Calibration, and IPA on page 149.

3. For any DPM assay (except Direct DPM), create quench data. See page 85 for information on performing a DPM assay.

5. Associate (link) the assay parameters to a protocol. See How to Associate an Assay to a Protocol on page 27.

6. Attach the correct protocol flag to the first cassette to be counted, and load the cassette(s) with samples.

7. Click the green flag start button at the top of the main window to begin counting.
Performing Self-Normalization and Calibration (SNC)

1. Select IPA | IPA Definition from the menu bar.

2. In the IPA Definition window (Figure 2-1), enter the date and activity of your standards (see page 151).

3. Reset the SNC protocol flag to the reset position at far left when the plug is on the left end of the cassette (Figure 2-13, page 30).

4. Proceed to the following section (SNC Cassette Loading), and refer to the related procedures depending on instrument type (Quantulus GCT or Other Tri-Carb Models).
CHAPTER 2

SNC Cassette Loading

⚠️ **CAUTION:** Do not use unpurged, Low Level standards to calibrate the instrument, even if using Low Level, High Sensitivity, or Super Low Level count mode.

Quantulus GCT Instruments

1. Load the cassette with a purged, unquenched 14C standard.
2. Load the cassette with an empty vial in the **second** vial position. This vial must be of the same type and material used to count low level samples.
3. Load the cassette with a purged, unquenched Tritium standard (optional).
4. Load the cassette with a purged background standard (optional).
5. Load the instrument with cassettes.
6. Click the green flag start button at the top of the main window to begin counting.

![Quantulus GCT SNC Cassette Load (Sample)](image)

Figure 2-2 Quantulus GCT SNC Cassette Load (Sample).
All Other Tri-Carb Models

1. Load the cassette with a purged, unquenched 14C standard.
2. Load the cassette with a purged, unquenched Tritium standard (optional).
3. Load the cassette with a purged background standard (optional).
4. Load the instrument with cassettes.
5. Click the green flag start button at the top of the main window to begin counting.

Note: For faster SNC processing, the background vial (or background and Tritium vials) may be left out of the cassette. The report at the end of the SNC will indicate if vials are not present.
How to Create an Assay

1. Select **File | New Assay** from the menu bar.

2. In the **Select Assay Type** window (Figure 2-4), click on an assay type to select it, and then click **OK**. For more information on assay types, see page 83.

![Select Assay Type Window](image)

Figure 2-4. Select Assay Type Window.

3. When the **Assay Definition** window appears, define the individual assay parameters (as needed) on each of the window’s seven tabs, then click **Save As** and save the assay using a descriptive name.

4. In the **Protocols** tree of the main window (Figure 2-5), right-click on the protocol flag number to associate with the assay. From the submenu displayed, select **Associate Assay**.

Note: Associate an assay with a flag by selecting (by clicking on) a flag, and then selecting **File | Associate Assay** from the menu bar.
5. When the Associate Assay window appears (Figure 2-6), select the assay to associate with the protocol flag number.

6. Click the Open button.

7. When the Data Paths window appears (Figure 2-7), do the following:
 - Select a User for the assay from the drop-down menu.
 - Type an Additional Header, if necessary.
 - Type an Output Data Path, to save data in a directory other than the
default.

In the example in Figure 2-7, the default path is

C:\Packard\TriCarb\Results\Default\14c_dpm

![Data Paths Window](image)

Figure 2-7. Data Paths Window.

8. Attach (to the cassette) the appropriate protocol flag in the reset position (Figure 2-13, page 30).

9. Load the cassette(s) with vial samples.

10. Load the instrument with cassettes.

11. Click the green flag start button at the top of the main window to begin counting.
How to Create a Password To Protect Assays

1. Select File | New Assay from the menu bar. The Select Assay Type window is displayed (Figure 2-8).

2. From the assay list, click on the assay type to create, and then click OK.

![Select Assay Type Window](Figure 2-8. Select Assay Type Window.)

3. When the Assay Definition window appears (Figure 2-9), select the Lock Assay checkbox on the Assay Details tab. The Password field is now enabled.
4. In the **Password** field, type a descriptive password.

5. In the seven tabs of the *Assay Definition* window, define the individual assay parameters (as needed). Refer to page 96 for more information.

6. When the assay definition process is completed, click the **Save As** button to save the assay. The password must be used to edit the assay after it is saved.
How to Associate an Assay to a Protocol

1. In the Protocols tree of the main window, right-click on the protocol flag number to associate with an assay. From the menu displayed, select **Associate Assay**.

 Note: Associate an assay with a flag by selecting a flag, and then selecting **File | Associate Assay** from the menu bar.
2. When the *Associate Assay* window opens, select the assay to associate with the protocol flag number, and then click the **Open** button.

Figure 2-11. Protocols Tree (with Associate Assay Window).
3. When the Data Paths window appears (Figure 2-12), do the following:

 - Select a User for the assay from the drop-down menu.
 - Type an Additional Report Header, if necessary.
 - Type an Assay File Path, if generating an RTF or Delimited Text file for the assay, and to save data in a directory other than the default. Select the Use Default Output Data Path checkbox to save the data in the default directory.

![Data Paths Window](image_url)

Figure 2-12. Data Paths Window.
How to Count Samples

1. Attach the appropriate protocol flag to the cassette.
2. Reset the protocol flag by moving the plastic arm to the far-left (Figure 2-13).

![Figure 2-13. Cassette with Protocol Flag in Reset Position.](image)

3. Place all background, reference, and sample vials into their appropriate vial positions.
4. Place the cassette(s) in the sample changer deck so that the protocol number on the flag is facing front.
5. Position the cassette on the right side, along the far wall of the sample changer deck (or after the last set of cassettes on the sample changer deck if the machine is in use).
6. Click the green flag start button at the top of the main window to begin counting.
How to Disassociate an Assay from a Protocol

1. In the **Protocols** tree of the main window, select an assay to disassociate from a protocol number.

![Figure 2-14. Disassociate Assay Option.](image)

2. Right-click on the selected assay, and from the sub-menu displayed, select **Disassociate Assay**.

Note: Disassociate an assay from a flag by selecting the protocol flag, and then select **File | Disassociate Assay** from the menu bar.
How to Edit an Assay

1. Select **File | Open Assay** from the menu bar.

2. When the *Open Assay* window appears (Figure 2-15), select the assay to edit. Then click the **Open** button.

![Figure 2-15. Open Assay Window.](image)

3. When the *Assay Definition* window appears, edit the assay parameters (as needed) in each of the seven tabs. Refer to page 96 for more information about the *Assay Definition* window.

4. Save changes by doing one of the following:
 - To save an assay with the same name, click the **OK** button.
 - To save an assay with a different name, click the **Save As** button. The *Save As* window is displayed. In the window, type an assay name, and then click the **Save** button.
How to Print an Assay

1. Select File | Print Assays from the menu bar.

2. When the Select Assays to Print window appears (Figure 2-16), select the assay to print, and then click the Open button.

![Select Assays to Print Window](Image)

Figure 2-16. Select Assays to Print Window.

3. When the Print window appears, select the appropriate print parameters, and then click the OK button. A list of Assay Details, Count Conditions, Count Corrections, and Reports defined for the assay will print.

How to Manually Print a Report

1. In the Protocols tree of the main window, select the report icon () to print. The Output window is displayed.

2. In the Output window, select the print icon (). The report will print once the icon is selected.
How to Link a Quench Set to a Sample Nuclide

Note: For information on setting up a Quench Standards Assay, refer to page 36.

1. Select Libraries | Sample Nuclides from the menu bar.

2. When the Sample Nuclides window appears (Figure 2-17), locate the sample nuclide in the list, and then click a Quench Set button for the nuclide.

 - Select the Quench Set: Low button if counting one nuclide in one counting region.
 - Select the Quench Set: Mid button if counting a second radionuclide in a separate region.
 - Select the Quench Set: High button if counting a third radionuclide in a third region.

Figure 2-17. Sample Nuclides Window.
3. After clicking the Quench Set button, the Quench Standards window will appear (Figure 2-18). In the window, select the quench set name to link to the sample nuclide, and then click OK.

The selected quench set name appears in the Sample Nuclides Library window (Figure 2-17, page 34) on the Quench Set button. Repeat steps 1 through 3 to link another quench set to the sample nuclide.

![Figure 2-18. Quench Standards Window.](image)
How to Set Up a Quench Standards Assay

The following tasks are required when performing a Quench Standards assay:

Note: For 4810TR models, setting up a Quench Standards assay requires the single/dual color-corrected DPM option.

1. Normalize and calibrate the instrument, if needed. See Chapter 6 for more information.
2. Do one of the following:
 - Create a new assay, selecting Quench Standards as the assay type (page 93). Then define the new assay parameters.
 - OR
 - Open an existing Quench Standards assay and edit or review the assay, if necessary.
3. When finished creating/editing the assay definition, save the assay in the Assays folder of the C:\Packard\TriCarb directory.
4. Associate (link) the assay parameters with a protocol number in the Protocols tree, and attach the corresponding protocol flag to the first cassette to be counted.
5. Load the cassette(s) with vial samples, and then load the instrument with cassettes.
6. Click the green flag start button at the top of the main window to begin counting.

Note: When using the Low Level count mode (if available), do not use quench standards purged free of oxygen with an inert gas. Oxygen quenching in unpurged standards facilitates discrimination between background and true beta events. Unpurged standards are available from PerkinElmer.
How to Run an Alpha/Beta Standards Assay

Note: This feature may be optional. See the model/option table (Appendix H) for details.

The following tasks are required to run a Alpha/Beta Standards Assay. Two standards are required: a pure Beta emitter and a pure Alpha emitter.

1. Select **Libraries | Alpha/Beta Standards** from the menu bar.

2. In the **Alpha Beta Standards** window, click the **Add** button and enter a name for the new Alpha/Beta Standard Set.

3. From the **Discriminator Type** drop-down field, select **Automatic** if the pure Alpha and pure Beta standards have an activity of at least 50,000 CPM each. If less than 50,000 CPM, select **Manual** from the **Discriminator Type** field.

Note: In the Manual acquisition mode, enter a discriminator start and stop value within a 0-255 value range, and an increment value for the discriminator.

Note: The remaining fields in the **Alpha Beta Standards** window are for information only. These fields contain default values or values computed by the instrument.

4. Do one of the following:
 - Create a new assay, choosing **Alpha/Beta Standards** as the assay type (page 92). On the **Count Conditions** tab (Assay Definition window), click the **Name** button to select the desired Alpha/Beta radionuclide name from the Alpha/Beta Standards Library (page 144). Define other available parameters as desired. See page 96 for more information on defining assays.
 - OR
 - Open an existing Alpha/Beta Standards assay, and edit or review the assay (if necessary).

Note: High Sensitivity or Low Level Count modes are not available when counting Alpha/Beta Standards, but these modes are available when counting samples in an Alpha/Beta assay

5. When finished creating/editing the assay definition, save the assay in the Assays folder of the C:\Packard\TriCarb directory.
6. Associate (link) the assay parameters with a protocol number in the Protocols tree, and attach the corresponding protocol flag on a cassette.

7. Place the pure Beta emitter standard in the first vial position, and the pure Alpha emitter standard in the second vial position.

8. Load the cassette into the instrument.

9. Click the green flag start button at the top of the main window.

10. After counting is complete, the misclassification (or spillover) curve and the optimum discriminator value is stored for the Standard Set. Review the curve and discriminator setting, if desired, from the Alpha/Beta Standards Library (page 144).
How to Run an Alpha/Beta Assay

Note: This feature may be optional. See the model/option table (Appendix H) for details.

The following tasks are required when performing an Alpha/Beta Assay.

1. Normalize and calibrate the instrument, if needed. See Chapter 6 for more information.

2. Define and run an Alpha/Beta Standards assay (page 92), if necessary, to establish the optimal discriminator value.

3. Define an alpha/beta nuclide in the Alpha/Beta Nuclides Library (page 141). Choose the Standard Set from the Alpha/Beta Standards Library (page 144) to use the discriminator setting from the Standard Set.

4. Do one of the following:
 - Create a new assay, choosing Alpha/Beta as the assay type (page 89). On the Count Conditions tab of the Assay Definition window, click the Name button to select the desired Alpha/Beta radionuclide name from the Alpha/Beta Nuclides Library. Define other available parameters as desired.
 - OR
 - Open an existing Alpha/Beta assay and edit or review the assay (if needed).

5. When finished creating/editing the assay definition, save the assay in the Assays folder of the C:\Packard\TriCarb directory.

6. Associate (link) the assay parameters with a protocol number in the Protocols tree, and then attach the corresponding protocol flag to the first cassette to be counted.

7. Load the cassette(s) with vial samples, and then load the instrument with cassettes.

8. Click the green flag start button at the top of the main window to begin counting.
How to Use the Replay Feature

Note: This feature may be optional. See the model/option table (Appendix H) for details.

1. In the main window, click on the **Replay** tab. The **Replay** tree is displayed in the tab.

2. In the **Replay** tree, select the results file to be analyzed. A listing of results files displays in the **Replay** tree using file names with the following syntax:

 User id \ assay_name \ yyyymmdd_militarytime

Tip: To verify that you have the latest view of the Replay files, select **View** | **Refresh** from the menu bar.

3. Right-click on the selected file name, and select **Open for Replay**.

4. When the **Replay** window appears (Figure 2-19, page 41), do the following:
 - In the **Replay Conditions** tab, define the parameters (as needed) for reanalysis of sample data.
 - In the **Report Definition** tab, define any printed or electronic reports to generate for reanalysis of sample data.
 - Click the **Replay** button. Any defined reports are generated after data reanalysis occurs.

Note: Data processed with the Replay feature does not change the original data. All Replay changes are temporary.
Figure 2-19. Replay Conditions Tab (Replay Window).
How to Calculate Radioactive Decay

1. Select **Tools | Nuclide Decay** from the menu bar. The *Radionuclide Decay* window appears (Figure 2-20).

![Figure 2-20. Nuclide Decay Window.](image)

2. From the **Nuclide** drop-down list, select a nuclide of interest. If the desired nuclide does not appear in the list, select **Manual** to manually enter nuclide half-life information in the **Half-Life** and **Half-Life Units** fields.

3. Type the appropriate information in the **Reference DPM Activity**, **Reference Date**, and **Reference Time** fields.

4. When finished, click the **Start Decay** button. The current DPM nuclide appears in the **Current DPM Activity** field.
Chapter 3

System Software

The QuantaSmart program is the Windows interface for the Tri-Carb Liquid Scintillation Analyzer series of instruments. This tool allows users to access all instrument features via a main software window using standard Windows conventions, and grants easy access to all system capabilities. QuantaSmart also provides graphic representations of existing assay associations in the Protocols tree and data analyses in the Output Report and SpectraView™ windows. Collected assay data may be reanalyzed without sample recounts via the system’s optional Replay feature.

The system utilizes a set of Libraries to store standard and sample information. For systems equipped with the single/dual label DPM feature, the Sample Nuclides Library allows the flexibility of selecting and using the same standards sets in various assays, plus creates a convenient way of saving and reusing specific nuclide parameters and sample counting regions.

Software Security

Security is built into the QuantaSmart software; the same software cannot be loaded on multiple systems due to this feature.
CHAPTER 3

Main Window

The main software window (Figure 3-1) is made up of functional elements that allow users to access all instrument features.

Figure 3-1. Main Window.

The following information discusses the elements of the main window:

- SpectraView Window (page 45)
- Instrument Status Bar (page 47)
- Protocols Tree (page 48)
- Replay Tree (page 50)
- Output Window (page 51)
- Menu Bar (page 52)
SpectraView Window

The SpectraView window (Figure 3-2) is part of the main window. The SpectraView window displays a two-dimensional, real-time view of the spectrum for a current sample. The spectrum is updated every six seconds, and can be displayed using linear or logarithmic axes. It provides information about a sample count status, and region settings used in the counting procedure. Several display options are available for the spectrum, and other defined elements in this window.

The X-axis of the spectral display represents energy (in keV) for each counting channel up to the defined endpoint of the sample spectrum. The Y-axis represents the gross counts for the current sample. Regions settings are graphically displayed using solid line boxes.

Figure 3-2. SpectraView Window.

The SpectraView window is typically used for:

- Monitoring sample counting
- Detecting spectral distortions or compressions resulting from sample quench
- Observing the effect of altering counting region settings
- Viewing the spectrum in a linear or logarithmic scale
CHAPTER 3

The following information describes the fields in the SpectraView window:

- **Sample Number** – This field indicates the Sample Number of the sample currently being counted.
- **Count Time** – This field indicates the time which each sample is counted, as defined in the assay.
- **Pre-count Delay** – This field indicates the time which each sample will remain in the instrument’s detection chamber prior to counting.

Note: This process is dark adaption. It allows luminescence emanating from a vial to dissipate prior to counting. Luminescence can distort the count statistics of the sample and is particularly problematic with low count rate samples.

- **Acquisition Time** – This is the length of time which the current sample has been counting.
- **Apply AEC** – If tSIE/AEC is selected as the quench indicating parameter for the assay, the sample spectrum can be displayed with or without Automatic Efficiency Correction (AEC). Activating this feature will adjust the region settings to account for sample quench. Select this checkbox to display the sample spectrum using AEC.
- **keV Full Scale** – This field alters the scale used to display the X-axis of a sample spectrum. Enter a number in this field to manually define an endpoint for the X-axis. By using the Auto setting, the X-axis will automatically adjust between zero and the upper level region limit defined in this window.
- **Counts Full Scale** – This field alters the scale used to display the Y-axis of the sample spectrum. Enter a number to manually define a count maximum for the Y-axis. By using the Auto setting, the Y-axis will automatically adjust to the sample count rate.
- **Log keV Scale** – Displays the X-axis using a logarithmic keV scale. The default setting plots the X-axis using a linear scale.
- **Log keV/Log Counts Scale** – Displays keV and counts using a logarithmic scale. This setting is for visual representation only.
- **Linear keV Scale** – Displays the X-axis using a linear scale. This is the default setting for the X-axis scale.
- **Regions** – These represent the Upper Level and Lower Level counting region limits for regions A, B, and C.
- **CPM** – These fields display Counts Per Minute (CPM) for Regions A, B, and C. The gross counts per channel cumulatively equal the counts per region; gross counts per region are divided by count time to calculate CPM per region.
- **2S%** – This represents gross uncertainty in a count value (with 95% confidence limits).
Instrument Status Bar

This (Figure 3-3) contains a series of GUI buttons to start and stop the instrument, and end a current protocol. The status bar also provides information regarding current protocol status, and displays instrument messages.

The status bar is located at the top of the main window.

![Figure 3-3. Instrument Status Bar.](image)

Start/Resume Counting Button

Click this button to begin a counting protocol.

![Figure 3-4. Start/Resume Counting Button.](image)

Pause/Stop Counting Button

Click this button to end the current protocol and stop the instrument.

![Figure 3-5. Pause/Stop Counting Button.](image)

End Protocol Button

Click this button to end a counting protocol and continue counting the next protocol.

![Figure 3-6. End Protocol Button.](image)
CHAPTER 3

Protocols Tree

The Protocols tree, displayed in the Protocols tab (Figure 3-7), displays 15 - 60 available protocol flag numbers (depending on the Tri-Carb model and configuration) and assay names associated with the flag numbers. Existing reports are also shown in this view.

During protocol execution, this window uses various symbols to provide a visual indication of which protocol is being executed, which have remaining cycles, and which are completed.

Figure 3-7. Protocols Tree.
Protocol Tree Symbols

When a sample counting cycle begins, the protocol flag associated with this assay will change from white or yellow to green.

These protocol flags are listed below:

The Priostat flag is the only flag in the Protocols tree that is normally red. It will turn from red to green when Priostat protocol begins.

A yellow flag in the Protocols tree indicates that at least one count cycle for this assay has been completed, but that the protocol has remaining count cycles. This yellow flag will also appear if the protocol for a Priostat operation is interrupted.

A checkered flag is displayed when all count cycles for the assay are completed.

A red prohibitory symbol indicates that a protocol cannot be counted. Typically, this will result when no assay is associated with a protocol flag number that the instrument has detected. This symbol could also indicate that an assay file has been deleted.

A yellow prohibitory symbol indicates that data analysis cannot be performed. Typically, this results when an appropriate standard set is missing from the Nuclides Library, or has been modified in the Library, but not recounted after changes were made.

The page symbol indicates that a report has been defined for this assay. The report name appears beside this symbol in the Protocols tree.

A white flag indicates an inactive protocol. If no assay name appears adjacent to this flag, it is available to be associated to an assay.
Replay Tree

The **Replay** tree, displayed in the **Replay** tab (Figure 3-8), displays a directory of folders containing previously collected data reanalyzed using different data reduction conditions without recounting samples.

Note: This feature may be optional. See the model/option table (Appendix H) for details.

![Figure 3-8. Replay Tree.]

The Replay files have a fixed data storage path, but data can be exported to user-defined paths.
Output Window

This window (Figure 3-9) is a multi-purpose window displaying various data items and assay parameters, and is a copy of the printer report (if selected). The output is defined in the **Report Definition** (page 106) and the **Report Output** tabs (page 115) of the **Assay Definition** window.

Figure 3-9 shows a typical *Output* window display.

![Output Window (Report Output Tab)](image)

Figure 3-9. Output Window (Report Output Tab).
CHAPTER 3

Menu Bar

Located at the top of the QuantaSmart main window (Figure 3-10), the menu bar includes the File, Run, View, Libraries, Tools, IPA, Diagnostics, Window, and Help menus, each offering various selections and commands.

Note: Some menu items include optional features. If your instrument is not equipped with these options, the corresponding menu items will be disabled.

Figure 3-10. Menu Bar.

File Menu

To display the File menu (Figure 3-11), select File from the menu bar.

Figure 3-11. File Menu.
New Assay
This menu item allows users to define a new assay. Select **New Assay** to open the **Select Assay Type** window (Figure 3-12). Refer to page 83 for information on assay types.

![Select Assay Type](image)

Figure 3-12. Select Assay Type.

Select an assay type and click **OK** to open the **Assay Definition** window (page 96) to define parameters for a new assay.

Open Assay
Select to open the **Open Assay** window. From this window, select and open an existing assay.

Associate Assay
Before selecting this function, select a protocol flag from the **Protocols** tree. Once done, select **File | Associate Assay** to open the **Associate Assay** window to select an assay to associate (link) with the protocol flag number.

Alternatively, associate an assay by right-clicking on a protocol flag number and selecting **Associate Assay** from the menu displayed.
Disassociate Assay
Before selecting this function, select a protocol flag from the Protocols tree. Once done, disassociate the assay linked to the protocol flag number by selecting File | Disassociate Assay. The assay name will disappear from the Protocols tree.

Alternatively, users may disassociate an assay by right-clicking on a protocol flag number, and selecting Disassociate Assay from the menu displayed.

Data Paths
Select this function to open the Data Paths window (Figure 3-13). From this window, specify a location for storing data files generated by an assay. Users may also select this location based on additional applications used to process data, or comply with data storage strategy in a facility. Users may also save data to the default directory by selecting the Use Default Output Data Path checkbox.

![Data Paths Window](image)

Figure 3-13. Data Paths Window.

Note: This information is stored on a per protocol basis, as indicated in the title bar of the Data Paths window (Figure 3-13).
Print Setup
Select this function to open the *Print Setup* window. From this window, users can define print parameters.

Print Assays
Select this function to open the *Select Assays to Print* window. From this window, select an assay, and then print a list of parameters defined for that assay.

Exit
Select to close the QuantaSmart program.

Run Menu
To display this menu (Figure 3-14), select **Run** from the menu bar.

Figure 3-14. Run Menu with Priostat Sub-menu.
Start/Resume Counting
Select this function to have the instrument load a sample currently at the detector position, and then begin counting. This command is also available when clicking the green flag icon button (Figure 3-4) on the Instrument Status Bar.

Next Sample
Select this function to have the instrument unload any sample in the detector, move the next sample into the detector, and start counting.

Next Protocol
Select this function to have the instrument unload any sample in the detector, and abort the current protocol. The instrument searches for the next cassette with an active protocol flag, and then begins running that protocol.

Pause/Stop Counting
Select this function to end the current protocol, and stop the instrument. This command is also available when clicking the red flag icon button (Figure 3-5) on the Instrument Status Bar.

End Protocol
Select this function to have the instrument unload any sample in the detector and end the protocol; data reduction continues until data from the last counted sample is reported. The system then begins counting the next protocol. This command is also available when clicking the checkered flag icon button (Figure 3-6) on the Instrument Status Bar.

Forward
Select this function to have the instrument unload any sample in the detector, and move the sample changer in a *counterclockwise* direction.

Reverse
Select this function to have the instrument unload any sample in the detector, and move the sample changer in a *clockwise* direction.

Group Priostat
This menu item allows users to count a set of high priority samples immediately, while temporarily interrupting a current protocol. Refer to page 164 for more information.

End Group Priostat
This menu item stops counting of the Priostat (priority) samples, and resumes counting interrupted samples.
Sample Priostat

Note: This feature may be optional. See the model/option table (Appendix H) for details.

Sample Priostat (page 165) is a special interrupt mode that allows users to:

- preview sample count rates
- determine optimal counting conditions for variable and constant quench samples
- identify an unknown nuclide in a sample
- determine the duration of luminescence

The Sample Priostat menu item has the following options:

Decay
This allows users to assess the duration of luminescence (light) in a radioactive sample via a decay histogram.

SPC Decay
This allows users to assess the duration of luminescence in a non-radioactive, luminescent sample via a decay histogram.

Identify Nuclide
This allows users to identify an unknown nuclide in a sample using the Quench Indicating Parameters SIS and tSIE.

Optimize Regions
This allows users to optimize sample counting regions to provide the highest figure of merit for Normal count mode.

Reverse Region
This allows users to re-optimize sample counting region settings for a sample, and determine equivalent unquenched region settings for variable quench samples.

Low Level Optimize
This allows users to optimize sample counting regions to provide the highest figure of merit for Low Level count mode.

Alpha/Beta Preview
This allows users to view a sample spectrum in the Alpha/Beta mode, and approximate activity for a sample containing both an Alpha and a Beta emitting nuclide.
CHAPTER 3

Normal Preview
The allows users to view the sample spectrum, and approximate activity for a sample using Normal count mode.

Low Level Preview
This allows users to view the sample spectrum, and approximate activity for a sample using Low Level count mode.

View Menu
To display the View menu (Figure 3-15), select View from the menu bar.

Figure 3-15. View Menu.

The View menu includes the following options:

Instrument Status Bar
Select to view or hide the Instrument Status Bar and its buttons (Figure 3-3). The Instrument Status Bar is located beneath the menu bar in the main window.

Status Bar
Select to view or hide the Status Bar located at the bottom of the main window.

Refresh Trees
Select to update the Protocols and Replay trees in the main window. The Replay tree is automatically updated when a new assay is counted. The Refresh Trees command is only necessary to clear report entries from tree displays.
Security Menu

The Security menu (Figure 3-16) is only present when the Enhanced Security option is installed. Please read the PDF “Tri-Carb Enhanced Security Option” for details about how to use Enhanced Security features.

![Security Menu](image)

Figure 3-16. Security Menu.

The Security menu includes the following options:

Logon
Select to access the Security option.

View Audit Logs
Select to view security audit logs compiled by the system.
Libraries Menu

To display this menu (Figure 3-17), select Libraries from the menu bar.

![Figure 3-17. Libraries Menu.](image)

Radionuclide information is stored and accessed in the Nuclide Library. The Nuclide Library consists of the Sample Nuclides and Quench Standards Libraries. If your instrument is equipped with an Alpha/Beta option, the Alpha/Beta Nuclides Library and Alpha/Beta Standards Library will also be included.

The Sample Nuclides Library allows users to specify and save nuclide names, counting region limits, and quench sets for sample nuclides. Up to three nuclides can be defined for each entry to support counting of multiple nuclides. These sample nuclide parameters are typically specified as part of the assay definition process, and may be edited (as needed).

The Quench Standards Library is comprised of quench sets, with each quench set containing individual quench standards. Quench standard data is used to construct quench curves for calculating DPM in DPM assays. Quench Standards are counted once, and the entire spectrum for each quench standard stored independent of assay information. This enables users to select and use the same quench set in various assays, and construct a quench curve for each sample when counted.

The Alpha/Beta Standards and Alpha/Beta Nuclides Libraries (may be optional) are used in the same manner as Quench Standards and Sample Nuclides Libraries. Information stored in these libraries is relevant only when performing Alpha/Beta assays, where both an Alpha-emitting and a Beta-emitting radionuclides are quantified independently in the same sample vial.
Sample Nuclides Groups

Select to display the Sample Nuclides Groups window (Figure 3-18) to enter information into (and retrieve information from) the Sample Nuclides Library. This Library is a repository of information on sample nuclides.

Figure 3-18. Sample Nuclides Groups Window (Sample).

For assays, use the Sample Nuclides Library to define and save nuclide names, and counting region limits for radionuclides. Users can also select a quench set for each sample nuclide with the Quench Set buttons in this window (Figure 3-18).

In Replay (page 181), use the Sample Nuclides Library to select a radionuclide for the purpose of reanalyzing sample data.

Note: Fields enabled in the Sample Nuclides Library will differ when accessed from various locations in QuantaSmart. The list of nuclides displayed are dependent on assay type, nuclide, and quench sets associated with the nuclide. See the Libraries chapter for information on adding a sample nuclide name.
Quench Standards

Display the Quench Standards window (Figure 3-19) to define a new quench set to be stored, or select a quench standards set for DPM assays or data reanalysis in Replay. Quench sets data is used to construct quench curves for determining sample DPM.

Note: The Name, Max keV, and DPM fields are the only entries required when entering a new quench set. Remaining parameters stored in the library are retrieved from assay parameters selected when defining an assay. The number of standards (up to 20) is determined automatically during counting.

For additional information, refer to the Libraries chapter (Chapter 5).

Figure 3-19. Quench Standards Window (Sample).
Alpha/Beta Nuclides

Note: This feature may be optional. Refer to the model/option table (Appendix H) for details.

Display the Alpha Beta Nuclides window (Figure 3-20) to add information to or delete information from the Alpha/Beta Nuclides Library. This Library is a repository of information for previously defined Alpha and Beta emitting nuclides counted in Alpha/Beta assays.

For additional information, refer to the Libraries chapter (Chapter 5).

![Alpha Beta Nuclides Window (Sample)](image-url)
Alpha/Beta Standards
Display the *Alpha Beta Standards* window (Figure 3-21) to add information to or delete information from the Alpha/Beta Standards Library. This Library is a repository of information for previously defined standards used in Alpha/Beta assays.

For additional information, refer to the *Libraries* chapter (Chapter 5).

Figure 3-21. Alpha Beta Standards Window (Sample).
Tools Menu

To display this menu (Figure 3-22), select **Tools** from the menu bar.

Figure 3-22. Tools Menu.
Radionuclide Decay
Select to open the Radionuclide Decay window (Figure 3-23) to calculate DPM for radionuclides.

![Radionuclide Decay Window]

The following information describes fields and buttons in the Radionuclide Decay window (Figure 3-23):

- **Radionuclide** – From this drop-down field, select a radionuclide for calculating decay. If a radionuclide is selected from this list, the half-life and half-life units are entered automatically in the corresponding fields. If Manual is selected from the Radionuclide field, enter the half-life and half-life units for the radionuclide.

- **Half-Life** – If a radionuclide is selected from the Radionuclide field, the half-life of that radionuclide is displayed in Half-Life field. If Manual was selected from the Radionuclide field, enter the half-life of the radionuclide.

- **Half-Life Units** – If a radionuclide was selected from the Radionuclide field, the half-life units of that radionuclide is displayed in this field. If Manual was selected from the Radionuclide field, enter the half-life units of the radionuclide.

- **Reference DPM Activity** – Enter the Reference DPM Activity for the radionuclide. This is the DPM of the radionuclide for the Reference Date.
- **Reference Date** – Enter the Reference Date of the radionuclide. This is the date on which the radionuclide has the specified amount of activity.

- **Reference Time** – Enter the Reference Time for the radionuclide. This is the time at which the radionuclide has the specified amount of activity.

 Note: Typically, this parameter is defined only for radionuclides with very short half-lives.

- **Current DPM Activity** – This field displays the current DPM activity of a radionuclide after the decay calculation has been performed. This value is displayed after all parameters are specified in the current window, and the **Start Decay** button has been clicked.

- **Start Decay** – Click this button after specifying all parameters in the current window. After clicking the **Start Decay** button, the decay calculation is performed, and current DPM activity is displayed in the **Current DPM Activity** field.

- **Copy Activity** – Click this button to copy the Reference DPM Activity, then paste the activity into the **DPM** field of the *Quench Standards* window.

Options

Select to open the *Options* window (Figure 3-24). From this window, select a format for the Spectrum Files created in High Sensitivity and Low Level Count Modes, and activate the feature that allows negative CPM and DPM reporting.

![Options Menu](image)

Figure 3-24. Options Menu.

Show Protocol Errors

Select to display certain error messages associated with an assay.
Spectral Mapping

Select to view a three-dimensional spectral map for a sample and quench standards (Figure 3-25). This option is used for single-label DPM samples.

Note: Select a protocol flag before applying this command.

Figure 3-25. Spectral Mapping.
Spectrum Unfolding
Select to view a three-dimensional display of separated, individual spectra for each nuclide in a Dual-label or Full Spectrum (FS) DPM sample counting procedure (Figure 3-26).

Figure 3-26. Spectrum Unfolding.

Spectraview Report Size
Select from this option to choose the size of the spectrum graph in the report output file. This size selection is a global change, affecting all report output files; the size of spectrum graph on screen (in the SpectraView window) is unaffected.
CHAPTER 3

Configure Barcode Reader

Note: This feature may be optional. Refer to the model/option table (Appendix H) for details.

Select this function to open the Bar Code Scanner Configuration window (Figure 3-27).

![Figure 3-27. Bar Code Scanner Configuration Window.]

The following information describes fields and buttons in the Bar Code Scanner Configuration window:

- **Enable Barcode Reader** checkbox – Select to enable the bar code reader for all assays. When selected, the Barcode Settings area (page 131) of the Assay Details tab is available (not grayed out). Only select this checkbox if Bar Code Reader option is installed.

- **Port** field – Select the serial port that the bar code reader is using.

 If unsure which COM port the reader is using, locate the COM port number in Windows Device Manager. In the Device Manager window, locate the COM number for ATEN USB to Serial Cable (expand the Ports category).

- **Stop Bits, Parity, Baud, Data Bits** fields – The default selections in these fields match the settings in the bar code reader configuration file, and need not be modified.
- **Retries** field – Specify the maximum number of times the system should re-read a bar code label if the reader fails to read a label successfully. Once a bar code label is read successfully, the next sample is read.

- **Maximum Read Time (sec.)** field – Specify a maximum time (in seconds) the system must pause to read a bar code. Once the reader successfully reads a label, the next sample is read. The reader does not wait until the full time expires. For example, if the reader reads a label in 0.10 seconds, the next sample is immediately scanned; the reader will not wait the full one second before scanning the next sample.

- **On Error** field – Here, determine the system’s response to missing or unreadable bar codes.
 - Select **Ignore** to have the system continue processing the current assay, and bypass logging the error.
 - Select **Abort** to have the system stop processing the current assay when a bar code error occurs. The system then continues to the next assay.
 - Select **Log Error and Continue** to record the error condition in the report, and proceed with the assay.

- **Set Defaults** button – Click to populate fields with the recommended default settings.

- **OK** button – Click to save bar code configuration settings, and then close the window.

- **Cancel** button – Click to close without saving changes.

IPA Menu

To display this menu (Figure 3-28), select **IPA** from the menu bar.

![IPA Menu](image)

Figure 3-28. IPA Menu.
IPA Definition
Select to open the *IPA Definition* window (Figure 3-29). From this window, define parameters used to assess instrument performance. For more information, see page 151.

![IPA Definition Window](image)

Figure 3-29. IPA Definition Window.
IPA Charts & Tables

Select this function to view, edit, and print all instrument performance assessment parameters in chart or tabular form. For more information, see page 155.

Note: This feature may be optional. Refer to the model/option table (Appendix H) for details.

![IPA Charts & Tables](image)

Figure 3-30. IPA Charts & Tables.
Diagnostics Menu

To display this menu (Figure 3-31), select **Diagnostics** from the menu bar.

Figure 3-31. Diagnostics Window.

TSE Diagnostics

This command in the **Diagnostics** menu is used by a PerkinElmer Service Engineer to view the system’s diagnostic screens and assess the system’s functional status. Unless logged in as a Technical Service Engineer (TSE), a password is required to access TSE Diagnostics.
Barcode Reader Diagnostics
Select to display this window (Figure 3-32), and verify that the bar code reader is working properly. For example, testing that the correct COM port is selected in the Bar Code Scanner Configuration window (page 70).

Follow the instructions listed on the right-hand side of the Barcode Diagnostics window (Figure 3-32).

Figure 3-32. Barcode Diagnostics Window.
Window Menu

To display this menu (Figure 3-33), select **Window** from the menu bar. The **Window** menu allows users to define a window display format, and restore the **SpectraView** window.

![Figure 3-33. Window Menu.](image)

Cascade

Select to display the open windows in the format shown in Figure 3-34.

![Figure 3-34. Cascaded Windows.](image)
Tile
Select to display the open windows in the format shown in Figure 3-35.

Figure 3-35. Tiled Windows.

SpectraView
If the SpectraView window is minimized on the main screen, select Window | SpectraView to restore and view the SpectraView window (Figure 3-2, page 45). The SpectraView window displays a two-dimensional, real-time view of the spectrum for the current sample.

Help Menu
To display this menu (Figure 3-36), select Help from the menu bar.

Figure 3-36. Help Menu.

Help Topics
Select to launch the On-Line Help documentation.
About QuantaSmart
Select to display a window that displays the following information:

- QuantaSmart software version and build number.
- QSIC software version.
- Firmware version.
- FPGA (firmware) version.

Also included in the window are the instrument’s serial number, and a list of installed options.

Spectral Displays
The QuantaSmart software provides resources for viewing graphic representations of spectra.

These resources include: Spectral Mapping, Spectrum Unfolding (page 80), and the SpectraView window (page 81).
Spectral Mapping

During a single-label DPM sample count, the Spectral Mapping window (Figure 3-37) displays sample and quench standard spectra in a three-dimensional view:

- X-axis - Represents energy in keV.
- Y-axis - Represents counts.
- Z-axis - Represents quench indicating parameter (tSIE).

Use the spectral map for the following:

- Comparing a sample spectrum to the quench standard spectrum.
- Checking for spectral anomalies.

To display a spectral map, select Tools | Spectral Mapping from the menu bar.

![Spectral Mapping Window](image)

Figure 3-37. Spectral Mapping Window.
A sample with a quench level exceeding quench standard limits will have its map position determined by extrapolation. The lower limit of extrapolation is the t_{SIE} plus 10% of the least quenched standard; the upper limit of extrapolation is the t_{SIE} minus 10% of the most quenched standard.

Spectrum Unfolding

During a Dual-label DPM or Full Spectrum DPM sample count, the *Spectrum Unfolding* window (Figure 3-38) can display, three dimensionally, the composite nuclide spectrum as individual, separate spectra for each nuclide.

The X-axis of the spectral displays represent energy (in keV) for each counting channel up to the defined endpoint of the sample spectrum. The Y-axis represents gross counts for a current sample.

Spectrum Unfolding is often useful for:

- Visualizing the relationship of individual nuclide spectra.
- Approximating the ratio of lower energy nuclide to higher energy nuclide.

To display the unfolded spectra, select **Tools | Spectrum Unfolding** from the menu bar.

![Figure 3-38. Spectrum Unfolding Window.](image-url)
SpectraView Window

The SpectraView window (Figure 3-2, page 45) is part of the main QuantaSmart window. Refer to page 45 for a description of the window and its features.

Reports

Several reports may be generated using the QuantaSmart system: printed or electronic. On the Report Definition tab (page 106) of the Assay Definition window, first define the content and report name(s). After creating one or more named reports, go to the Report Output tab (page 115) to select how each is to be generated.

Printed Reports

To obtain a printed report using the QuantaSmart system, on the Report Definition tab (page 106) of the Assay Definition window, define a named report with the desired information. Then, on the Report Output tab (page 115), select the named report, and the Output to Printer checkbox. If this checkbox is selected, the printed report(s) defined for an assay will automatically print after the assay is completed.

To print additional reports, select a report to print from the Protocols tree in the main QuantaSmart window. Then click the Print button to print the report when the Output window is displayed.

To print a list of parameters selected for an assay, select File | Print Assays from the menu bar. The Select Assays to Print window is displayed. In the window, select an assay to print and click OK.
CHAPTER 3

Electronic Reports

Various electronic reports can be generated using the QuantaSmart system. On the Report Definition tab (page 106) of the Assay Definition window, first define a named report with your desired information. Then, on the Report Output tab (page 115), select the named report, and indicate the type of electronic report to generate.

The electronic output formats include:

- Rich Text Format (RTF)
- Delimited Text (ASCII)
- RS-232 (cabled transmission, not a file format)

Other, predefined data sets can also be selected for output using the Special Files tab (page 120) of the Assay Definition window. These other sets of data include:

- Composite Spectra File
- Individual Spectrum Files
- IPA Data
- Protocol Data (PROT.DAT)
- Protocol Data (2000CA.DAT)

All data files are stored to the location defined for each protocol. When an assay is associated with a protocol flag for the first time, users are prompted for data path information. The Data Paths window (Figure 3-13, page 54) enables users to identify information specific to this protocol (not the assay) for data storage. Information for existing protocol associations may also be viewed or modified by selecting Files | Data Paths from the menu bar.
Chapter 4

Assays

This chapter describes assays performed when using QuantaSmart software. The process for defining an assay is also discussed (page 96), along with the Assay Definition window, where assay parameters may be selected.

Assay Types

Depending on your instrument’s configuration, the following assay types may be available in the QuantaSmart software:

- CPM Assays (page 83)
- DPM Assays (page 84)
- Full Spectrum (FS) DPM Assays (page 86)
- Direct DPM Assays (page 87)
- Alpha/Beta Assays (page 89)
- Alpha/Beta Standards Assays (page 92)
- Quench Standards Assays (page 93)
- Single Photon Counting (SPC) Assays (page 94)

CPM Assays

A Counts Per Minute (CPM) assay provides information on total radioactivity within a sample in one, two, or three predefined counting regions. Data generated is expressed in CPM which only reflects activity detected without regard to counting efficiency or sample interference (e.g. quench).
Performing a CPM Assay

To perform a CPM assay, do the following:

1. Normalize and calibrate the instrument (if necessary). See Chapter 6 for more information.

2. Do one of the following:
 - Create a new assay, using CPM as assay type. Then, in the Assay Definition window, define the new assay parameters (see page 96).
 OR
 - Open an existing CPM assay, and edit or review it (if necessary).

3. When finished creating or editing assay definitions, save the assay in the Assays folder of the C:\Packard\TriCarb directory.

4. Associate (link) the assay parameters with a protocol number in the Protocols tree, and attach the corresponding protocol flag to the first cassette to be counted.

5. Load the cassette(s) with vials and then load the instrument with cassettes.

6. Click the green start button at the top of the main window to begin counting.

DPM Assays

A Disintegrations Per Minute (DPM) assay allows users to count one or more nuclides in a sample. Data is expressed as DPM, which (when calculated) must be sample-checked for quench. If not, incorrect DPM results may be reported.

For each sample in a DPM assay, the instrument:

- Measures activity in a sample vial as CPM.
- Determines quench level via Quench Indicating Parameters (QIPs).
- Interpolates counting efficiency from a quench curve (plots % Efficiency vs. QIP).
- Calculates DPM, where DPM = CPM / Efficiency.

Depending on Tri-Carb model, four DPM assays are available:

- Single, Dual, and Triple DPM assays allow users to count one, two, or three nuclides in a sample with one, two, and three defined counting regions.
- Full Spectrum DPM (FS DPM) assays allow users to count two nuclides in a sample with a full sample spectrum (no defined counting regions). See page 86 for more information about FS DPM assays.
Performing a DPM Assay
To perform a DPM assay, do the following:

1. Normalize and calibrate the instrument (if needed). See Chapter 6 for more information.

2. Define and run a Quench Standards assay so counting efficiency and DPM can be determined for the samples (see page 93).

3. Do one of the following:
 - Create a new assay, choosing DPM (Single), DPM (Dual), or DPM (Triple) as the assay type. Then, in the Assay Definition window, define the new assay parameters (see page 96).
 - OR
 - Open an existing DPM assay, and edit or review the assay (if needed).

4. When finished creating or editing an assay definition, save the assay in the Assays folder of the C:\Packard\TriCarb directory.

5. Select a quench standards set for use with the sample nuclide(s).

6. Associate (link) the assay parameters with a protocol number in the Protocols tree, and attach the corresponding protocol flag to the first cassette to be counted.

7. Load the cassette(s) with vials, and then load the instrument with cassettes.

8. Click the green flag start button at the top of the main window to begin counting.

Quench Set
This field on the Count Conditions tab (page 97) is displayed only in DPM assays, and features the quench set selected for a Sample Nuclide in an assay. When using a quench set, counting efficiency is determined for each assay sample, reducing the time needed to count an assay. By selecting the Constant Quench option, count efficiency is determined only for the first assay sample. Count efficiency for this sample is used to calculate DPM for all assay samples.
Full Spectrum (FS) DPM Assays

This method is used for regionless counting of dual label samples, and uses Quench Indicating Parameters, Spectral Index of the Sample (SIS), transformed Spectral Index of the External standard (tSIE), and spectral unfolding technique to separate a sample’s composite spectrum.

A composite spectrum is separated into two component spectra, each the result of a different nuclide. Spectrum unfolding yields the actual CPM for each nuclide, and a quench correlation curve comparing SIS vs. tSIE; Efficiency vs. tSIE is used to determine the DPM of unknown samples. Maximum accuracy with this method occurs when sample nuclide concentration falls in the range of 50:1 to 1:8 (low to high energy nuclide). Quench standards used for FS DPM should match the chemistry, and geometry of any unknown sample.

Performing an FS DPM Assay

To perform an FS DPM assay, do the following:

1. Normalize and calibrate the instrument (if needed). See Chapter 6 for more information.
2. Define and run a Quench Standards assay to determine sample counting efficiency and DPM (see page 93).
3. Do one of the following:
 - Create a new assay, selecting FS DPM as the assay type. Then, in the Assay Definition window, define the new assay parameters (see page 96).
 - OR
 - Open an existing DPM assay, and edit or review the assay (if needed).
4. When finished creating or editing the assay definition, save the assay in the Assays folder of the C:\Packard\TriCarb directory.
5. Select a quench standards set for use with the sample nuclide(s).
6. Associate (link) the assay parameters with a protocol number in the Protocols tree, and attach the corresponding protocol flag to the first cassette to be counted.
7. Load the cassette(s) with vials, and then load the instrument with cassettes.
8. Click the green flag start button at the top of the main window to begin counting.
Direct DPM Assays

This is a predefined assay that performs DPM calculations based on the Quench Indicating Parameter—Spectral Index of the Sample (SIS). As this assay is pre-installed, there is no need to define individual assay parameters. This assay will calculate DPM values for single label beta or beta/gamma nuclides (including Tritium). Single-label samples with different beta nuclides may be counted in the same cassette.

When using the Direct DPM method, samples are evaluated as follows:

- If the SIS value is greater than (or equal to) 40, DPM is reported with no message on the printout.
- If the SIS value is between 20 - 40, then DPM is reported, and the sample found Indeterminate (I) on the printout.
- If the SIS value is less than (or equal to) 20, and the sample is determined to contain Tritium, then DPM is reported with no message on the printout.
- If the SIS value is less than (or equal to) 20, and the sample is determined not to contain Tritium, then DPM is not reported, and the sample found Indeterminate (I) on the printout.

Note: When a sample is listed as Indeterminate (I) on a printout, any DPM reported may be valid if the sample is not heavily quenched. Check the tSIE value to determine its quench level. If the tSIE exceeds 200, DPM reported is likely accurate and within statistical counting error. Accuracy is independent of cocktail density variation, vial size, vial type, sample volume, color and chemical quench. Direct DPM is not recommended for any background level samples counted for a short time.
Performing a Direct DPM Assay

To perform an Direct DPM assay, do the following:

1. Normalize and calibrate the instrument (if needed). See Chapter 6 for more information.

2. Define and run a Quench Standards assay so counting efficiency, and DPM can be determined for the samples (see page 93).

3. Create a new assay, using **Direct DPM** as the assay type.

 Note: If counting samples using PerkinElmer Ultima Gold™ scintillation cocktail, indicate this in the nuclide library. This will ensure that the appropriate quench curve is used to calculate DPM for Tritium.

4. When finished creating the assay definition, save the assay in the Assays folder of the C:\Packard\TriCarb directory.

5. Select a quench standards set for use with the sample nuclide(s).

6. Associate (link) the assay parameters with a protocol number in the Protocols tree, and attach the corresponding protocol flag to the first cassette to be counted.

7. Load the cassette(s) with vials, and then load the instrument with cassettes.

8. Click the green flag start button at the top of the main window to begin counting.
Alpha/Beta Assays

Note: This feature may be optional. See model/option table (Appendix H) for details.

This assay allows users to simultaneously count Alpha/Beta emitting nuclides in the same sample vial. In some cases, emission energies for Alpha/Beta nuclides may overlap, making discrimination between nuclides difficult.

To separate Alpha and Beta nuclide energies, take advantage of their differing pulse decay times. Tri-Carb instruments equipped with the Alpha/Beta feature use a Pulse Shape Analysis (PSA) method of nuclide discrimination. A PSA value is used to optimize Alpha and Beta pulse separation. The optimum PSA value minimizes the odds of Alpha events being counted as Beta events, and vice versa.

To optimize this setting, count a pure Alpha and a pure Beta standard source. The optimum discriminator value is where the misclassification of Alpha and Beta events is at a minimum. Once an optimum PSA value is established, this information may be used to count Alpha/Beta assays by referencing the Standard Set name in the Alpha/Beta Nuclides Library. When an Alpha/Beta nuclide name is chosen in an assay, the referenced Alpha/Beta Standard Set name, and its corresponding optimum discrimination are applied. Data generated from a sample protocol is expressed CPM, and only reflects activity in a vial without regard to counting efficiency or sample interference (quench).
Performing an Alpha/Beta Assay

To perform an Alpha/Beta Assay, do the following:

1. Normalize and calibrate the instrument (if needed). See Chapter 6 for more information.

2. Define and run an Alpha/Beta Standards assay (page 92) to establish an optimal pulse decay discriminator value.

3. Define an Alpha/Beta nuclide in the Alpha/Beta Nuclides Library (page 141).

4. Choose the Standards Set (second column in the table) from the Alpha/Beta Standards Library (page 144) to use the discriminator setting from the Standard Set. If a Standard Set is not chosen, manually enter a discriminator setting directly in the Alpha/Beta Nuclide Library.

5. Do one of the following:
 - Create a new assay, selecting Alpha/Beta as assay type. On the Count Conditions tab of the Assay Definition window, click the Name button to select the desired Alpha/Beta radionuclide name from the Alpha/Beta Nuclides Library. Define the other available parameters as desired (see page 96).
 - OR
 - Open an existing Alpha/Beta Assay, and edit or review the assay (if needed).

6. When finished creating/editing the assay definition, save the assay in the Assays folder of the C:\Packard\TriCarb directory.

7. Associate (link) the assay parameters with a protocol number in the Protocols tree, and attach the corresponding protocol flag to the first cassette to be counted.

8. Load the cassette(s) with vials, and then load the instrument with cassettes.

9. Click the green flag start button at the top of the main window to begin counting.
Tips and Techniques for Performing Alpha/Beta Assays

- Several factors influence the discrimination of Alpha activity from Beta activity in a mixed sample. First is quenching. Alpha/Beta discrimination degrades in heavily quenched samples. For best performance, minimize quench (if possible) by using smaller sample volumes, or eliminating interference with sample purification techniques.

- Alpha/Beta standards are counted with a wide open 0–2000 region for beta activity, and 0–1000 region for alpha activity. Optimize counting regions in the Alpha/Beta Nuclides Library for counting unknown samples, if desired.

- Count Alpha/Beta standards used to generate a misclassification curve in an assay to confirm misclassification when the Alpha/Beta standards were counted, or determine a revised misclassification from optimized region settings. New misclassifications must be calculated manually from observed counts for Alpha (CPMa) and Beta (CPMA or CPMB).

Note: Only one region of interest (CPMa) is defined for Alpha activity. This field is included by default in Alpha/Beta assays. Beta activity can be reported in two regions: CPMA and CPMB. CPMA is always included by default in the report.

- High Sensitivity Count Mode (HSCM) or Low Level Count Mode (LLCM) can be used in an Alpha/Beta assay. In this case, do not link an Alpha/Beta Standard Set name to an Alpha/Beta Nuclide name in the Alpha/Beta Nuclide Library. As Alpha/Beta standards are always counted with normal count mode by design, linking one to the Alpha/Beta Nuclide name will automatically select a Normal count mode.

Note: High Sensitivity Count Mode or Low Level Count Mode is applied only to Beta counting, and not Alpha. Alpha background reduction is achieved with Alpha/Beta discrimination (Pulse Shape Analysis).

- To use High Sensitivity Count Mode or Low Level Count Mode in an assay, define the Alpha/Beta Nuclide in the library. Do not link an Alpha/Beta Standard Set name. Alpha/Beta standards should be counted in the assay to determine Alpha/Beta misclassifications.

Note: When counting high energy Beta emitters in a Low Level Count Mode, change the Delay Before Burst field value on the Count Corrections tab (default value is 75 nsec). By adjusting this value, background reduction is optimized for sensitivity. A value between 150 - 300 is typical. The optimum value must be empirically determined with a representative background and sample.
Alpha/Beta Standards Assays

Note: This feature may be optional. See model/option table (Appendix H) for details.

This assay allows users to count pure Beta and pure Alpha standard sources. This establishes the optimal Pulse Shape Analysis (PSA) value, where misclassification of Alpha/Beta events is a minimum. Establishing a PSA value allows the instrument to discriminate between Alpha/Beta emitting nuclides in samples for Alpha/Beta assays.

The following tasks are required to run the Alpha/Beta Standards assay. Two standards are required—a pure Beta emitter and pure Alpha emitter.

1. From the menu bar, select Libraries | Alpha/Beta Standards.

2. In the Alpha Beta Standards window, click the Add button and type a name for the new Alpha/Beta Standard Set.

3. From the Discriminator Type drop-down field, select Automatic if pure Alpha/Beta standards have a minimum activity of 50,000 CPM each. If activity in either standard is less than 50,000 CPM, select Manual from the Discriminator Type field.

Note: The remaining fields in the Alpha/Beta Standards window are for information only, and contain default values or values computed by the instrument.

4. Create a new assay, selecting Alpha/Beta Standards as the assay type. On the Count Conditions tab of the Assay Definition window, click the Name button to select the desired Alpha/Beta radionuclide name from the Alpha/Beta Standards Library. Define the other available parameters as desired (see page 96).

Note: High Sensitivity or Low Level Count mode are not available when counting Alpha/Beta Standards. However, these modes are available when counting samples in an Alpha/Beta assay.

5. When finished creating the assay definition, save the assay in the Assays folder of the C:\Packard\TriCarb directory.

6. Associate (link) the assay parameters with a protocol number in the Protocols tree, and attach the corresponding protocol flag on a cassette.

7. Place the pure Beta emitter standard in the first vial position, and the pure Alpha emitter standard in the second vial position.

8. Load the cassette onto the instrument.
9. Click the green flag start button at the top of the main window.

10. After counting is complete, the misclassification (or spillover) curve and optimum PSA discriminator value is stored for the Standard Set. Review the curve and PSA discriminator setting (if desired) from the Alpha/Beta Standards Library.

Quench Standards Assays

This assay set is composed of several vials, each containing the same nuclide amount with varying degrees of quenching agent. Using quench standard data, a quench curve is generated to determine sample counting efficiency, and calculate DPM where DPM = CPM / Efficiency. The system stores each standard spectrum in the Quench Standards Set which is counted only once; whereas quench data is available for use with any protocol.

To accurately measure sample quench, the nature and composition of quench standards should reflect the matrix and environment of samples counted.

Performing a Quench Standards Assay

The following tasks are required when performing a Quench Standards assay:

- **Note:** For 4810TR models, setting up a Quench Standards assay requires the single/dual color-corrected DPM option.

1. Normalize and calibrate the instrument, if necessary. See Chapter 6 for more information.

2. Do one of the following:
 - Create a new assay, choosing Quench Standards as the assay type. Then define the new assay parameters (see page 96).
 - OR
 - Open an existing Quench Standards assay, and then edit or review the assay (if necessary).

3. When finished creating/editing the assay definition, save the assay in the Assays folder of the C:\Packard\TriCarb directory.

4. Associate (link) the assay parameters with a protocol number in the Protocols tree, and attach the corresponding protocol flag to the first cassette to be counted.
5. Load the cassette(s) with vials, and then load the instrument with cassettes.

6. Click the green flag start button at the top of the main window to begin counting.

Note: When using the Low Level count mode (if available), do not use quench standards that are purged free of oxygen with an inert gas. Oxygen quenching in unpurged standards creates discrimination between background and true Beta events. Unpurged standards are available from PerkinElmer.

Single Photon Counting (SPC) Assays

This assay measures photons emitted from non-radioactive, luminescent samples. To detect scintillation, Liquid Scintillation Counters use two Photomultiplier Tubes (PMTs) to collect virtually all light produced in a sample vial. Each pulse that occurs during sample counting time is registered and expressed as CPM. Sample events are considered true decay if they occur within a specified coincidence time. If not, the events are considered random (background) and not counted.

In an SPC assay, only one PMT is used. As a result, coincidence cannot be used to exclude background. Therefore, instrument background must be reduced to its lowest possible level. Lowering high voltage supplied to the PMT typically decreases background, and increases sensitivity in SPC assays.
Performing an SPC Assay

The following tasks are required when performing an SPC assay:

1. Normalize and calibrate the instrument (if needed). See Chapter 6 for more information.

2. Do one of the following:
 - Create a new assay, select SPC as the assay type. Then define the new assay parameters (see page 96).
 - OR
 - Open an existing SPC assay and edit or review the assay (if needed).

3. When finished creating/editing the assay definition, save the assay in the Assays folder of the C:\Packard\TriCarb directory.

4. Associate (link) assay parameters with a protocol number in the Protocols tree, and then attach the corresponding protocol flag to the first cassette to be counted.

5. Load the cassette(s) with vials, and then load the instrument with cassettes.

6. Click the green flag start button at the top of the main window to begin counting.

Single Photon HV DAC %

This field is displayed only in SPC assays on the Count Conditions tab in the Nuclide Group section. High voltage supplied to the instrument’s PMT is adjustable; lowering high voltage supplied to the PMT typically decreases background counts and increases sensitivity. The default setting for this device is 70%. The optimum setting must be determined empirically.
Defining an Assay

Assay definition (via the system’s seven tabs) is essential to the use of QuantaSmart software.

With these tabs, users can:

- Define a sample nuclide in the sample nuclides library (if one does not already exist).
- Link a nuclide to an assay.
- Link standards to an assay (if necessary).
- Specify appropriate count conditions and count correction factors that the instrument will use to analyze samples.
- Define reports for the system to generate.
- Output desired report options.
- Define an optional Worklist to designate Positive ID numbers, and sample names corresponding to sample numbers on a printout, if desired.
- Enter descriptive information about an assay’s nature and author.

Parameters defined within the seven tabs can be saved, used, or edited. However, all assay information defined and saved becomes a functional entity only after being associated to a protocol number. These protocols are recognized by the instrument via a protocol flag (see page 7) containing an encoded, reflective metal used to identify protocol numbers and defined sample counting parameters. QuantaSmart enables users to define an unlimited number of assays, and associate them with a range of 15-60 protocols (depending on Tri-Carb model) by enabling the Lock Assay feature (page 131).

The following sections discuss each of the seven Assay Definition tabs:

- Count Conditions (page 97)
- Count Corrections (page 102)
- Report Definition (page 106)
- Report Output (page 115)
- Special Files (page 120)
- Worklist (page 125)
- Assay Details (page 130)
Count Conditions

This tab (Figure 4-1) in the Assay Definition window allows users to define counting parameters for an assay.

Note: Fields in the **Count Conditions** tab vary depending on assay type selected. Information in this section describes fields and buttons for managing CPM and DPM assay types. For details on other assay types, refer to page 83.

![Figure 4-1. Count Conditions Tab (Assay Definition Window).](image-url)
Nuclide Group
This area of the Count Conditions tab contains the following:

- **Name** button – Opens the Sample Nuclides window; allows users to select the sample nuclides to use for this assay (see Sample Nuclides Library on page 141).
- **Count Mode** – Selections here depend on the Tri-Carb model used.
 - **Normal** mode (default) is desirable for most samples; background reduction via Guard Compensation Technology (GCT) may only be used with Normal mode (see page 108).
 - **High Sensitivity** provides higher sensitivity for strict criteria used to exclude background interference.
 - **Low Level** provides the highest sensitivity counting for low activity samples due to stricter criteria for excluding background interference (with minimal compromise in counting efficiency).
- **Quench Indicator** – Select tSIE, tSIE/AEC, or SIS to measure chemical quenching in a sample:
 - **tSIE** (transformed Spectral Index of the External Standard) – Using an external Barium-133 standard source, this method assigns a numeric value to a quench associated with a sample. This determination is independent of radioactivity quantity in a sample, and its count rate. The lower a tSIE value, the more the sample is quenched. A tSIE value of 1000 represents a fully unquenched sample. Accurate DPM values can be determined for samples with tSIE values as low as 10. To ensure accurate count statistics, the external standard is typically counted to a 0.5% 2 Sigma counting error, where the gross counts equal 160,000. tSIE is the most accurate quench indicator option, and is typically used for low count rate, variable quench, single label samples.
 - **tSIE/AEC** (transformed Spectral Index of External standards coupled to Automatic Efficiency Correction) – tSIE assigns a numeric value to a quench associated with a sample. As quench varies, the AEC automatically monitors and adjusts the counting region to exclude unwanted background. This setting is typically used for dual and triple label experiments with variable quench samples where optimal region settings are desired.
 - **SIS** (Spectral Index of the Sample) – SIS assigns a numeric value to the quench associated with a sample. SIS is determined from the spectral shape of a sample, and based on actual sample counts. The SIS setting is typically used to monitor quench level in single label, high count rate samples for CPM assays, or in single label Cherenkov counting.
 - **Quench Set** – This field appears in the Count Condition tab for DPM assays. For more information, refer to page 85.
- **External Std Terminator** – From this field, select a length of time the external standard is counted for calculating the quench index. Selecting 0.5 2s% instead of a fixed time allows counting to occur until gross counts of 160,000 are measured. This provides statistical accuracy of 0.5% (at
95% confidence) for the tSIE parameter. The External Std Terminator field is only available when tSIE or tSIE/AEC is selected as the quench indicator; the field is grayed out if SIS is selected as the quench indicator.

Pre-count Delay
In this field, enter the time (in minutes) for samples to sit in the closed detection chamber before counting begins. This process is *dark adaption*, and reduces any luminescence (light) originating from samples. Luminescence can distort sample count statistics, and is problematic with low count rate samples and long count times.

Count Time
In this field, enter the maximum time (in minutes) that samples will be counted. For low activity samples, longer count times provide better count statistics and more accurate sample results. Count times can be changed during a run to a longer or shorter amount of time.

Assay Count Cycles
In this field, enter the number of times which an assay will be counted. The assay is recounted after it has moved one complete cycle around the sample changer deck. Any samples currently on the sample changer deck will be counted before a sample recount.

Repeat Sample Count
In this field, enter the number of times each sample is counted while in the counting chamber. This differs from the Assay Count Cycles field where samples are unloaded from the detector, and make a complete cycle around the sample changer deck before a recount.

Calculate % Reference
Select this checkbox to activate the percent reference calculation. The instrument reports each sample value as a percentage of a reference vial. The reference vial should be the first non-background vial loaded in a cassette.

#Vials/Sample
In this field, enter the number of replicates for each sample counted. The data output will report the average value of the replicates.

keV Energy Regions
This area contains fields for the Lower Limit and Upper Limit. These fields represent lower and upper counting limits for regions A, B, and C—measured in keV.
CHAPTER 4

Background CPM Subtraction (Subtract Background)
Select this checkbox on the Count Conditions tab to subtract background CPM from all samples.

The background value is established in one of three ways, and selected from the following:

- **1st Vial** – The instrument counts the first vial in a cassette for ten minutes, or a defined protocol count time (whichever is greater) to establish a CPM value for each region. These are background values subtracted from each sample in each assay region.
- **IPA** – The instrument subtracts background values established during the Calibration and Instrument Performance Assessment (IPA) procedures from an entire spectrum of samples. The background spectra are stored during these procedures, and are available for any counting region.

 Note: GCT is not applied to IPA background.

- **Manual** – Here, enter CPM values for the instrument to subtract from an entire spectrum of samples.

 Note: In Quench Standards assays, the 1st Vial background subtraction option is not available. Background subtraction is only applied to the reported data for quench standards, and has no impact on a spectrum for each standard. Any background subtraction in DPM assays will apply to quench standards used for recalculating quench curve in the DPM assay.

Low CPM Threshold
Select this checkbox to stop counting early if sample activity is below a specified threshold. Enter CPM values for each counting region to halt counting if these values are not reached. The sample count is stopped if any region does not meet specified minimum CPM thresholds within the first 30 seconds of counting.
2 Sigma % Terminator
Select this checkbox to stop counting after acquiring enough counts to meet a statistical accuracy.

Two radio button options are available:

- **Any Region** – Select to enter the statistical accuracy level for each region (as a percent value) to achieve before counting terminates. Counting terminates when the Sigma value of any one region is reached. Using this feature, counting may stop before the specified count time elapses.

- **All Regions** – Select to enter the statistical accuracy level for each region (as a percent value) to achieve before counting terminates. Counting terminates when the Sigma value for each region is reached. Using this feature, counting may stop before the specified count time elapses.

Changes made to the 2 Sigma % Terminator parameter for an active assay will be implemented immediately.
Count Corrections

This tab (Figure 4-2) in the Assay Definition window allows users to define specific count correction parameters for an assay.

Note: The fields in the Count Corrections tab vary depending on the assay type defined.

Figure 4-2. Count Corrections Tab (Assay Definition Window).
Static Controller
Select this checkbox to activate the instrument’s static-controlling device, designed to reduce static originating on the sample vial. Static discharge can falsely elevate sample counts by producing non-beta pulses. This device should be active in most cases; its default value is ON. It is especially important in low humidity conditions (winter) when using plastic vials, and handling vials with latex gloves.

To further reduce the odds of generating static:

- Maintain a relative humidity level above 40%.
- Wipe latex gloves with anti-static wipes before handling vials.
- Use the **Pre-count Delay** timer (page 99) to delay counting of each sample, allowing time for static-induced pulses to dissipate.

☞ **Note:** The Static Controller may decrease signal-to-noise ratio in SPC assays. Therefore, the Static Controller is typically not used. It is important in SPC assays to employ the above-mentioned techniques to minimize static.

Luminescence Correction
Select this checkbox to activate luminescence (light) correction. The instrument corrects data for counts resulting from sample luminescence. This feature may be optional; see model/option table (Appendix H) for details.

Colored Samples
Select this checkbox to activate color correction. The instrument will correct data for color quench. Typically, this is only required if samples are highly colored.

☞ **Note:** This checkbox is available only for DPM Assays using tSIE/AEC for assays using Normal count mode, and for assays using one of the following nuclide groups: 3H, 14C, or 3H-14C. In addition, the Colored Samples checkbox is unavailable on the Quantulus GCT model equipment.
Heterogeneity Monitor
Select this checkbox to activate a device that monitors and flags heterogeneous samples (e.g. samples with phase separation). This feature may be optional; see model/option table (Appendix H) for details.

Note: This checkbox is only available for Single Label DPM assays, where tSIE is selected as the Quench Indicating Parameter. The system uses tSIE and sample spectrum endpoint to determine sample heterogeneity.

Coincidence Time
In this field, specify the length of time (10–200 nanoseconds) that both PMTs must detect scintillation events.

- If the events occur in coincidence (and in the specified coincidence time), they are considered true sample decay events.
- If the events do not occur in coincidence, they are considered random (background) and not counted.

Note: When using solid scintillators, coincidence time may need to be extended. The optimal setting must be determined empirically.

Delay Before Burst
In this field, specify the length of time (75–800 nanoseconds) after the initial pulse (prompt pulse) which the detector will look for additional pulses (afterpulses). Afterpulses (which occur after a prompt pulse and delay time interval) indicate that a scintillation event is due to background. Some scintillators, such as PerkinElmer Ultima Gold, produce slower decaying pulses that may require longer delay times. When using these scintillators, lengthen delay time to retain high counting efficiencies. This is important when counting high energy beta-emitting nuclides. The default setting for this parameter is 75.

Note: This parameter is only accessible with high sensitivity and low level count modes.
GCT (Guard Compensation Technology)
This is a technique used to reduce backgrounds via efficiency calculations applied to events detected in the Guard via the following settings:

- **High** (default) - Best suited for removing a maximum number of background events.
- **Low** - A less aggressive setting for background reductions.
- **Off** - No GCT background corrections.

Note - Normal count mode must be selected when GCT is in use.

Enable PAC (Pulse Amplitude Comparison)
Select this checkbox to enable PAC. This is used to reduce background by analyzing the amplitude of event pulses between the instrument’s PMT detectors. Strength values range from 0 - 255 to adjust how much background to remove.

Half-life Correction (Apply Half-life Correction)
This feature is typically used when working with short half-life nuclides; the instrument corrects sample counts for half-life decay of nuclide(s) counted. The **Reference Date** and **Reference Time** are used to make a decay calculation, with default settings corresponding to the start of an assay.

Note: In Quench Standards assays, activate the half-life correction feature only if a DPM value entered into the Quench Standards Library for the nuclide is not corrected for decay. If the DPM value entered in the library for standards is decay-corrected, the half-life correction feature should not be used.
Report Definition

This tab (Figure 4-3) in the Assay Definition window allows users to design custom reports.

![Assay Definition Window with Report Definition Tab](image)

Figure 4-3. Report Definition Tab (Assay Definition Window).

Report List

This area allows users to add, rename, preview, delete, or reset a report. The following information describes the buttons contained in this area:

Add

Click this button to define a new assay report. Use any named report formats in the list for output types identified on the Report Output tab (page 115). Different report formats may be used for each output type (Printer, Data File, RS-232, or Rich Text Format), if desired.
Rename
Click this button to rename a report. First, select a report name, and then click Rename. After clicking the Rename button, the Rename Report window appears (Figure 4-4):

![Rename Report Window](image)

Figure 4-4. Rename Report Window.

In the Report Name dialog box, enter a new report name, and then click OK.

☞ **Note:** If an existing name is entered, or one with invalid characters (/ \ ? “ | < >), a warning prompt will appear.

Preview
Click on this button to view an on-screen version of a report. First, select a report name from the list in the Report Name box, and then click Preview. The fields selected in the Use column of the Report Fields area (page 107) will appear in the report with general information. Use the Preview feature as an interactive tool to refine report content (before starting a protocol).

Delete
Click on this button to delete a report by selecting a report name from the list in the Report Name box, and then click Delete.

Reset
Click this button to restore the default list of Report Fields for a selected report. First, select a report name from the list in the Report Name box, and then click Reset.

Report Fields
This area allows users to select and edit fields to be included in a report. The following describes the fields/columns and buttons contained in this area:
Use Column
Select the checkbox in the Use column to have the corresponding field appear on the report.

☞ **Note:** Any changes to the format or equation of custom fields will be saved when the Assay Definition window is closed - whether or not the Use field checkbox is selected.

Data Field Column
This column provides predefined data fields for various report fields including typical result values (e.g. CPM, DPM, quench parameters, count time, statistical calculations, etc).

❖ **Tip:** If an instrument is configured with the Bar Code Reader option, add the SMPL_ID (Sample Name (from Worklist)) data field to a report to make bar code validation simpler. Selecting this field will print a bar code for each report sample.

In addition, users can define custom fields to report special calculations or formats for an application. These custom fields are added using the Add button (page 109), and are automatically titled Custom1, Custom2, etc., when created. These custom fields may be renamed. However, if a custom field is deleted, QuantaSmart will not reuse that title for an assay.

Format Column
Each field in this column displays a sample format selected for an associated field. This sample is intended to show the number of digits and decimal places used to report this field. The zero character is used to represent a digit that can adopt any value appropriate for the field type (alpha and/or numeric). To define the format, click in a field to select it, and then click the Format button (page 110).

Equation Column
Each field in this column displays an equation (if defined). To enter an equation or edit an existing one, select a field and click the Equation button (page 111), which displays the Equation window. In the window, define the information to appear in the selected field.
Add Button
Click this button to add a new, custom field to the list of available output fields for a report. Users can define a name, format, and content of each custom field created. Custom field content can be defined to be a specific value, copy of a field for the same sample, or a formula using mathematical operands on other field values and/or constants.

Define only one operation per custom field.

For complex operations, create custom fields to generate intermediate values, which can be combined with other custom fields for the final result. Calculated custom fields need not be included in a final output, so intermediate results can be hidden (if desired). Custom fields are stored with individually named reports. However, custom fields used in one report are not available in other reports, even when used in the same assay.

Delete Button
Click this button to omit a custom field.

Note: A custom field cannot be deleted if referenced by an equation in another field. Delete or modify any field(s) that reference another field to be deleted, and then delete the desired field.
Format Button

This button allows users to define a format for reporting a currently selected data field. To define a data format, select a field marked for use in a report (Use checkbox is selected), and then click the Format button. The Format Field window opens (Figure 4-5).

![Figure 4-5. Format Field Window.](image)

In the **Total Digits** field, specify the total number of digits for a field, representing the overall width, decimal space, integer space, and padding (spaces inserted before the value) necessary to fill any unused space. The decimal point (if appropriate) is not counted as a digit for this purpose.

In the **Digits to Right of Decimal** field, define the number of digits to the right of the decimal point.

For fields that may result in very large or very small numbers, select the **Scientific Notation** checkbox to report the numbers in Scientific Notation (see the following examples):

Examples:

- $3.123e + 006$ is equivalent to 3.123×10^6 (3,123,000)

- $3.123e - 003$ is equivalent to 3.123×10^{-3} (0.003123)

Once finished defining a field’s format, click **OK** to save changes. Click **Cancel** to exit the Format Field window without saving changes.
Equation Button
Click this button to enter an equation defining a value reported by the selected custom field. After clicking the Equation button, the Equation window appears (Figure 4-6).

![Equation Window](image)

The information below describes the buttons and fields in the Equation window (Figure 4-6).

- **Reference** – Select this radio button to select a single value for this custom field. The value may be a constant value, or entered from another defined field in the Field drop-down list.

- **One Operand** – Select this radio button to enable the Operator and Operand fields.
 - The Operator field contains the following operators: \(\log \) (common logarithm), \(\exp \) (inverse natural logarithm), and \(\sqrt{\text{sqrt}} \) (square root).
 - The Operand field contains a list of defined report fields yielding a numeric value. Type a numeric constant (integer or a floating point number) in this field, or select an entry from the drop-down list.

- **Two Operands** – Select this radio button to select two data fields (operands) from drop-down lists of defined report fields, and a binary operator to perform the desired calculation.
 - The Operand 1 field contains defined report fields yielding a numeric value. No alphabetic standard or blank custom fields are available. Type a numeric constant (integer or floating point number) in this field, or select from the drop-down list.

Figure 4-6. Equation Window.
• The **Operator** field contains a list of binary operators:
 + addition
 - subtraction
 / division
 * multiplication

• Like **Operand 1**, the **Operand 2** field contains defined report data fields that yield a numeric value. No alphabetic standard or blank custom fields are available. Type a numeric constant (integer or floating point number) into this field, or select from the entries in the drop-down box.

 ■ **Screening** – Click this radio button to enable the screening fields. Select a value from the **Field** field; this value will be compared with a second value to select or enter at the **Field or Value** field at far right. The calculated values meeting a selected criteria (**Less Than**, **Greater Than**, or **Between**) will appear in the subsequent report.

 • From the **Comparison** field, select a comparison criteria: **Greater Than**, **Less Than**, or **Between**. The calculated value (or values being sought) will appear in the subsequent report.

 • Value types in the **Bkg** field depend on the selection made in the **Background Subtract** field (page 100) on the **Count Conditions** tab (select **1st Vial**, **IPA**, or **Manual**). In the **Bkg** field(s) of the **Equation** window, select the Region(s) from which the background values must be subtracted. The difference is multiplied by the number entered in the adjacent box at right. The total is then added to the selected **Field or Value**.

 • In the **Field or Value** field, enter a value or select one from the drop-down list. The product of the preceding calculation (Region Background x manually entered value) is added to the selected field or value.

 • From the **Hit Indicator** field, select a hit indicator from the list (**Low**, **High**, or **In Range**), or type a custom hit indicator. A hit indicator is a report heading used to classify the screened value range.
Report Block Data
These items contain predetermined data sets about the system, assay or samples. These block data items are included in printed reports and Rich Text Files (RTF). The other output types—Data Files and RS-232—will NOT include the selected block data items.

Note: Some information in block data items may also be included in the RS-232 output by marking appropriate checkboxes when choosing the RS-232 output type. This is not controlled via the use of block data item mechanism described here.

When defining reports for an assay, include block data items and individual fields related to a specific block data item. For example, when expanding the Assay Definition Block tree, a list of related data items appears. Select the entire data block, or include/exclude individual items within the tree. When clicking on the main data block, all data items in the expanded tree (or trees) are automatically selected, and included in the report.

To exclude an item in the tree, expand the data block tree, and de-select each item to exclude. A data block item in the report is identified in the tree with a red check mark.

Available block data items include:

- Assay Definition Block (page 113)
- Instrument Data Block (page 114)
- IPA Data Block (page 114)
- Quench Curve Block (page 114)
- SpectraView (page 114)

Block data items can also be used to send files to an external device via the RS-232 communications port in an ASCII format. IPA data can be transmitted through the RS-232 communications port by selecting the Transmit IPA Data checkbox in the IPA Definitions window (page 151).

Assay Definition Block
Select this block data item to include information on parameters used to count an assay in a printed (or RTF) report. These parameters include those defined on the Assay Details tab (page 97), Count Conditions tab (page 97), and Count Corrections tab (page 102).
Instrument Data Block
Select this block data item to include instrument-related data in printed (or RTF file) reports. This block data contains information on instruments and software.

The following keywords and values are contained in the **Instrument Data Block**:

IPA Data Block
Select this block data item to include information from the last set of acquired IPA data in printed (and RTF file) reports. This block data item contains information on efficiency, backgrounds, figures of merit, and Chi-squares for Tritium and 14C system performance.

Quench Curve Block
Select this block data item to include a graphic display of a quench curve associated with a DPM assay.

SpectraView
Select this block data item to print a graphic display of a spectrum for each sample.

Report Field Order
This area displays the order/format in which report fields are output. Fields highlighted in yellow will not fit on a single sample line when printing a report; these fields are wrapped to a second line for printed and RTF reports. The data output window does not wrap on-screen. This highlight is the only indication of how sample lines in printed reports will be formatted.

Report Options
This area offers selections enabling users to modify the appearance of a printed report:

- **Sample Line Spacing** – Select the spacing required between each report lines: Single spacing, 1.5 Lines of spacing, or Double spacing.
- **Point Size** – Select a point size for each printed character in a report: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.
- **Highlight screening sample hits** – Select this checkbox to print a report's screening sample hits in bold characters.

Report Field Order
Use the button to move a selected field to the left.

Use the button to move a selected field to the right.
Report Output

This tab (Figure 4-7) in the Assay Definition window allows users to customize a report's output.

![Report Output Tab (Assay Definition Window).](image)

Figure 4-7. Report Output Tab (Assay Definition Window).

Report List
This region allows users to select a named report for output.

Printed Report (Print Report)
Select this checkbox to send the selected report to a printer. Assay data will automatically print once an assay count cycle is completed.
Text Data Files (Generate Text Files)
Select this checkbox to enable fields allowing users to output data to a specified file type. Specify the file type and other file settings using the following fields:

File Type
QuantaSmart automatically saves data for internal use and Replay (if available) as dated Results files. These files are separate from data files defined in the Report Output tab. The data file in the Report Output tab provides count data to other programs or archival facilities. Select the ASCII file type for this auxiliary data file using the File Type drop-down list. Data fields included in the file are defined by selections made in the Report Definition tab (page 106).

The following list describes the selections available in the File Type field:

- **Auto Incrementing** – With this option, QuantaSmart names the file by automatically incrementing a numerical extension each time that a file is generated. This prevents data from being overwritten from one run to the next.
- **Delimited Text** – With this option, QuantaSmart generates data as delimited ASCII text. If a numerical extension is entered, this selection is identical to the Auto Incrementing selection described above.
- **Excel** – With this option, QuantaSmart generates data compatible with Microsoft® Excel.
- **Lotus** – With this option, QuantaSmart generates data compatible with Lotus® 1-2-3.

> Note: The field delimiter is defined by the Microsoft® Windows O/S using the Regional and Language Options window accessed from Windows Control Panel. Once the Regional and Language Options window is opened, click the Customize button and access the List Separator field on the Numbers tab.

File Name
In this field, a data file is named. If selecting a Delimited Text type, enter any file extension as the name. All other file types use predefined extensions based on conventions.

These predefined extensions are as follows:

- **Auto Incrementing** – ### (incrementing numeric)
- **Delimited Text** – .txt (default, user-selectable)
- **Excel** – .csv
- **Lotus** – .wks
Output Per Sample and/or Average
Select these checkboxes to indicate a data type to be included in an output:

- **Average** allows a data file to contain one line of data for each average data line in the output window.
- **Sample** allows a data file to contain one line of data for each sample data line in the output window.
- Checking both **Sample** and **Average** allows a data file to contain one line of data for each average data line, and one line of data for each sample data line.

Include Column Header
Select this checkbox for headers to be included at the beginning of a data file for each data field.

Include Assay Definition Block Data
Select this checkbox to include the Block Data information in a data file output.

RS-232 Data

Send Data Using RS-232
Select this checkbox to enable fields located in the **RS-232** area of the **Report Output** tab. These fields allow users to transmit lines of sample data via the RS-232 port. See RS-232 in Appendix B for serial port configurations. Specify the data to include settings for RS-232 data transmission with the following fields:

Group Output Per Sample and/or Average
Select this checkbox to allow QuantaSmart to transmit one line of data for each average data line in the output window. Select **Output Per Sample** to allow QuantaSmart to transmit one line of data for each sample data line in an output window; the default selection is **Sample**.
Additional Data
Select an appropriate checkbox to include additional information in the RS-232 output. Select any combination of the following three data items as desired:

- **Protocol Data** – Select this checkbox to transmit protocol information with the data. This information, if selected, is sent immediately before the report of first sample data.
- **Spectrum Data** – Select this checkbox to transmit spectrum information with the data. This information, if selected, is sent immediately after the last sample data reported for an assay.
- **Column Header** – Select this checkbox to transmit column headers with the data. Column headers, if selected, appear immediately before the first sample data of an assay to identify the transmitted data’s field order.

Alternate Data Formats
Select a checkbox for an alternate RS-232 format. Users may emulate the format from a model 2100/2300 Tri-Carb, or a model 2500/2700 Tri-Carb instrument. If neither of these alternate formats are emulated, RS-232 data will appear in a format defined by the selected Report Definition. Users may not emulate both alternate data formats simultaneously.

Rich Text File (RTF)
Select this checkbox to have QuantaSmart generate an RTF containing the contents of the output window. If the RTF checkbox, enter a descriptive filename in the **File Name** field. QuantaSmart automatically assigns an extension of `.rtf`; the RTF file is essentially a copy of the output window.

Note: Any name entered into the **File Name** field will remain unless changed. It is "grayed out" if the **Rich Text File** checkbox is not selected.

Run Application
Select this checkbox to use the Tandem Processing feature allowing the instrument to analyze samples, perform data reduction, and automatically pass data to an application program.

Enabling this feature will cause an external program to further process data. If information is entered in any fields in the **Run Application** area of the window, but the **Run Application** checkbox is not selected, the information is retained but “grayed out.”

The following information describes the fields in the **Run Application** area of the window:
Application
When you select this checkbox, enter a name and location of a Tandem Processing application to run. If necessary, use the button next to the field to browse for the application.

Data File
From this field, select a data file type for the Tandem Processing application to process. The appropriate file name is passed to the application as a command line parameter: the following options are available in the Data File field:

- **Data File** – Select this option to use the file defined in the Data File area.
- **None** – Select this option when no specific data file is identified for use.
- **RTF File** – Select this option to use the file defined in the Rich Text File area.

Run After Each Batch, Cycle, or Sample
Select one of the radio buttons to specify when the application should run:

- **Batch** – Select this radio button to run the application program once at the end of the protocol.
- **Cycle** – Select this radio button to run the application program at the end of each cycle.

♫ **Note:** This option does not apply to Tandem Processing in Replay.

- **Sample** – Select this radio button to run the application program after each sample.

♫ **Note:** Each time the application program is run, it must be loaded into memory. Whenever possible, run the application program after a batch or cycle, as it is more efficient than running the program after each sample.
Special Files

This tab (Figure 4-8) in the Assay Definition window allows users to select and configure information regarding files pertinent to an assay.

![Special Files Tab (Assay Definition Window)](image)

Figure 4-8. Special Files Tab (Assay Definition Window).
Composite Spectra File (Generate Spectra File)
Select this checkbox to have QuantaSmart generate a single, composite, ASCII spectra file containing all samples counted in the assay. Each individual sample spectrum is appended to the end of this composite file as it is counted to provide all sample data.

The data file format is similar to that created for individual spectrum files (discussed below), with count parameters for a single sample in a header and the channel data listed serially after it. The protocol number, sample number, and sample repeat value precede each parameter header to identify the individual sample spectra within a file.

In the File Name field, enter a file name. The composite spectra file will be created in the Output Data Path (Raw Data Path for Replay if used from Replay) identified in the Data Paths window (page 54).
Individual Sample Spectrum Files (Generate Sample Spectrum Files)

If performing a Tandem Processing application that requires spectrum files, select this checkbox to create individual sample spectrum data files in the **Output Data Path** directory for the assay. A Spectrum file is an ASCII text file with spectral data for a single sample (a separate file is created for each sample). The spectral data is reported in 0.5 keV increments—up to the highest endpoint of the defined regions being counted (one channel is reported per line).

The **File Name** field displays the file name structure of data files as follows:

```
Assay_S###_R##_YYYYMMDD_HHMM.Spectrum
```

Spectrum data files are created with a file name that corresponds to the following structures:

Beta Spectrum Files

Example: 3HCPM_20040511_1024_S0001_R01.Spectrum

- 3HCPM = assay name
- 20040511 = year/month/day
- 1024 = hour/minute
- S0001 = sample number
- R01 = sample repeat count number
- .Spectrum = file extension

Alpha Spectrum Files (Alpha/Beta Assay)

Example: 3HCPM_20040511_1024_S0001_R01_A.Spectrum

- Same convention as Beta with _A suffix.

Guard Spectrum Files (Quantulus GCT Only)

Example: 3HCPM_20040511_1024_S0001_R01_G.Spectrum

- Same convention as Beta with _G suffix.

Easy View Format

Examples: 3HCPM_20040511_1024_S0001_R01.Spectrum.001; 3HCPM_20040511_1024_S0001_R01_A.Spectrum.001; 3HCPM_20040511_1024_S0001_R01_G.Spectrum.001

- Same format as Beta, Alpha and guard with suffix of “.001”
The following keywords and values are contained in the Spectrum Data file.

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTIME</td>
<td>Sample count time defined in protocol</td>
</tr>
<tr>
<td>TSIE</td>
<td>Quench Indicating Parameter defined in protocol</td>
</tr>
<tr>
<td>LLA</td>
<td>Lower counting limit for Region A</td>
</tr>
<tr>
<td>ULA</td>
<td>Upper counting limit for Region A</td>
</tr>
<tr>
<td>LLB</td>
<td>Lower counting limit for Region B</td>
</tr>
<tr>
<td>ULB</td>
<td>Upper counting limit for Region B</td>
</tr>
<tr>
<td>LLC</td>
<td>Lower counting limit for Region C</td>
</tr>
<tr>
<td>ULC</td>
<td>Upper counting limit for Region C</td>
</tr>
<tr>
<td>COIN_TIME</td>
<td>Coincidence Time defined in protocol</td>
</tr>
<tr>
<td>DELAY_BEFORE_BURST</td>
<td>Delay Before Burst defined in protocol</td>
</tr>
<tr>
<td>COUNT_MODE</td>
<td>Count Mode defined in protocol</td>
</tr>
<tr>
<td>COMMENTS</td>
<td>Comments</td>
</tr>
<tr>
<td>COUNTS</td>
<td>List of counts/channel (one channel per line)</td>
</tr>
</tbody>
</table>

IPA Data File (Generate IRA Data File)
Select this checkbox to have QuantaSmart generate an IPA data file containing the most recent IPA parameter values. In the File Name field, enter a file name.

Additional Files (Prot.dat File)
Select this checkbox to have QuantaSmart generate a Prot.dat file containing information regarding the protocol. The Prot.dat file is an ASCII text file containing information for a protocol. The following keywords and values are contained in the Prot.dat file.

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P#</td>
<td>Protocol number</td>
</tr>
<tr>
<td>DATE</td>
<td>Date the protocol was performed</td>
</tr>
<tr>
<td>TIME</td>
<td>Time the protocol was performed</td>
</tr>
</tbody>
</table>
Keywords and Values

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTFILE</td>
<td>Filename containing count data in ASCII format</td>
</tr>
<tr>
<td>FILEPATH</td>
<td>Drive and directory containing count data file</td>
</tr>
<tr>
<td>PROTNAME</td>
<td>Protocol name</td>
</tr>
<tr>
<td>SN1UNK</td>
<td>Sample number of the first unknown</td>
</tr>
<tr>
<td>CTIME</td>
<td>Count time defined in protocol</td>
</tr>
<tr>
<td>DATAMODE</td>
<td>Data mode defined in protocol</td>
</tr>
<tr>
<td>AVG/SMPL</td>
<td>Individual sample data or replicate averages</td>
</tr>
<tr>
<td>NUCA</td>
<td>Nuclide selected for Region A</td>
</tr>
<tr>
<td>NUCB</td>
<td>Nuclide selected for Region B</td>
</tr>
<tr>
<td>LLA</td>
<td>Lower counting limit for Region A</td>
</tr>
<tr>
<td>ULA</td>
<td>Upper counting limit for Region A</td>
</tr>
<tr>
<td>LLB</td>
<td>Lower counting limit for Region B</td>
</tr>
<tr>
<td>ULB</td>
<td>Upper counting limit for Region B</td>
</tr>
<tr>
<td>LLC</td>
<td>Lower counting limit for Region C</td>
</tr>
<tr>
<td>ULC</td>
<td>Upper counting limit for Region C</td>
</tr>
<tr>
<td>#/VIAL</td>
<td>Number of times a sample is counted in the detector</td>
</tr>
<tr>
<td>#/SMPL</td>
<td>Number of replicates per sample</td>
</tr>
<tr>
<td>ULD</td>
<td>User ID entered in protocol</td>
</tr>
<tr>
<td>ADDLHEAD</td>
<td>Additional heading entered in protocol</td>
</tr>
<tr>
<td>\EOF</td>
<td>End-of-File</td>
</tr>
</tbody>
</table>

Additional Files (2000CA.dat File)
Select this checkbox to have QuantaSmart generate a 2000CA.dat file - an ASCII, comma-delimited text file including information about a protocol.
Worklist

This tab (Figure 4-9) in the Assay Definition window allows users to designate Positive Identification numbers (PID #) and sample names corresponding to sample numbers on a printout or electronic report. Users may also create a Sample List Library of frequently used sample names.

ᶾ Note: In the Worklist, every vial has a unique name to ensure that every vial in a sample group has a unique ID.

ᶾ Note: This feature may be optional. See model/option table (Appendix H) for details.

Figure 4-9. Worklist Tab (Assay Definition Window).
CHAPTER 4

Sample #
The number listed in this field represents the sample number on a printout or electronic report. The Sample # is the physical location of a sample vial in a cassette. For example, Position 1 in a cassette corresponds to Sample #1 in the Worklist.

PID#
This field contains the Positive (Sample) Identification Number (PID#). In this field, enter the cassette number (located on the end of each cassette) used to hold each sample. Position 1 in the cassette corresponds to Sample #1 in the Worklist.

Note: If any empty cassette positions exist, the corresponding sample in the Worklist should be left blank.

Sample Name
In this field, enter a name for each sample number (maximum characters = 25).

If your Tri-Carb instrument is equipped with the Bar Code Reader option, you may do the following:

- Enter a sample bar code in the Sample Name field of the Worklist tab. Then, if Validate Bar Code against worklist is selected in the Assay Details tab (page 131), the software will cross-check the bar codes read with those manually entered into the Worklist.
- Add a sample’s bar code to the Worklist. Select the Add Bar Code to worklist radio button in the Assay Details tab (page 131) to have the bar codes added to the Worklist as they are scanned. With the Replay feature, the scanned bar code will override the name in the Sample Name field, if a sample name was entered.

Tip: To simply bar code validation, add the SMPL_ID (Sample Name (from Worklist)) data field in the Report Definition tab to a report. Selecting this field will print the bar code for each sample listed on the report.

Insert Row
Click this button to add a blank row to the Sample Order table.

Delete Row
Click this button to delete selected rows from the Sample Order table.
Delete All
Click this button to delete all rows from the Sample Order table.

Sample Library
Click this button to display the Sample Library window. This window is used to create lists of frequently used sample names for the Sample List Library.

Import Worklist
Sample ID names saved in ASCII format can be imported into the Worklist tab. Click the Import Worklist button to import a Worklist; the Import Worklist window is displayed. Select the file to import as a Worklist, and then click Open.

About the Imported File
The file must have the exact header with the exact case and punctuation as shown in Figure 4-10. This is the format used by the Export Worklist function.

![Example of an Imported Worklist File.](image)

Figure 4-10. Example of an Imported Worklist File.
The file shown in Figure 4-10 would appear like Figure 4-11 when imported into the **Worklist** tab.

![Figure 4-11. Imported Worklist (Sample).](image.png)
Export Worklist
Sample ID names can be exported from the Worklist tab for future use. Any exported files will be saved in ASCII format. Click the Export Worklist button to export a Worklist; the Export Worklist window is displayed. Enter a name for the Worklist, and then click Save.

The exported Worklist file is saved in the required format shown in Figure 4-10 for later use the Import Worklist function to reuse the exported Worklist (if desired).

Note: The default folder for exporting Worklists is the Libraries folder. Worklists may be saved to other folders, as necessary.

Print Worklist
Click this button to print a Worklist.
Assay Details

This tab Figure 4-12 in the Assay Definition window allows users to define specific detail parameters for an assay.

Figure 4-12 Assay Details Tab (Assay Definition Window).

Assay Type

This field displays the assay type selected from the Select Assay Type window (Figure 3-12, page 53). Refer to page 83 for information on the different assay types.

Author

In this field, enter a name or other identification as the assay author. This is an optional entry.
Assay Description
In this field, enter descriptive information about the assay. This is an optional entry.

Date Created
This field displays the date on which the assay was created.

Date Modified
This field displays the date on which the assay was last modified.

Lock Assay
Select this checkbox to restrict editing functions for an assay; type a password in the Password field.

Password
In the Password field, enter a password to restrict editing functions for the assay. Select the Lock Assay checkbox before entering a password in this field.

Barcode Settings
This region contains parameters for the bar code reader. For these fields to be active (not grayed out), the bar code reader must first be enabled in the Bar Code Scanner Configuration window (page 70). The following settings are in the Barcode Settings area:

Note: This feature may be optional. See model/option table (Appendix H) for details.

- **Scan Bar Codes for this assay** – Select this checkbox to scan bar codes when the assay runs. If not, bar codes will not scan for this assay. If this checkbox is grayed out (unavailable), the bar code reader is not enabled in the Bar Code Scanner Configuration window (page 70).
- **Add Bar Code to worklist** – Select this radio button to have bar code(s) automatically added to the Worklist. When selecting this option, the Save Bar Code to file checkbox is available (not grayed out) for selection.
- **Validate Bar Code against worklist** – Select this radio button to have the bar codes read cross-checked with those manually entered into the Worklist. All bar codes read must match those entered into the Worklist.
- **Save Bar Code to file** – This checkbox is available when selecting the Add Bar Code to worklist radio button. When clicking this checkbox, also specify the file to which the bar code(s) will be saved. Click on the Browse button to navigate to the specified file.
Chapter 5
Libraries

Radionuclide information is stored in the Nuclide Library - consisting of Quench Standards and Sample Nuclides Libraries. If an instrument is equipped with the optional Alpha/Beta Discrimination feature, an Alpha/Beta Standards Library and Alpha/Beta Nuclides Library will also be included.

The Quench Standards Library is comprised of quench sets, each containing individual quench standards. Data from quench standards is used to build quench curves for calculating in assays. Quench Standards are counted once, and the entire spectrum for each is stored independent of assay information. This allows users to select and use the same quench set in various assays, and build a quench curve for each sample when counted.

The Sample Nuclides Library allows users to specify and save nuclide names, counting region limits, and quench sets for sample nuclides. Up to three nuclides can be defined for each entry to support the counting of multiple nuclides. These sample nuclide parameters are typically specified as part of the assay definition process, and may be edited.

The Alpha/Beta Standards and Alpha/Beta Nuclides Libraries are used in the same way as Quench Standards and Sample Nuclides Libraries. Information stored in these libraries is relevant only when performing Alpha/Beta assays, where both Alpha-emitting and a Beta-emitting radionuclides are quantified independently within the same sample vial.
Sample Nuclides Library

This window (Figure 5-1) allows users to enter information into (and retrieve information from) the Sample Nuclides Library. To access this library, select Libraries | Sample Nuclides from the menu bar.

![Sample Nuclides Window](image)

For assays, use the Sample Nuclides Library to define and save nuclide names, and counting region limits for radionuclides. Select a quench set for each sample nuclide using the Quench Set buttons in this window (Figure 5-1).

In Replay (page 181), use the Sample Nuclide Library to select a radionuclide for reanalyzing sample data.

Note: Fields enabled in the Sample Nuclides window will differ when accessed from different locations in the software. The list of nuclides displayed is dependent on assay type, nuclide, and number of quench sets associated with the nuclide.
The following table describes columns/fields in the Sample Nuclides table (Figure 5-1).

<table>
<thead>
<tr>
<th>Column/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclide Name</td>
<td>In this column of the Sample Nuclides window (Figure 5-1), select the appropriate nuclide(s) for an assay, and click OK. To define a different nuclide, click the Add button, and type the name of the nuclide to count. Define the parameters in the fields displayed in the new row in the table, and then click OK. To delete a nuclide from the list, select that nuclide, click the Delete button, and then click OK.</td>
</tr>
<tr>
<td>A: LL</td>
<td>This field represents the lower counting limit for Region A, measured in keV.</td>
</tr>
<tr>
<td>A: UL</td>
<td>This field represents the upper counting limit for Region A, measured in keV.</td>
</tr>
<tr>
<td>A: Half-life</td>
<td>This field represents the half-life of Nuclide A.</td>
</tr>
<tr>
<td>A: Units</td>
<td>This field represents the units for the half-life of Nuclide A.</td>
</tr>
<tr>
<td>B: LL</td>
<td>This field represents the lower counting limit for Region B, measured in keV.</td>
</tr>
<tr>
<td>B: UL</td>
<td>This field represents the upper counting limit for Region B, measured in keV.</td>
</tr>
<tr>
<td>B: Half-life</td>
<td>This field represents the half-life of Nuclide B.</td>
</tr>
<tr>
<td>B: Units</td>
<td>This field represents the units for the half-life of Nuclide B.</td>
</tr>
<tr>
<td>C: LL</td>
<td>This field represents the lower counting limit for Region C, measured in keV.</td>
</tr>
<tr>
<td>C: UL</td>
<td>This field represents the upper counting limit for Region C, measured in keV.</td>
</tr>
<tr>
<td>C: Half-life</td>
<td>This field represents the half-life of Nuclide C.</td>
</tr>
<tr>
<td>C: Units</td>
<td>This field represents the units for the half-life of Nuclide C.</td>
</tr>
</tbody>
</table>
The following information describes the buttons found in the *Sample Nuclides* window (Figure 5-1).

Add
Click this button to add a line to the table, and enter the new nuclide name. Manually enter regions A, B, and C.

Delete
Click this button to delete a selected entry from the table.

Clear Quench Sets
Click this button to unlink all quench sets linked to a selected sample nuclide. To unlink individual quench sets from a sample nuclide, right-click on the corresponding Quench Set button in the Sample Nuclides table (Figure 5-1), and click *Clear Quench Sets*.

Comment
Click this button to enter descriptive comments.

<table>
<thead>
<tr>
<th>Column/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quench Set: Low, Mid, High</td>
<td>Select a quench set by clicking one or more quench set button. Select Quench Set: Low if counting one nuclide in one counting region; select Quench Set: Mid if counting two nuclides in two counting regions; and select Quench Set: High if counting three nuclides in three counting regions. After clicking a Quench Set button, the Quench Standards window opens. In this window, select a quench standards name to use for calculating DPM values. The selected quench set names appear on the Quench Set buttons in the Sample Nuclides window. Note: Depending on the DPM options installed, users may not have access to all three quench sets.</td>
</tr>
<tr>
<td>Count Mode</td>
<td>The fields in this column are for display purposes only. Each field represents the count mode used for quench standards defined in the Quench Standards assay. The count modes are Normal, High Sensitivity, Low Level, and Ultra Low Level. Note: The count mode is associated with Quench standards used in DPM assays when linking the Quench set(s) to sample nuclides.</td>
</tr>
</tbody>
</table>
Quench Standards Library

This window (Figure 5-2) allows users to enter information into, and retrieve information from, the Quench Standards Library. To access this Library, select **Libraries | Quench Standards** from the menu bar.

![Quench Standards Window](image)

Figure 5-2. Quench Standards Window.

Quench set data is used to build quench curves for determining DPM in DPM assays. Use the Quench Standards Library to define and save a name, maximum energy value, and number of standards for each quench set for Quench Standards assays. Quench standards are counted once, and the entire spectrum for each quench standard stored in the Quench Standards Library, which allows users to select and use the same quench set in various assays.

In Replay (page 181), the **Quench Standards** window allows users to select a quench standards set to reanalyze sample data. Data from these quench sets is used to construct quench curves for determining sample DPM.

Note: Fields enabled in the Quench Standards window will be different when accessed from different locations within the software.
To count a new quench curve, the following fields must be completed in the Quench Standards table:

- **Name**
- **Max keV**
- **DPM**

The remaining fields—**# of Standards, Count Mode, Coincidence Time, Delay Before Burst, Date Counted,** and **Time Counted**—will be filled in after the quench standards are counted.

The following table describes the columns/fields in the Quench Standards table (Figure 5-2).

<table>
<thead>
<tr>
<th>Column/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>This is the name of the Quench Standards Set. To add a new standards set to the library, click the Add button. A blank row appears in the table; type the appropriate information in the fields provided.</td>
</tr>
<tr>
<td>Max keV</td>
<td>Enter the maximum energy in keV of the nuclide in quench standards.</td>
</tr>
</tbody>
</table>
| **DPM** | Enter the DPM value of quench standards. If the Quench Standards Set was purchased from PerkinElmer, the DPM value and reference date are printed on the vial label.
Note:
DPM value entered can be the value at the reference date, or value corrected for nuclide decay. If the uncorrected value is entered, activate the half-life correction feature before counting standards. To enter a corrected DPM, the half-life correction feature should not be activated. The Radionuclide Decay feature (page 139) in the QuantaSmart program can be used to perform decay calculation. |
| **# of Standards** | This field displays the number of standard vials contained within the Quench Standards Set.
Note:
This field is for information only. |
| **Count Mode** | This field displays the Count Mode used for counting a Quench Standards Set.
Note:
This field is for information only. |
The following information describes the buttons found in the Quench Standards window (Figure 5-2).

Add
Click this button to add a line to the table, and enter a new quench standards set.

Delete
Click this button to delete a selected entry from the table.

Comment
Click this button to enter descriptive comments.

Decay Calculator
Click on this button to display the Radionuclide Decay calculator. Refer to page 66 for more information.

<table>
<thead>
<tr>
<th>Column/Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Coincidence Time | This field displays the Coincidence Time used for counting a Quench Standards Set.
 Note: This field is for information only. |
| Delay Before Burst | This field displays the Delay Before Burst used for counting a Quench Standards Set.
 Note: This field is for information only. |
| Date Counted | This field displays the date on which the Quench Standards Set was counted.
 Note: This field is for information only. |
| Time Count Ended | This field displays the time the counting of the Quench Standards Set was completed.
 Note: This field is for information only. |
Quench Curve
Click this button to display the *Quench Curve* window (Figure 5-3) for a selected Quench Standards Set.

![Quench Curve Window](image)

Figure 5-3. Quench Curve Window.

The following information describes the fields and buttons in the *Quench Curve* window (Figure 5-3).

- **Name** – This field displays the quench standards set name used to generate the quench curve.
- **Last Date Edited** – This field displays the last date on which the quench curve was edited.
- **Quench Indicator** – From this field, select a Quench Indicating Parameter (QIP) for use in plotting a quench curve.
- **Comment** – Click this button to enter free-form comments; the Comment window is displayed.
- **Quench Curve Table** – This table displays values for the Quench Indicating Parameter, and percentage count efficiency for each quench standard used to generate a quench curve. A checkmark beside each data
point indicates that this point is used to plot a quench curve. To exclude points from the curve, de-select the checkboxes for the corresponding points.

Sample Nuclides
Click this button, in the Quench Standards window, to display the Sample Nuclides window (Figure 5-1).

Alpha/Beta Nuclides Library

Note: This feature may be optional. See model/option table (Appendix H) for details.

The Alpha Beta Nuclides window (Figure 5-4) allows users to define and save Alpha/Beta nuclide names, their associated counting regions, and the instrument’s discriminator setting (this allows discrimination between Alpha and Beta events) in the Alpha/Beta Nuclides Library. Using the Standard Set button in Column 2 of this library, reference parameters for an existing Standard Set.

To access the Alpha/Beta Nuclides Library, select Libraries | Alpha/Beta Nuclides from the menu bar.

![Figure 5-4. Alpha Beta Nuclides Window (Sample).](image-url)
The following table describes the columns/fields in the Alpha/Beta Nuclides table (Figure 5-4).

<table>
<thead>
<tr>
<th>Column/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>This field lists the name of the Alpha/Beta nuclide. To enter a name, click the Add button, which displays an additional row to define a new nuclide.</td>
</tr>
<tr>
<td>Standard Set</td>
<td>The field (if one is showing) lists the name of the Alpha/Beta standard set linked (associated) with the Alpha/Beta nuclide name. Click on the Standard Set field/button to display the entire Alpha/Beta Standards Library (page 144). In the Alpha Beta Standards window (Figure 5-5), highlight the desired standard linked to the nuclide, and then click OK. The standard set name selected appears beside the Alpha/Beta nuclide name in the Alpha Beta Nuclides window.</td>
</tr>
<tr>
<td>Beta A: LL</td>
<td>This is the counting region’s lower limit for the Beta nuclide in Region A, measured in keV. Note: This value cannot exceed 2000.</td>
</tr>
<tr>
<td>Beta A: UL</td>
<td>This is the counting region’s upper limit for the Beta nuclide in Region A, measured in keV. Note: This value cannot exceed 2000.</td>
</tr>
<tr>
<td>Beta A: Half Life</td>
<td>For Region A, enter the numeric value for half-life correction, if desired. See the next entry.</td>
</tr>
<tr>
<td>Beta A: Half Life Units</td>
<td>For Region A, select the appropriate units to apply to the numeric half-life value. Click on the field to display a drop-down list of available units: Minutes, Hours, Days, Weeks, or Years. Select the appropriate unit from the list.</td>
</tr>
<tr>
<td>Beta B: LL</td>
<td>This is the counting region’s lower limit for the Beta nuclide in Region B, measured in keV. Note: This value cannot exceed 2000.</td>
</tr>
<tr>
<td>Beta B: UL</td>
<td>This is the counting region’s upper limit for the Beta nuclide in Region B, measured in keV. Note: This value cannot exceed 2000.</td>
</tr>
<tr>
<td>Beta B: Half Life</td>
<td>For Region B, enter the numeric value for half-life correction, if desired. See the next entry.</td>
</tr>
</tbody>
</table>
The following information describes the buttons found in the Alpha Beta Nuclides window (Figure 5-4).

Add
Click this button to add a line to the Alpha/Beta Nuclides table, and enter the new nuclide name.

Delete
Click this button to delete a selected entry from the Alpha/Beta Nuclides table.

Comment
Click this button to enter descriptive comments.

<table>
<thead>
<tr>
<th>Column/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta B: Half Life</td>
<td>For Region B, select the appropriate units to apply to the numeric half-life value. Clicking on the field displays a drop-down list of available units: Minutes, Hours, Days, Weeks, or Years. Select the appropriate unit from the list.</td>
</tr>
<tr>
<td>Alpha: LL</td>
<td>This is the counting region’s lower limit for the Alpha nuclide, measured in keV. Note: This value cannot exceed 1000.</td>
</tr>
<tr>
<td>Alpha: UL</td>
<td>This is the counting region’s upper limit for the Alpha nuclide, measured in keV. Note: This value cannot exceed 1000.</td>
</tr>
<tr>
<td>Alpha: Half Life</td>
<td>In this field, enter the numeric half-life value (see the next entry).</td>
</tr>
<tr>
<td>Alpha: Half Life Units</td>
<td>Click on this field to display a drop-down list of available units: Minutes, Hours, Days, Weeks, or Years. Select the appropriate unit from the list.</td>
</tr>
<tr>
<td>Discriminator Settings</td>
<td>This is the discriminator value corresponding to the Alpha/Beta Standard Set linked (associated) with this nuclide (if any). If no Alpha/Beta Standard Set is linked, enter the discriminator value manually.</td>
</tr>
<tr>
<td>Count Mode</td>
<td>If an Alpha/Beta Standard Set is referenced by the nuclide, then Normal (Count Mode) is displayed. If no Alpha/Beta Standard Set is linked, this field remains blank.</td>
</tr>
</tbody>
</table>
Alpha/Beta Standards Library

Note: This feature may be optional. See model/option table (Appendix H) for details.

This window (Figure 5-5) allows users to define an Alpha/Beta Standard Set for use with Alpha/Beta assays. Once the information is entered in the Alpha/Beta Standards Library, an Alpha/Beta Standards assay can be run to establish the instrument’s optimum pulse discriminator value. This value is used to discriminate between Alpha and Beta nuclides in Alpha/Beta assays.

To access the Alpha/Beta Standards Library, select **Libraries | Alpha/Beta Standards** from the menu bar.

![Figure 5-5. Alpha Beta Standards Window (Sample).](image-url)
The following table describes the columns/fields in the Alpha/Beta Standards table (Figure 5-5).

<table>
<thead>
<tr>
<th>Column/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>This is the name of the Alpha/Beta Standard Set. To add a new standard set to the library, click the Add button. A blank row appears in the table. Type in the desired name for the Alpha/Beta Standard Set in the Name field.</td>
</tr>
</tbody>
</table>
| **Beta: LL** | This is the counting region’s lower limit for the Beta nuclide, measured in keV.
Note: This field is for information only in this library. |
| **Beta: UL** | This is the counting region’s upper limit for the Beta nuclide, measured in keV.
Note: This field is for information only in this library. |
| **Alpha: LL** | This is the counting region’s lower limit for the Alpha nuclide, measured in keV.
Note: This field is for information only in this library. |
| **Alpha: UL** | This is the counting region’s upper limit for the Alpha nuclide, measured in keV.
Note: This field is for information only in this library. |
| **Discriminator Type** | Click in the field and select **Automatic** or **Manual** from the drop-down list. Selecting **Automatic** allows the instrument to determine the pulse decay discriminator range. Selecting **Manual** allows users to enter upper and lower limits for the pulse decay discriminator.
*Note: When using **Automatic** mode, each pure standard source must generate a minimum of 50,000 CPM. A minimum of 10,000 counts (total combined Alpha + Beta) when using **Manual** mode.* |
| **Discriminator Range: LL** | If **Manual** was selected as the **Discriminator Type**, enter a value between 0 - 255 for the lower limit of the Pulse Decay Discriminator Range. |
| **Discriminator Range: UL** | If **Manual** was selected as the **Discriminator Type**, enter a value between the lower limit and 255 for the upper limit of the Pulse Decay Discriminator Range. |
The following information describes the buttons found in the *Alpha Beta Standards* window (Figure 5-5).

Add
Click this button to add a line to the table and enter a new Alpha/Beta Standard Set.

Delete
Click this button to delete a selected entry from the Alpha/Beta Standards table.

<table>
<thead>
<tr>
<th>Column/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Points</td>
<td>In this field, enter the number of points used to manually generate Alpha and Beta misclassification curves. This is not required if Automatic was selected in the Discriminator Type field. If Automatic was selected, 10 is displayed in the Number of Points field. If Manual was selected, up to 15 points can be entered.</td>
</tr>
<tr>
<td>Discriminator Computed</td>
<td>This field represents the optimal Pulse Decay Discriminator value, as determined by the instrument.</td>
</tr>
<tr>
<td>Discriminator in Use</td>
<td>This value represents the Pulse Decay Discriminator value currently in use.</td>
</tr>
</tbody>
</table>
| **Count Mode** | *Normal* is the Count Mode used to count the Alpha and Beta Standards.
Note: This field is for information only. |
| **Coincidence Time** | This field represents the Coincidence Time of 18 ηs used when counting the Alpha/Beta Standards assay.
Note: This field is for information only. |
| **Delay Before Burst** | This field represents the Delay Before Burst time of 75 ηs used when counting the Alpha/Beta Standards assay.
Note: This field is for information only. |
| **Date Counted** | This field represents the date on which the Alpha/Beta Standards assay was counted.
Note: This field is for information only. |
| **Time Count Ended** | This field represents the time at which the Alpha/Beta Standards assay was completed.
Note: This field is for information only. |
Comment
Click this button to enter descriptive comments.

AB Nuclides
Click this button to display the Alpha/Beta Nuclides Library (page 141).

AB Curve
Click this button to display a stored Alpha/Beta Standard misclassification (spillover) curve for the Standard Set selected in the table.

The Alpha/Beta Standard Curve window (Figure 5-6) shows data used to calculate the optimal discriminator setting for the Standard Set. This data is generated from counting an Alpha/Beta Standards assay; data points for the curve are shown in a table, and are also plotted graphically.

The calculated optimum discriminator setting appears as the Computed value in this window. To further minimize misclassified events for nuclides, enter a discriminator setting for the In Use value instead of using the optimum setting determined by the instrument. Higher values will favor alpha counting, and lower values will favor beta counting.

Spillover percentages are shown for both the Computed and In Use values. The In Use setting is reported, and used as the Discriminator Setting in the Alpha/Beta Standards Library.
Figure 5-6. Alpha/Beta Standard Curve Window.
Chapter 6

Normalization, Calibration, and IPA

Before any samples are counted, the system must be normalized and calibrated using Self Normalization and Calibration (SNC), then instrument performance assessed using Instrument Performance Assessment (IPA). The SNC/IPA protocol requires a special protocol flag and cassette loading step that depends on instrument model.

During the normalization and calibration portion of SNC, voltage applied to the two Photomultiplier Tubes (PMTs) is adjusted until synchronized in their response to a 14C standard. Then, the voltage to both PMTs is adjusted simultaneously until the 14C spectrum endpoint falls at the appropriate position in the Spectralyzer (on-board 4000 channel) multi-channel analyzer. This process is designed to ensure that the instrument accurately quantifies energy from all Beta-particle emissions.

During IPA, the instrument measures background, counting efficiency, sensitivity (Figure-of-Merit), and the reproducibility of sample counting (Chi-Square test). Refer to page 151 for more information about IPA.

The remainder of this chapter discusses the following topics:

- When to Perform These Procedures (page 150)
- Defining an Instrument Performance Assessment (page 151)
- Performing Self-Normalization and Calibration (SNC) (page 159)
When to Perform These Procedures

Normalization, calibration, and IPA occurs automatically by leaving the Self-Normalization and Calibration (SNC) and IPA cassette (containing the 14C calibration standard, unquenched Tritium standard, and background standard) on the instrument counting deck at all times. Whenever the SNC protocol flag is read by the instrument, a 23-hour timer is checked.

- If 23 hours have passed since the previous normalization and calibration, the instrument will perform the SNC/IPA procedure.
- If 23 hours have not passed since the previous calibration and normalization, the SNC/IPA cassette is bypassed, and the SNC/IPA procedure is not performed.

Ideally, the instrument normalization, calibration, and IPA should be performed on this timed, 23-hour (daily) cycle. SNC is only initiated if the sample changer is moving. It will not start at the 23-hour mode. Certain IPA parameters must be defined prior to the machine performing assessment procedures. Instrument normalization, calibration, and IPA may be performed manually (not using the 23-hour timer) by “resetting” the cycle flag on the cassette.

An IPA report is generated after each IPA procedure is completed. To access data generated from all IPA runs, select IPA | IPA Charts & Tables.

Note: This feature may be optional. See model/option table (Appendix H) for details.
Defining an Instrument Performance Assessment

Before performing IPA, first define the parameters that the instrument will use during the assessment process by selecting **IPA | IPA Definition** from the menu bar.

Figure 6-1 IPA Definition Window.
The following information describes the fields in the *IPA Definition* window:

3H Standard DPM
In this field, enter a DPM value for the unquenched, sealed Tritium standard (supplied). The DPM values for standards purchased from PerkinElmer are printed on the vial.

3H Reference Date
In this field, enter the reference (calibration) date for the unquenched Tritium standard. This is the date on which the standard has the specified amount of activity. Enter this value for half-life correction to occur. The reference date for standards purchased from PerkinElmer are printed on the vial.

14C Standard DPM
In this field, enter the DPM value for the unquenched, sealed ^{14}C standard (supplied). The DPM values for standards purchased from PerkinElmer are printed on the vial. A reference date is not required due to the long half-life of ^{14}C.

Background Count Time
In this field, enter the length of time (in minutes) the instrument will measure the background counts. The background for both ^{14}C and Tritium are collected simultaneously. Typically, a 60-minute count time is used to assess background.

3H FOM Threshold
This is the lower limit for the calculated Tritium Figure of Merit value (FOM = Efficiency2/Background). If the FOM value falls below the defined threshold, a message is displayed in the main window. The message will indicate an increase in background, or a decrease in efficiency. Typically, the default threshold can be used until sufficient IPA data for this parameter is collected, and an alternate threshold is established.

14C FOM Threshold
This is the lower limit for the calculated ^{14}C Figure of Merit value. If the FOM value falls below the defined threshold, a message is displayed in the main window. The message will indicate an increase in background, or decrease in efficiency. Typically, the default threshold can be used until sufficient IPA data for this parameter is collected, and an alternate threshold is established.
Chi-Square Tests (3H)
Select this checkbox to enable a test measuring reproducibility for Tritium sample counts. If the Chi-Square value for a Tritium standard counted 20 times falls within an acceptable range of values, the variation in individual sample counts is a result of sample count statistics, as opposed to an instrument problem.

Chi-Square Tests (14C)
Select this checkbox to enable a test measuring reproducibility for 14C sample counts. If the Chi-Square value for a 14C standard counted 20 times falls within an acceptable range of values, the variation in individual sample counts is a result of Tritium count statistics, as opposed to an instrument problem.

Note: The range of acceptable values for the Chi-Square test is based on a 95% confidence level. Therefore, statistically, one out of every 20 Chi-Square tests could fail.

RS-232 (Transmit IPA Data)
Select this checkbox to transmit IPA data to an external device via the RS-232 communications port. See RS-232 in Appendix B for serial port configurations.

Save IPA Data to Text File
Select this checkbox and then type a filename in the dialog box below it to save IPA data to a file.

of Datapoints to Establish Baselines
In this field, enter the number of IPA runs to generate baselines for Tritium and 14C background and efficiency. The range for this value is between 5 - 99.

3H Background Mean and Limit
The instrument calculates the mean value for Tritium background from the number of IPA runs (datapoints) specified. The limit is calculated as the baseline + 4 standard deviations. When the limit is reached, a message is displayed in the main window.

14C Background Mean and Limit
The instrument calculates the mean value for 14C background from the number of IPA runs (datapoints) specified. The limit is calculated as the baseline + 4 standard deviations. When the limit is reached, a message is appears in the main window.
CHAPTER 6

3H Efficiency Mean and Limit
The instrument calculates the mean value for Tritium efficiency from the number of IPA runs (data points) specified. The limit is calculated as 3% below the baseline, or less than 58% efficiency. When this limit is exceeded, a message is displayed in the main window.

14C Efficiency Mean and Limit
The instrument calculates the mean value for 14C efficiency from the number of IPA runs (data points) specified. The limit is calculated as 3% below the baseline. When this limit is exceeded, a message is displayed in the main window.

Reset Baselines
Click this button to delete the current baselines. The instrument will establish new baselines from the number of datapoints indicated in this window.

Not Processed
This message indicates that Chi-Square data has never been collected. To acquire Chi-Square data for Tritium or 14C, check the corresponding boxes in the IPA Definition window.
IPA Charts & Tables

Note: This feature may be optional. See model/option table (Appendix H) for details.

Figure 6-2 is an example of a typical IPA chart and table for 14C Efficiency.

![Figure 6-2. IPA Charts & Tables Window](image)

The IPA Charts & Tables window allows users to view, edit, and print data for individual IPA parameters in chart or tabular form. When data is displayed as a table, points can be included or excluded from a data set. To exclude a data point, uncheck the Include box beside the value in the list. The axis on the chart represents Mean and Standard Deviation values for a selected IPA parameter. Using the Print button, users can print an individual IPA chart or
The following information describes the fields in the IPA Charts & Tables window. Note that all available IPA charts have similar graphic displays, and include the same data items.

IPA Chart Type

In this drop-down field, select an IPA parameter to view in chart or tabular form.

The following IPA Charts are available:

- **14C Background** – This chart displays IPA test results for 14C background counts. This test checks for detector contamination or light leaks. The limit for this parameter is $> \text{baseline + 4 standard deviations}$. The mean and SD for this parameter are recalculated as new IPA data is generated.

- **14C Background Baseline** – This chart displays the 14C background data based on a fixed baseline value. The number of values used to generate the baseline is defined in the IPA Definition window. The default for this setting is “5”.

- **14C Chi-Square** – This chart displays IPA test results measuring the reproducibility of 14C sample counting. The test is performed by counting a single sample in the detector 20 consecutive times with a count time of 30 seconds for each repeat measurement. The normal range for this value is $7.63 - 36.19$ with 95% confidence. A properly performing instrument may generate Chi-Square values outside this range 2% of the time, due to the test’s statistical nature. The mean and standard deviations for this parameter are recalculated as new IPA data is generated.

- **14C FOM** – Figure of Merit (FOM) is a measure of the sensitivity of the instrument for 14C based on the 14C background, and instrument’s counting efficiency. The mean and standard deviations for this parameter are recalculated as new IPA data are generated.

- **14C Efficiency** – This chart displays the results of repeated 14C efficiency determinations. The mean and standard deviations for this parameter are recalculated as new IPA data is generated.

- **14C Efficiency Baseline** – This chart displays 14C efficiency data based on a fixed baseline value. The number of values used to generate a baseline is defined in the IPA Definition window. The default for this setting is “5”.

- **3H Background Baseline** – This chart displays the Tritium background data based on a fixed baseline value. The number of values used to generate the baseline is defined in the IPA Definition window. The default for this setting is “5”.
- **3H Chi-Square** – This chart displays IPA test results measuring the reproducibility of Tritium sample counting. The test is performed by counting a single sample in the detector 20 consecutive times with a count time of 30 seconds for each repeat measurement. The normal range for this value is 7.63 - 36.19 with 95% confidence. A properly performing instrument may generate Chi-Square values outside this range 2% of the time, due to the statistical nature of the test. The mean and standard deviation for this parameter are recalculated as new IPA data is generated.

- **3H Efficiency** – This chart displays the results of repeated Tritium efficiency determinations. The mean and standard deviation for this parameter are recalculated as new IPA data is generated. The limit for this parameter is < baseline minus 3%.

- **3H Efficiency Baseline** – This chart displays the Tritium efficiency data based on a fixed baseline value. The number of values used to generate the baseline is defined in the *IPA Definition* window. The default for this setting is “5”.

- **3H FOM** – Figure of Merit (FOM) is a measure of instrument sensitivity for Tritium based on the Tritium background, and the instrument’s counting efficiency. The mean and standard deviations for this parameter are recalculated as new IPA data is generated.

- **3H Background** – This chart displays the results of the IPA test for Tritium background counts. This test checks for detector contamination or light leaks. The limit for this parameter is > baseline + 4 standard deviations. The mean and SD for this parameter are recalculated as new IPA data is generated.

Total # of Points
This field indicates the total data points available for the selected IPA parameter.

Mean
This field displays a Mean value of the selected IPA parameter calculated from all included data points. A deleted data point is not used to determine the mean value of the IPA parameter.

Valid # of Points
This field indicates the number of points used to generate the selected chart.

Standard Deviation (SD)
This field displays the SD of a selected IPA parameter calculated from all included data points. A deleted data point is not used to determine the SD of an IPA parameter.
IPA Reports

Any IPA or calibration operation that fails to meet specifications will generate a warning message at the top of an IPA report. Errors or warnings listed at the bottom of this report represent the most recent status of any IPA parameter which generated messages during an IPA run.

Dates for errors or warnings may vary to reflect the most recent date on which data for individual IPA parameters were acquired; a report will also be printed after an IPA procedure is completed.

Figure 6-3 IPA Report (Sample)
Performing Self-Normalization and Calibration (SNC)

1. Select **IPA | IPA Definition** from the menu bar.

2. In the **IPA Definition** window (Figure 6-4), enter the date and activity of your standards (see page 151).

![IPA Definition Window](image)

3. Reset the SNC protocol flag to the reset position at far left when the plug is on the left end of the cassette.

4. Proceed to the following section (SNC Cassette Loading), and refer to the related procedures depending on your instrument type (Quantulus GCT or Other Tri-Carb Models).
SNC Cassette Loading

⚠️ CAUTION: Do not use unpurged, Low Level standards to calibrate the instrument, even if used in Low Level, High Sensitivity, or Super Low Level count mode.

♫ Note: For the following steps, a background vial and Tritium vial may be excluded from a cassette for faster SNC processing. However, a 14C and empty vial must always be present.

Quantulus GCT Instruments

1. Load the cassette with a purged, unquenched 14C standard.
2. Load the cassette with an empty vial in the second vial position. This vial must be of the same type and material (glass, plastic, Teflon) used to count low level samples.
3. Load the cassette with a purged, unquenched Tritium standard (optional).
4. Load the cassette with a purged background standard (optional).
5. Load the instrument with cassettes.
6. Click the green flag start button at the top of the main window to begin counting.

![Quantulus GCT SNC Cassette Load (Sample)](image)

Figure 6-5 Quantulus GCT SNC Cassette Load (Sample).
All Other Tri-Carb Models
1. Load the cassette with a purged, unquenched 14C standard.
2. Load the cassette with a purged, unquenched Tritium standard (optional).
3. Load the cassette with a purged background standard (optional).
4. Load the instrument with cassettes.
5. Click the green flag start button at the top of the main window to begin counting.

Figure 6-6 General Tri-Carb SNC Cassette Load (Sample).
Chapter 7

Advanced Features

This chapter discusses advanced features available with the Tri-Carb system:

- Priostat (page 164)
- Replay Feature (page 181)
- High Sensitivity and Low Level Counting (page 189)
- Alpha/Beta Counting (page 192)
- Tandem Processing (page 194)
- 2D Bar Code Reader Option (page 195)
Priostat

Priostat allows direct control over sample analysis features between two count types: Group Priostat and Sample Priostat (page 165).

Group Priostat

This method allows users to count a set of high priority samples while temporarily interrupting a current protocol. Select any existing assay for data reduction.

To use this feature, do the following:

1. Load the samples into cassettes, and then attach the Priostat flag to the first cassette to be counted.
2. Select Run | Group Priostat from menu bar. The Associate Assay for Priostat window appears.
3. In the window, select an assay used to count samples.

Note: The interrupted protocol number cannot be selected to count Group Priostat samples.

The instrument will search for the Priostat flag, and begin counting samples. Once completed, the instrument automatically resumes the interrupted protocol with the sample in place when Group Priostat counting began. Results of Group Priostat counts appear in the Output window.

4. Print the Group Priostat count results by selecting the print GUI icon in the Output window.

Note: To end Group Priostat protocol before counting all samples, from the Run menu, select End Group Priostat.
Sample Priostat

This method allows users to count individual samples by various analysis options without defining an assay. This is a high priority interrupt mode using a method similar to Group Priostat.

Note: This feature may be optional. See model/option table (Appendix H) for details.

The following items are available via the Run | Sample Priostat menu option:

- **Decay** (page 166) - Gauges the duration of luminescence (light) in a radioactive sample via a decay histogram.
- **SPC Decay** (page 167) - Gauges the duration of luminescence in a non-radioactive, luminescent sample via a decay histogram.
- **Identify Nuclide** (page 169) - Identifies an unknown nuclide in a sample using the Quench Indicating Parameters—SIS and tSIE.
- **Optimize Regions** (page 171) - Optimizes sample counting regions to provide the highest figure of merit in Normal count mode for samples with a constant quench.
- **Reverse Region** (page 173) - Optimizes sample counting region settings for a sample, and determine equivalent unquenched region settings for variable quench samples.
- **Low Level Optimize** (page 175) - Optimizes sample counting regions to provide the highest figure of merit for Low Level count mode.
- **Alpha/Beta Preview** (page 177) - Views the sample spectrum and approximates activity for samples with both Alpha and Beta-emitting nuclides.
- **Normal Preview** (page 179) - Views the sample spectrum and activity for samples using Normal count mode.
- **Low Level Preview** (page 180) - Views the sample spectrum and approximate sample activity using Low Level count mode.

Sample Priostat is a manual process:

- From the Run menu, select Count to begin sample counting.
- To continue to the next cassette sample, from the Run menu, select Next Sample.
- To stop a sample count, from the Run menu, select Stop.
- To end a Sample Priostat counting session, select End Sample Priostat from the Run menu.

Data generated during a Sample Priostat option is not saved. To print data, click the Print button in the Report window.
Decay
This feature allows users to confirm sample luminescence (light), and determine luminescence decay rates in a radioactive sample. With this mode, samples are recounted until a count is manually stopped. If the counts collected decrease with each successive count (assuming the nuclide half-life is long in relation to the total count time), the radioactive sample is confirmed as luminescent.

Users may view a sample spectrum or results plotted as a histogram with sample luminescence decay rates. This process is useful in establishing an appropriate Pre-Count Delay Time for assay samples.

Figure 7-1. Decay (Sample Priostat Window).

To count samples using Decay mode, do the following:

1. Load a sample(s) into a cassette. Attach the Priostat flag in the reset position to the cassette (Figure 1-3, page 7).
2. Select Run | Decay from the menu bar. The Sample Priostat window appears (Figure 7-1).
3. Select Run | Count from the menu bar. Sample counting will begin after the instrument identifies the Priostat flag.

4. Stop the sample count by selecting Run | Stop from the menu bar.

5. To count additional samples, select Next | Sample Count from the Run menu.

6. To stop the sample count, select Run | End Sample Priostat.

Single Photon Counting (SPC) Decay

This feature allows users to measure luminescence decay rates (and view the results plotted) for non-radioactive samples as a histogram. In SPC counts, a single PMT is used to collect counts for non-radioactive, luminescent samples. Using SPC Decay mode, samples are recounted until the process is manually halted. The rate at which counts decrease with each successive recount then determines a sample’s decay rate.

![Figure 7-2. SPC Decay (Sample Priostat Window).](image)
To count samples with SPC Decay mode, do the following:

1. Load your sample(s) into a cassette, attaching the Priostat flag in the reset position to the cassette (Figure 1-3, page 7).

2. Select Run | SPC Decay from the menu bar. The Sample Priostat window appears.

3. Select Run | Count from the menu bar. Sample counting begins immediately after the instrument identifies the Priostat flag.

4. To stop a sample count, select Run | Stop.

5. To count additional samples, select Next Sample | Count from the Run menu.

6. To stop the sample count procedure, select Run | End Sample Priostat.
Identify Nuclide
Several nuclides display a characteristic relationship between their calculated SIS and tSIE Quench Indicating Parameters. As a result, the Identify Nuclide feature allows users to identify the following nuclides in a single-label sample:

- Carbon-14 (14C) or Sulphur-35 (these nuclides cannot be differentiated)
- Chlorine-36
- Iron-55
- Nickel-63
- Phosphorus-32
- Tritium (3H)

Figure 7-3. Identify Nuclide (Sample Priostat Window).

To identify an unknown nuclide in a sample, do the following:

1. Load a sample(s) into a cassette, and attach the Priostat flag in the reset position to the cassette (Figure 1-3, page 7).
2. Select Run | Identify Nuclide from the menu bar. The Sample Priostat window appears.
3. Select Run | Count from the menu bar. Sample counting will begin after the instrument identifies the Priostat flag.
4. To stop a sample count, select Run | Stop.
5. To count additional samples, select **Next Sample | Count** from the **Run** menu.

6. To stop a sample count procedure, select **Run | End Sample Priostat**. An output window appears with the nuclide’s identity.
Optimize Regions
This function allows users to eliminate a portion of background counts, increasing the overall Figure of Merit for a counting procedure for samples with constant quench in a Normal count mode.

To automatically optimize sample counting regions for a sample’s chemical environment, perform the Reverse Region compensation procedure (page 173) before region optimization. This feature is typically used for samples with variable quench; it allows the instrument to gauge the endpoint equivalent for a nuclide spectrum if a sample was not quenched.

Figure 7-4. Optimize Regions (Sample Priostat Window).

To establish the optimal region settings for a nuclide using the Optimize Regions feature, do the following tasks:

1. Load the background vial in odd numbered vial positions, and the sample vials in even numbered vial positions.

 Note: A background vial must be counted for each sample vial. Attach the Priostat flag in the reset position to the cassette (Figure 1-3, page 7).

2. Select Run | Optimize Regions from the menu bar. The Sample Priostat window appears.
3. Select **Run | Count** from the menu bar. Counting will begin after the instrument identifies the Priostat flag.

4. Allow the samples to count long enough to reach a statistical accuracy (2S%) of 2.00 (equivalent to 10,000 gross counts) before stopping. The recommended minimum count time for a background sample is 10 minutes.

5. To stop a sample count, select **Run | Stop**.

6. To count additional samples, select **Run | Next Sample**.

7. To stop the Optimize Region count procedure, select the **Run | End Sample Priostat** menu item. An output window displays providing the optimal region settings for the sample nuclide.

8. Add this nuclide with the optimized region settings into the Sample Nuclide Library (page 134) for later use in various assays. Any Quench Standards Sets defined for use with this nuclide will automatically use the new region settings. No new quench standards must be counted if the nuclide is the same.

Notes: Enter values in the **Regions** fields to change axis and counting regions for Regions A, B, and C. To restore counting region limits defined for a nuclide in the Nuclides Library, click the **Restore** button. If no nuclide exists (or one is not available), the region default setting for the Lower Level is 0.0, and the Upper Level is 2000.0
Reverse Region
Use this compensation feature to optimize counting region settings to gauge a sample’s chemical environment. Reverse Region determines region settings using a factor based on the sample’s tSIE and observed spectral endpoint.

Figure 7-5. Reverse Region (Sample Priostat Window).

To establish optimal region settings with the Reverse Region option, approximate these settings using the Sample Priostat Preview function:

1. Load your sample(s) into a cassette. Attach the Priostat flag in the reset position to the cassette (Figure 1-3, page 7).
2. Preview samples using one of the Sample Priostat Preview options (Normal, Alpha/Beta, or Low Level). The appropriate option corresponds to the count mode used to count samples; these options are available via the Run | Sample Priostat menu option.
3. Select Run | Count. Counting begins after the instrument identifies the Priostat flag.
4. Allow the samples to count to a statistical accuracy (2S%) of 1.0 (equivalent to 40,000 gross counts). While previewing the sample, determine lower level and upper level region settings by observing the sample spectrum.

5. To stop the Sample Priostat count, select Run | Stop.

6. To count additional samples, select Run | Next Sample

7. Select Run | Reverse Region from the menu bar. The Sample Priostat window appears. Enter the region settings established during the preview count.

8. Select Run | Count.

9. To stop the Reverse Region sample count, select Run | Stop.

10. To count additional samples, select Next Sample | Count from the Run menu.

11. To stop the Reverse Region sample count, select the End Sample Priostat menu item. An output window displays with the Equivalent Unquenched Settings for Regions A, B, and C of the sample nuclide.

12. Add this nuclide with the optimized region settings into the Sample Nuclide Library (page 134) for later use in various assays. Any Quench Standards Sets defined for use with this nuclide will automatically use the new region settings. No new quench standards must be counted if the nuclide is the same.
Low Level Optimize

This function allows users to eliminate a portion of background counts, increasing the overall Figure of Merit for a counting procedure using the Low Level count mode.

To optimize sample counting regions for a chemical environment, perform the Reverse Region compensation procedure (page 173) prior to Low Level region optimization.

Figure 7-6. Low Level Optimize (Sample Priostat Window).

To establish optimal region settings for a nuclide, do the following tasks:

1. In the cassette, load the background vial in an odd numbered vial position, and the sample vials into even numbered positions.

 Note: A background vial must be counted for each sample vial. Attach the Priostat flag in the reset position to the cassette (Figure 1-3, page 7).

2. Select Run | Low Level Optimize from the menu bar. The Sample Priostat window appears.

3. Select Run | Count. Counting will begin after the instrument identifies the
Priostat flag.

4. Allow the samples to count long enough to reach statistical accuracy (2S%) of 2.00 (equivalent to 10,000 gross counts) before ending the count procedure. The recommended minimum count time for a background sample is 10 minutes.

5. To stop the a sample count, select the Run | Stop.

6. To count additional samples, select Next Sample followed by Count from the Run menu.

7. To stop the Low Level Optimize counting procedure, select the Run | End Sample Priostat menu item. An output window displays provides the optimal region settings for the sample nuclide.

8. Add this nuclide with the optimized region settings into the Sample Nuclide Library (page 134) for later use in various assays. Any Quench Standards Sets defined for use with this nuclide will automatically use the new region settings. No new quench standards must be counted if the nuclide is the same.
Alpha/Beta Preview

This function is a Sample Priostat option available via the **Run** menu which allows users to observe a sample spectrum, and approximate a sample count rate with Alpha and Beta emitting nuclides in the same vial.

![Figure 7-7. Alpha/Beta Preview (Sample Priostat Window).](image-url)
To preview sample counting using the Alpha/Beta Preview feature, do the following tasks:

1. Load your sample(s) into a cassette. Attach the Priostat flag in the reset position to the cassette (Figure 1-3, page 7).
2. Select **Run | Alpha/Beta Preview** from the menu bar. The **Sample Priostat** window is displayed.
3. From the **Run | Count**. Sample counting will begin after the instrument identifies the Priostat flag.
4. To stop a sample count, select **Run | Stop**.
5. To count additional samples, select **Next Sample | Count** from the **Run** menu.
6. To stop the sample counting procedure, select **Run | End Sample Priostat**.
Normal Preview
This function is a Sample Priostat option available via the Run menu which allows users to observe a sample spectrum, and approximate a sample count rate using Normal count mode.

![Sample Priostat Window]

Figure 7-8. Normal Preview (Sample Priostat Window).

To preview sample counting using the Normal Preview feature, do the following tasks:

1. Load your sample(s) into a cassette. Attach the Priostat flag in the reset position to the cassette (Figure 1-3, page 7).

2. Select Run | Normal Preview from the menu bar. The Sample Priostat window appears.

3. Select Run | Count. The sample counting will begin after the instrument identifies the Priostat flag.

4. To stop sample counting, select Run | Stop.

5. To count additional samples, select Run | Next Sample | Count.

6. To stop the sample counting procedure, select Run | End Sample Priostat.
Low Level Preview
This function is a Sample Priostat option available via the Run menu allowing users to observe the sample spectrum, and gauge sample count rates using a Low Level count mode.

Figure 7-9. Low Level Preview (Sample Priostat Window).

To preview sample counting using the Low Level Preview feature, do the following tasks:

1. Load your vial sample(s) into a cassette. Attach the Priostat flag in the reset position to the cassette (Figure 1-3, page 7).
2. From the menu bar, select Run | Low Level Preview. The Sample Priostat window appears.
3. Select Run | Count. The sample count will begin after the instrument identifies the Priostat flag.
4. To stop sample counting, select Run | Stop.
5. To count additional samples, select Run | Next Sample | Count.
6. To stop the sample counting procedure, select Run | End Sample Priostat.
Replay Feature

Note: This feature may be optional. See model/option table (Appendix H) for details.

This feature (see Figure 7-10) allows users to analyze previously collected data under various data reduction conditions. As each sample spectrum is saved, data may be reanalyzed using various data reduction parameters without recounting samples. Data reduction protocols listed in the Replay tab of the main window match those listed in the Protocols tab. Any changes made to protocols during Replay do not affect the original acquisition parameters.

To access the Replay function, select the Replay tab in the main window, and then select the data file to be reanalyzed. Right-click on the data file, and select Open for Replay.
Replay Conditions Tab

The Replay Conditions tab of the Replay Window (Figure 7-10) contains the following fields:

Assay Type
From this drop-down field, select the data type (CPM or DPM) for the instrument to calculate from the stored sample data and spectra.

Nuclide Group
Click this button to display the Sample Nuclides Library (page 134) for informational purposes.
Quench Indicator
From this drop-down field, select one of the following Quench Indicating Parameters (QIPs) used to calculate DPM with the instrument’s Replay feature:

- **tSIE** (transformed Spectral Index of External standard) assigns a numeric value to a quench associated with a sample. This is independent of the sample’s radioactivity amount and count rate. tSIE is the most accurate of the quench indicator options, and typically used for low count rate, variable quench, single label samples. Select this Quench Indicator only if samples were originally counted using tSIE.

- **tSIE/AEC** (transformed Spectral Index of External Standard coupled to Automatic Efficiency Correction). tSIE assigns a numeric value to the quench associated with a sample. As quench varies, the AEC automatically monitors and adjusts the counting region to exclude unwanted background. This setting is typically used for dual and triple label experiments with variable quench samples where optimal region settings are desired. Select this Quench Indicator only if the samples were originally counted using tSIE.

- **SIS** (Spectral Index of the Sample) assigns a numeric value to a quench associated with a sample. The SIS is determined from the spectral shape of a sample, and is based on actual sample counts. The SIS setting is typically used to monitor a quench level in single label, high count rate samples for CPM assays, or in single label Cherenkov counting.

Guard Compensation Technology (GCT)
From this drop-down field, set a GCT for this sample (e.g. Off, High, Low).

Luminescence/Colored Sample Correction
Select these checkboxes to activate luminescence (light) or colored sample correction. During Replay, the instrument corrects data for any counts involving luminescence or sample discoloration.

Quench Sets
From these drop-down fields, specify a sample quench setting between Low, Mid and High ranges.

keV Energy Regions
From this drop-down field, define background values for each of the three regions—A, B, and C.

/li>

Note: This feature may be optional. See model/option table (Appendix H) for details.
CHAPTER 7

Background CPM Subtraction
When this feature is activated by selecting its checkbox (Subtract Background), the instrument subtracts background values from sample data before reanalysis in Replay. Select a background source from the drop-down list:

- **Manual** – Select this option to manually define background values for each of the three regions—A, B, and C.
- **IPA** – After selecting this option, the instrument subtracts background values established during the calibration and IPA procedures from the entire spectrum of samples.
- **1st Vial** – After selecting this option, the instrument counts the first vial in a cassette for 10 minutes, or the defined protocol count time (whichever is greater) and establishes a CPM value for each region. These values are the background values subtracted from each sample in each assay region.

Apply Half-life Correction
When this feature is activated by selecting its checkbox (Apply Half-life Correction), the instrument corrects the sample data for half-life decay of the nuclide(s) being reanalyzed in Replay. The Reference Date and Time are used to make decay calculations; default settings correspond to the start of an assay.

Replay
When clicking this button, data is reanalyzed, and then the following Replay windows appear in the main window: *Replay Quench Curves* (page 185), *Replay SpectraView* (page 186), and *Replay Output* (page 187).
Replay Quench Curves Window

Figure 7-11 is an example of a Replay Quench Curves window for a dual-label assay in Replay.

Note: If the Quench Curve Block from the Report Definition tab of the Replay window is selected, only the curve is initially displayed. Double-click on the curve to view the Expanded Quench Curve window with standard points and efficiency displayed.

![Figure 7-11. Replay Quench Curves Window (Samples).](image)
Replay SpectraView Window

is an example of a *Replay SpectraView* window for a dual-label assay in Replay.

Figure 7-12 Replay SpectraView Window (Sample).
Replay Output Window
This window (see Figure 7-13) displays various assay parameters and data items. Customize information shown in this window by defining the output window/printer report; this report is defined in the Report Definition and Report Output tabs of the Replay window.

Figure 7-13. Replay Output Window (Sample).
CHAPTER 7

Report Definition Tab
This tab of the Replay Window (Figure 7-10, page 182) contains the same fields as the Report Definition tab of the Assay Definition window. For information on the fields in this tab, refer to page 106.

Report Output Tab
This tab of the Replay Window (Figure 7-10, page 182) contains the same fields as the Report Output tab of the Assay Definition window. For information on the fields in this tab, refer to page 115.

Special Files Tab
This tab of the Replay Window (Figure 7-10, page 182) contains the same fields as the Special Files tab of the Assay Definition window. For information on the fields in this tab, refer to page 120.

Worklist Tab
This tab of the Replay Window (Figure 7-10, page 182) contains the same fields as the Worklist tab of the Assay Definition window. For information on the fields in this tab, refer to page 125.

☞ Note: This feature may be optional. See model/option table (Appendix H) for details.
High Sensitivity and Low Level Counting

In liquid scintillation counting, detection limits rely on an instrument’s efficiency and ability to detect background counts. Tri-Carb instruments use Time Resolved Liquid Scintillation Counting (TR-LSC), an electronic background discrimination technique (burst counting circuitry) to enhance sensitivity.

Note: Sensitivity may be further enhanced via GCT on the Quantulus model.

The following table describes the differences between counting modes available on Tri-Carb instruments. However, counting modes available on your specific instrument are dependent on your Tri-Carb model, and the options purchased.

<table>
<thead>
<tr>
<th>Type of Counting</th>
<th>Background Discrimination</th>
<th>Instrument Count Mode</th>
<th>Typical Count Rate</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Minimal</td>
<td>Normal</td>
<td>> 500 CPM</td>
<td>Standard</td>
</tr>
<tr>
<td>Low Activity</td>
<td>Intermediate</td>
<td>High Sensitivity</td>
<td>50–500 CPM</td>
<td>Optional</td>
</tr>
<tr>
<td>Ultra Low Level</td>
<td>High</td>
<td>Low Level</td>
<td>1–20 CPM above background</td>
<td>Optional</td>
</tr>
<tr>
<td>Super Low Level</td>
<td>Maximum</td>
<td>Low Level</td>
<td>1–20 CPM above background</td>
<td>Optional with BGO Detector Guard only</td>
</tr>
</tbody>
</table>

Note: Do not use High Sensitivity or Low Level Count Modes to count Alpha samples in normal CPM or DPM counting assays. These TR-LSC discrimination modes are not appropriate for counting Alpha samples. Extremely low Alpha count rates will be observed.

An increase in sensitivity with various counting modes results from altering the amount of electronic background discrimination. For High Sensitivity and Low Level Count Modes, criteria employed for discriminating true Beta counts from background counts is more stringent. Loss of counting efficiency may occur as background discrimination increases. Background reduction, however, is usually far greater than any counting efficiency loss, resulting in greater counting efficiency as measured by E^2/B (Efficiency^2/Background). Counting high energy beta emitters like ^90Sr or ^90Y in High Sensitivity or Low
Level Count Mode requires optimization of TR-LSC parameters. This is accomplished by changing the Delay Before Burst value in the Count Corrections tab (page 102) of the Assay Definition window. The Delay Before Burst feature works by delaying the time by which an afterpulse discrimination begins to preserve high beta count efficiency at the lowest possible background.

Super Low Level Counting

This capability (for Tri-Carb Quantulus GCT 6220) uses a slow, scintillating BGO detector guard. The assembly replaces the conventional sample changer, and provides an increase in Figure of Merit performance compared to standard counting systems alone. With the exception of the normalization, calibration, and IPA procedures, the operation of Tri-Carb models equipped with a BGO detector is the same as standard Tri-Carb models.

The following information is relevant when performing Low Activity, Ultra Low Level, or Super Low Level Counting:

- Low potassium (K) glass vials are recommended when counting low levels of Tritium or 14C as these vials enhance discrimination between Beta pulses and background pulses. Certain plastic vials may be suitable for measuring Tritium in water.
- A water source used for making background determinations must be free of contamination by radionuclides. When counting very low levels of radionuclides (especially Tritium), even the smallest contamination will increase the count rate of a background sample. Therefore, it is necessary to secure a “dead” water source that is free of radioactivity.
- Samples must be free of extraneous sources of radionuclides, such as those found in scintillators, or any reagents used in preparation.
- Glass vials should be washed and rinsed with a dilute (0.1M) ethylene diamine tetraacetic acid (EDTA) solution, followed by a dead, deionized water rinse. This will reduce background and surface contaminants that could taint the detector guard or sample chamber.
- All vials used with this instrument should be sealed with Teflon® cap liners, and screw caps to prevent leakage.
Maximum vial dimensions are as follows:
- Small vials must not exceed 17.8 mm in diameter and 58.0 mm in height (including the cap).
- Large vials must not exceed 28.1 mm in diameter and 63.0 mm in height (including the cap).

The maximum sample activity is 100,000 CPM. If a sample exceeds this count rate, the system will automatically switch to the Normal Count Mode. This is vital when purchasing or preparing quench or reference standards for use in High Sensitivity or Low Level Count Mode.

The luminescence correction feature is not typically used when counting very low CPM samples. It is preferable to dark adapt samples before counting. The instrument provides a protocol-specific, pre-count delay of up to 99.99 minutes where a sample is lowered into the detection chamber, and allowed to dark adapt for a specified delay time. This allows any light from a sample vial to dissipate.

Cautions and Limitations
Note that background radiation varies throughout the world, and will be a factor in determining background. For example, higher elevations and geological areas where Uranium, and its decay products tend to concentrate will likely experience higher background levels. Exact instrument background and performance for a location must be determined at the installation site.

⚠️ Caution: When using High Sensitivity or Low Level Count Modes, do not use quench standards that are purged free of oxygen with an inert gas. Oxygen quenching in unpurged standards creates discrimination between background and true beta events. Unpurged standards are available from PerkinElmer. For best DPM performance, quench standards should match your unknown samples as closely as possible for cocktail, vial type, and sample volume.

☛ Note: Do not use Low Level (LL) standards to calibrate (SNC/IPA) the instrument. The Tri-Carb should always be calibrated with an unquenched, purged 14C standard.
Alpha/Beta Counting

Note: This feature may be optional. See model/option table (Appendix H) for details.

The Alpha/Beta Discrimination feature provides the ability to discriminate between gross Alpha activity and gross Beta activity in a mixed sample; results are reported as CPM Alpha (CPMa) and CPM Beta (CPMA and CPMB).

In liquid scintillation counting, emission energies for Alpha and higher energy Beta radionuclides (such as 90Sr/90Y) overlap, making discrimination between nuclides impossible based on energy discrimination. However, Alpha-induced pulses in a scintillation cocktail have longer durations than Beta-induced pulses. Pulse shape and duration are used to effectively discriminate between Alpha and Beta activity.

Tri-Carb instruments equipped with the Alpha/Beta Discrimination feature use Pulse Shape Analysis (PSA) to perform separation of Alpha and Beta events. PSA uses a shape-based discriminator (PSA setting) to evaluate the pulse duration of scintillation events, and categorize them as Alpha or Beta. Resolution of individual Alpha or individual Beta radionuclides is not performed.
A misclassification (spillover) curve is automatically created by varying PSA values when counting a pure Beta standard and pure Alpha standard. An instrument-determined, optimum PSA value is established at the crossover point of two curves where a minimal alpha/beta misclassification exists. Misclassification curve information and its associated optimum PSA value are stored in the Alpha/Beta Standards Library (page 144). In this Library, click the **AB Curve** button to open the **Alpha/Beta Standard Curve** window (Figure 7-14).

![Alpha/Beta Standard Curve Window](image)

Figure 7-14. Alpha/Beta Standard Curve Window.

A specific misclassification curve can be associated for use with an Alpha/Beta radionuclide in the Alpha/Beta Nuclides Library (page 141). By selecting the appropriate Alpha/Beta radionuclide in an assay, the PSA from the Alpha/Beta Nuclides Library is used for Alpha/Beta separation.

Note: Alpha/Beta standards are not required for Alpha/Beta Discrimination. A PSA value may be entered manually for an Alpha/Beta radionuclide. In this case, no Alpha/Beta misclassification curve is associated with the Alpha/Beta radionuclide. The PSA value is empirically determined. This capability is useful when no Alpha/Beta standards are
available, or when not possible to obtain a pure Alpha/Beta standard as is the case of counting ^{222}Rn, which decays by both Alpha and Beta emissions.

Note: For Alpha/Beta discrimination to succeed, quench level of Alpha/Beta standards (if used) should closely approximate unknown samples to be assayed. Increased quench adversely affects Alpha/Beta discrimination; the primary effect is increased misclassification of Alpha events.

Tandem Processing

This allows the Tri-Carb instrument to pass data from an assay to an application program. Application programs can provide various features including data manipulation (data reduction, graphing, etc.). Suitable application programs are commercially available, or can be written and compiled by users. The instrument can store appropriate data from an assay to a disk file, where the application program can access it without user intervention.

These data files are generated if the following is done:

- Create a report that includes the desired data fields.
- Specify that a data file of the desired format be created.
- Select any appropriate, special files that may be required by your application. Prot.dat and 2000ca.dat are special files necessary for certain PerkinElmer application programs, but additional data from spectrum files or IPA information may also be required.
- Select the Run Application checkbox in the Report Output tab (Figure 4-7, page 115). In the fields below the checkbox, specify the application program name, program type, and when the application should run for the assay.

Note: Each time the application program is run, it must be loaded into memory. Whenever possible, run the application program after a batch or cycle, as it is more efficient and faster than running the program after each sample.

- Specify a data file location in the Data Paths window (page 54) so the data files area is accessible to an application program.
2D Bar Code Reader Option

This is an optional feature providing automated sample tracking for the Tri-Carb system. Bar code data can be imported directly into a sample Worklist, saved to a file, or used to verify existing Worklists.

Note: This feature may be optional. See model/option table (Appendix H) for details.

Note: Linear 1D bar codes are also supported - if they fit onto the top of a vial cap. Use the bar code reader’s software to accommodate linear 1D bar codes (see the software’s help for instructions). Also disable all other bar codes not used for maximum speed and efficiency.

When using the Bar Code Reader option:

- On multiple cycles, bar codes are read and stored only during the first cycle. Bar codes are validated on subsequent cycles.
- On repeat counts, bar codes are only read on the first count; all other repeats will have the same bar code linked to them.
- Bar code parameters are set on a per assay basis, and are not parameters of a specific protocol flag being used. For information on setting bar code parameters, see page 131.

Refer to the following sections for more information on the bar code reader:

- Configure Barcode Reader on page 70 (explains how to enable the Bar Code Reader option, if installed).
- Barcode Settings on page 131 (discusses the bar code settings and parameters available through the Assay Details tab).
- Sample Name on page 126 (explains how bar code reading can be used with Worklists).
Bar Code Size and Placement

The 2D Bar Code Reader option supports the following bar code sizes: 10 mil, 15 mil, and 20 mil 2D data matrix bar codes. The bar code reader is capable of handling alphanumeric data. The 2D bar codes are placed on the top of the sample vial caps.

![Figure 7-15. Bar Code Reader Option and Sample Vials with 2D Bar Codes on Vial Caps.](image)
This chapter contains information about maintaining your Tri-Carb instrument, and troubleshooting any problems that may occur. The following information is discussed:

- Preventative Maintenance
- Storing Data (page 198)
- Power Failure Recovery (page 199)
- Troubleshooting Operational Errors (page 199)
- Troubleshooting IPA Errors (page 201)
- Troubleshooting Warnings and Messages (page 203)

Preventative Maintenance

With the exception of inspection and cleaning, there are no preventative maintenance steps to perform. Normal system preventative maintenance can be performed on a prescribed basis under a PerkinElmer Maintenance Agreement. Contact your PerkinElmer district office, or official PerkinElmer distributor for information on the availability of a maintenance agreement.
CHAPTER 8

Inspection

The following should be inspected on the Tri-Carb system at least once per week, or whenever a system malfunction occurs:

1. Verify that all cassettes and sample changer surfaces are free of dirt or oil.
2. Cassette movement should be smooth with no excessive vibration.
3. Check for loose electrical or mechanical connectors.

⚠️ CAUTION: Do not perform any disassembly.

4. Ensure that all controls and indicators are working.

Cleaning

Verify that the Tri-Carb instrument is unplugged before any cleaning, then clean outer surfaces with a soft cloth and mild detergent.

The sample changer lid should be cleaned using a soft cloth moistened with mild soap and water, and the system sample changer cleaned a soft cloth moistened with PicoClean-N, or an appropriate commercial cleaning agent.

If the Tri-Carb system has an optional refrigeration unit installed, check (monthly) that the filter is dust-free, and clean (rinse with water) as required.

Storing Data

Back Up Hard Drive

To safeguard against data loss due to hard drive failure, periodically back up all files in the Packard folder automatically created when QuantaSmart software is installed. This folder contains the TriCarb folder, including subfolders for various program and data files.
Folder Contents

TriCarb
The TriCarb folder (located in the Packard folder) contains several sub-folders containing various program or data files.

Note: Because the system requires certain program files to be located in specific folders, do not move files in the sub-folders.

The TriCarb folder contains the following sub-folders:

- **Assays** – These files contain information on parameters specified during the assay definition process.
- **Bin** – These files contain information on the execution of QuantaSmart program.
- **Drivers** – These files contain information on the USB device driver.
- **Help** – These files contain information on the Help system for the QuantaSmart program.
- **IPA Results** – These files contain information on IPA data.
- **Libraries** – These files contain information on Libraries used in the QuantaSmart program.
- **QuenchStdResults** – These files contain information on Quench Standards.
- **Results** – These files contain sample data generated from assays.

Power Failure Recovery
Tri-Carb allows the computer to continue to recover after the instrument experiences a power failure. Once power is restored, the instrument will resume counting the sample being processed at the time of the power failure. Rarely, if ever, will acquired data or replay data be lost during a power failure.

Troubleshooting Operational Errors
The following problems may occur during normal system operation:

Erratic Sample Changer Motion
- Verify that the instrument lid is closed. The sample changer optical sensors are affected by bright light.
- Verify that no obstructions exist in the sample changer.
- Confirm that the Varisette cassette is properly labeled with a protocol flag.
No Display
- Confirm that the monitor power switch is in the ON position, and the monitor cable is connected to the monitor port on the left side of the Tri-Carb instrument.
- Reboot the computer - press <Ctrl+Alt+Delete> on the keyboard.

No Printout
- Confirm that the printer power switch is on.
- Verify that the ON-LINE indicator light is on.
- Confirm that the printer has sufficient paper.
- Reset the printer by powering it off and on again.

Protocol Flag Bypassed
- Verify that an assay has been defined and associated with the protocol flag number.
- Verify that the protocol flag is active (Figure 1-3, page 7).
- Determine if all sample counting cycles have completed.

Sample Changer Fails to Respond to Sample Changer Commands
- Confirm that the Tri-Carb instrument power switch (Figure 1-6, page 15) is in the on position.
- Verify that the sample changer deck contains the appropriate number of cassettes. Push all cassettes on deck toward the detector chamber. If any cassettes remain in the “Clear Zone” (at the front of the deck), there are too many cassettes on the sample changer deck.
- Determine if the instrument has begun Priostat recovery.
- Check if an error message is displayed in the Status Bar of the main QuantaSmart window.
- Reset the Tri-Carb instrument by turning the power switch off for 10 seconds, and then turn the switch back on (Figure 1-6, page 15).

Sample Changer Idle
- Confirm that the Tri-Carb instrument power switch (Figure 1-6, page 15) is in the ON position.
- Determine if all sample counting cycles have completed.
- Check for an error message in the Status Bar of the main QuantaSmart window, and on the printout.
- Determine if a sample is counting.
Samples Fail to Load
- Verify that an assay has been defined and associated with a protocol flag.
- Determine if all sample counting cycles have completed.
- Check the vial dimensions. See Specifications for sample vials (page 9).

System Locks Up
- Reboot the computer by pressing <Ctrl+Alt+Delete> on the keyboard.
- Reset the Tri-Carb instrument by turning the power switch off for 10 seconds, and then turn the switch back on (Figure 1-6, page 15).

Cannot Access Diagnostics
The Diagnostics windows are typically used by PerkinElmer Technical Service to assess the system’s functional status. The TSE Diagnostics item in the Diagnostics menu are accessible only if you can log onto the system with TSE rights.

Troubleshooting IPA Errors
The following problems occur when IPA parameters are outside specified limits:

High Carbon-14 Background
- Check for a contaminated detector by counting an empty vial and displaying the spectrum via the SpectraView window. If contamination is found, call PerkinElmer Technical Service.
- Check for increased environmental radiation; determine if high energy sources are stored near the instrument.
- Check for electrostatic discharge with a static controller.
- If gamma sources are used in a lab, perform a wipe test to check for gamma nuclide contamination on a vial.
- Check for electronic noise; use a separate power line for the instrument, or call PerkinElmer Technical Service.

High Chi-Square
This may be caused by a problem with the high voltage power supply, or Photomultiplier Tubes (PMTs). Call PerkinElmer Technical Service.

> **Note:** A properly performing instrument may exceed the 7.63 - 36.19% limit 2% of the time. This is a result of the Chi-Square test’s statistical nature.
CHAPTER 8

High Tritium Background

- Check for a contaminated detector by counting an empty vial and displaying the spectrum in the SpectraView window. If a contamination is found, call PerkinElmer Technical Service.
- Check for increased environmental radiation; determine if high energy sources are stored near the instrument.
- Check for electrostatic discharge; use the static controller.
- If gamma sources are used in the lab, perform a wipe test check for gamma nuclide contamination on the vial.
- Check for electronic noise; use a separate power line for the instrument, or call PerkinElmer Technical Service.

Low Carbon-14 Figure of Merit

- Verify that the previous efficiency measurement is within ±2% when using the same standard. If not, clean the outside of the vials and re-run.
- Check that ^{14}C background and efficiency values are within specification (when using unquenched standards). If so, IPA standard integrity is suspect.

Low Chi-Square

- Check for electronic noise. This typically creates spurious pulses of uniform rate. Use a separate power line for the instrument, or call PerkinElmer Technical Services for assistance.

Note: A properly performing instrument may exceed the 7.63 - 36.19% limit 2% of the time. This is a result of the Chi-Square test’s statistical nature.

Low Tritium Efficiency

- Verify that the instrument is calibrated. If not, perform an SNC calibration (page 159).
- Confirm that the correct standard (unquenched and purged of oxygen) is being used.
- Confirm that the tSIE standard value is in a range of 950–1050. If not, check the standard expiration date.
- Confirm that the efficiency is ±2% of the previous measurement using the same standard. If not, clean the vial exterior and re-run.
Low Tritium Figure of Merit
- Verify that the previous efficiency measurement is within \(\pm 2\% \) when using the same standard. If not, clean the vial exteriors and re-run.
- Check that Tritium background and efficiency values are within specification (when using unquenched standards). If so, the IPA standards integrity is suspect.

Troubleshooting Warnings and Messages
The following information describes Tri-Carb system messages (presented in alpha-numerical order) and provides troubleshooting tips.

2000CA File Error
The system encountered an error while writing the 2000CA.DAT file. This file is needed by PerkinElmer application programs. Re-run the assay. If the error reoccurs, call PerkinElmer Technical Service.

? (Messages column)
If this character appears in the MESSAGES column of a report, a math error has occurred when calculating a sample result.

< (Messages column)
If this character appears in the MESSAGES column of a report, the sample was rejected due to a low count rate within the first 30 seconds of a sample count.

(Messages column)
If this character appears in the MESSAGES column of a report, the sample was determined to be heterogeneous. Typically, this is due to phase separation in the sample vial.

* (Messages column)
If this character appears in the MESSAGES column of a report, the sample counts exceeds 100,000 in High Sensitivity or Low Level count mode. The instrument automatically switched to Normal count mode.

A (Messages column)
If this character appears in the MESSAGES column of a report, this data line represents an average value for replicate sample vials.
A quench set associated with this assay’s nuclide was modified after being run.
Information for a quench set has changed in the Quench Standards Library (page 137), but the standard set has not been recounted after changes were made.

Recount the quench set.

A quench set associated with this assay’s nuclide was not counted with a sufficient number of samples.
A sample nuclide has been defined in the Sample Nuclides Library (page 134), but the quench set selected for the nuclide has not been counted. A minimum of two quench standards must be counted for each quench set.

Count the appropriate quench standards.

An active protocol is invalid for group Priostat.
An active protocol was selected as a Group Priostat protocol (page 164).

Select a different protocol, or wait until the active protocol is completed.

B (Messages column)
If this character appears in the MESSAGES column of a report, this data line represents data about a background subtraction vial.

BACK PIN JAM FWD
A sample changer error has occurred.

No action is required unless a message is printed. If so, call PerkinElmer Technical Services.

BACK PIN JAM REV
A sample changer error has occurred.

No action is required unless a message is printed. If so, call PerkinElmer Technical Services.

BAD ELEV/EXT STD
A sample changer error has occurred.

No action is required unless a message is printed. If so, call PerkinElmer Technical Services.
Bad shutter
A sample changer error has occurred.

No action is required unless a message is printed. If so, call PerkinElmer Technical Service.

BGO spectrum not present
External standard counting was attempted on an instrument with a BGO detector guard before the SNC/IPA calibration was performed.

Perform the SNC/IPA calibration (page 159).

C (Messages column)
If this character appears in the MESSAGES column of a report, this indicates that a color quench correction for this sample is suspect (tSIE < 100).

The reported sample results may be invalid.

Cannot associate an assay with the Priostat flag while that assay is active.
An assay cannot be associated with the Priostat flag while Priostat is active (page 164).

Allow the current set of Priostat samples to finish counting before changing the assay associated with the Priostat protocol flag.

Cannot associate another assay to this flag while the current assay associated with this flag is active.
Multiple assays cannot be associated to the same protocol flag number.

Allow the instrument to complete the current assay, disassociate the assay from the protocol flag, and associate a different assay to it.

Cannot change Priostat flag association while Priostat is active. Stop priostat first.
The assay associated with the Priostat flag cannot be changed while Priostat is active (page 164).

Allow the current set of Priostat samples to finish counting before changing the assay associated with the Priostat protocol flag.
Cannot disassociate assay from this flag while the assay is active.
The protocol flag for the assay that is currently counting cannot be
disassociated from the assay while active.

Allow the instrument to complete the current assay before disassociating it
from the protocol flag.

Cannot find the protocol associations file.
An assay file has been moved from the Assays folder, or an assay file has been
deleted.

Call PerkinElmer Technical Services.

Cannot open serial port. Make sure that it is configured and not in use
by some other program.
A multiple instance of the QuantaSmart program may be running.

Close any multiple instances of the program.

Cannot read results file.
A results file may have been moved from the Results folder or a results file
has been deleted.

Call PerkinElmer Technical Services.

Cannot replay assays.
The assay type cannot be used in Replay.

Only CPM, Single, Dual, Triple, and FS DPM assays may be used in Replay.

Can’t drop vial.
A sample changer error has occurred.

No action is required unless a message is printed. If so, call PerkinElmer
Technical Services.

Can’t raise vial.
A sample changer error has occurred.

No action is required unless a message is printed. If so, call PerkinElmer
Technical Services.
Check the assay file: either the assay file does not exist or the assay file format is corrupted.
An assay file is corrupted, or a standard associated with an assay has been deleted.

Call PerkinElmer Technical Services.

Communications Interrupted.
An RS-232 failure has occurred.

Restart the QuantaSmart program.

E (Message column)
If this character appears in the **MESSAGES** column of a report, this indicates that the quench indicating parameter (SIS or tSIE) value was extrapolated from a portion of quench curve beyond an end data points.

Depending on how well the curve fits the standard data points, the extrapolated quench value for the sample may not be accurate.

Elevator down.
A sample changer error has occurred.

No action is required unless a message is printed. If so, call PerkinElmer Technical Services.

Elevator up.
A sample changer error has occurred.

No action is required unless a message is printed. If so, call PerkinElmer Technical Services.

Error in BGO spectrum determination.
An error was encountered during the acquisition of the BGO detector guard spectrum while counting the SNC/IPA protocol.

Re-run the SNC/IPA calibration procedure. If the problem persists, call PerkinElmer Technical Services.

EXT STD IN.
A sample changer error has occurred.

No action is required unless a message is printed. If so, call PerkinElmer Technical Services.
EXT STD OUT.
A sample changer error has occurred.

No action is required unless a message is printed. If so, call PerkinElmer Technical Services.

Fatal SC error.
An unrecoverable sample changer error has occurred.

Call PerkinElmer Technical Services.

FRONT PIN JAM FWD
A sample changer error has occurred.

No action is required unless a message is printed. If so, call PerkinElmer Technical Services.

FRONT PIN JAM REV.
A sample changer error has occurred.

No action is required unless a message is printed. If so, call PerkinElmer Technical Services.

I (Messages column)
If this character appears in the MESSAGES column of a report, this sample has been found to be Indeterminate in a Direct DPM assay. This means that the system could not reliably determine a DPM value for this sample.

When a sample is found Indeterminate, the DPM reported may be valid if the sample is not heavily quenched. Check the tSIE sample value to determine quench level. If the tSIE exceeds 200, the DPM reported is likely accurate within statistical counting error. Accuracy is independent of cocktail density variation, vial size or type, sample volume, color, and chemical quench.

Internal error
A system error (such as file mismatch) has occurred on the instrument.

Perform a cold start of the instrument. If the error message reappears, call PerkinElmer Technical Services.

Instrument off line
The instrument is not responding to the computer.

Verify that the instrument’s power is on (Figure 1-6, page 15).
IPA error C-14 chi-square
The Chi-Square test failed while counting the ^{14}C source.

Re-run the Chi-Square test. If the test fails again, call PerkinElmer Technical Services.

IPA error C-14 LCR
The ^{14}C source does not contain enough activity.

Check that the correct source is being used. Use a new source, if necessary.

IPA error-H-3 chi-square
The Chi-square test failed while counting the Tritium source.

Re-run the Chi-Square test. If the test fails again, call PerkinElmer Technical Services.

IPA error-H-3 LCR
The Tritium source does not contain enough activity.

Verify that the correct source is being used. Use a new source, if necessary.

LOST PIN POS
A sample changer error has occurred.

No action is required unless a message is printed. If not, call PerkinElmer Technical Services.

Missing Vial
This message indicates that a vial is missing from the cassette.

No Quench sets specified
No quench set has been selected for the assay.

Select the appropriate quench set from the Quench Standards Library (page 137). If an appropriate standard set does not exist, perform an appropriate Quench Standards assay.

No quench standard is defined for this assay
A standard being used by a sample nuclide in an assay has been de-selected.

Re-select the assay standard.
Normalization error-both tubes LCR
The count rate in both PMTs is too low.

Verify that the unquenched 14C source is in the first vial position in the cassette. Call PerkinElmer Technical Services.

Normalization error-both tubes SIS
The count rate in both photomultiplier tubes is too low.

Verify that the unquenched 14C source is in the first vial position in the cassette. Call PerkinElmer Technical Services.

Normalization error-EXT STD
The external standard is not loading properly.

Call PerkinElmer Technical Services.

Normalization error-left PMT LCR
The count rate in the left PMT is too low.

Check that the unquenched 14C source is in the first vial position in the cassette. Call PerkinElmer Technical Services.

Normalization error-left PMT SIS
The left photomultiplier tube has detected inappropriate beta energy.

Check that the unquenched 14C source is in the first vial position in the cassette. Call PerkinElmer Technical Services.

Normalization error-right PMT LCR
The right photomultiplier tube detected inappropriate beta energy.

Check that the unquenched 14C source is in the first vial position in the cassette. Call PerkinElmer Technical Services.

Normalization error-right PMT SIS
The right photomultiplier tube detected inappropriate beta energy.

Check that the unquenched 14C source is in the first vial position in the cassette. Call PerkinElmer Technical Services.
Not normalized
The instrument has not been normalized.

Perform the calibration procedure (page 159) before counting any samples.

Power fail
The system has recovered from a power failure.

Check your sample results for missing data.

Power recovery
Power to the instrument was lost.

The instrument should resume the function it had been performing when the power failure occurred.

Priostat ready to count
A Priostat sample has been loaded into the detection chamber. Sample counting has not begun.

To start sample counting, click the green start button on the toolbar.

Priostat SC NO ACK
The selected sample changer control command was not accepted by the instrument during Priostat counting mode.

Check the instrument **State** field in the main window for an INSTRUMENT OFF-LINE message. If this message appears intermittently, shut down Windows, and then turn the instrument power off and back on. If this message does not appear, wait and periodically retry the sample changer commands.

Priostat search
The instrument is searching the sample changer deck for the Priostat cassette.

Verify that the Priostat cassette is on the sample changer deck.

R (Messages column)
If this character appears in the **MESSAGES** column of a report, this report line represents data about a reference standard vial, used for calculating % Ref.
S (Messages column)
If this character appears in the MESSAGES column of a report, this report line represents data about a quench standard vial, used for generating quench curves.

Shutter close
A sample changer error has occurred.

No action is required unless a message is printed. If this message appears on a printout, call PerkinElmer Technical Services.

Shutter open
A sample changer error has occurred.

No action is required unless a message is printed. If this message appears on a printout, call PerkinElmer Technical Services.

Skipped cassette with no label
A cassette on the sample changer deck is without an ID label.

Attach an ID label to the cassette.

The instrument encountered a protocol flag for which there is no assay associated. This protocol was not counted.
There is a cassette on the instrument’s sample changer deck with a protocol flag to which no assay has been associated.

Remove the cassette from the sample changer deck, or associate an assay to the protocol flag number.

The nuclide associated with this assay has an incorrect number of Quench sets.
One or more quench sets associated with a multiple label sample nuclide has been deselected from the assay, or deleted from the library.

Re-select the appropriate quench sets for the sample nuclides. Recount the quench set, if necessary.

The nuclide associated with this assay was not found in the nuclide library. Unable to retrieve nuclide information.
The sample nuclide defined for the assay was deleted from the Sample Nuclides Library (page 134).

Re-enter the sample nuclide information in the Sample Nuclides Library.
The quench standard associated with this assay’s nuclide was not found in the Quench standard library.
A quench set associated with a sample nuclide in an assay has been deleted from the library.

Re-enter the standard information in the library and recount the standards.

The standard associated with this assay has not been counted.
The standard selected for the assay has not been counted before performing the assay.

Count the standards and restart the assay.

Vial release close
A sample changer error has occurred.

No action is required unless a message is printed. If this message appears on a printout, call PerkinElmer Technical Services.

Vial release open
A sample changer error has occurred.

No action is required unless a message is printed. If this message appears on a printout, call PerkinElmer Technical Services.

W (Messages column)
If this character appears in the MESSAGES column of a report, this indicates that the Positive ID (PID) entered in the Worklist does not match the PID read from the cassette.

Verify that the PID number used in the Worklist matches the number found on the appropriate cassette.

Warning: C-14 Normalization DPM not defined.
The 14C Normalization DPM has not been defined.

In the IPA Definition window (page 151), enter a DPM value for the 14C Standard.

Warning: H-3 Normalization DPM not defined.
The Tritium Normalization DPM has not been defined.

In the IPA Definition window (page 151), enter a DPM value for the Tritium Standard.
Warning: IPA background data not available.
No IPA background values are available for background subtraction.

Perform the IPA procedures (page 151).

Warning: Questionable C-14 background value-please view historic data.
The background source failed the IPA check in the 14C region.

If 14C background is high (and Tritium background is normal) there may be an increase in environmental radiation due to detector contamination, or light is leaking into the chamber. Check the background spectrum via the SpectraView window, and review historic IPA data. Call PerkinElmer Technical Services.

Warning: Questionable C-14 chi-square value-please view historic data.
The Chi-Square result is outside the range of 7.63 - 36.19.

Verify the integrity of the 14C spectrum via the SpectraView window. Repeat the Chi-Square test. If the result falls outside the range on the repeat test, call PerkinElmer Technical Services.

Warning: Questionable C-14 figure of merit value-please view historic data.
Check the Figure-of-Merit threshold value. Clean the 14C and background sources, and repeat the test. Check the efficiency and background values for 14C. If these values are within specifications, call PerkinElmer Technical Services.

Warning: Questionable H-3 background value-please view historic data.
Check that the correct background sample is in vial position number 3. The detector may be contaminated, or light is leaking into the detector. Review the historic IPA data, and call PerkinElmer Technical Services.

Warning: Questionable H-3 chi-square value-please view historic data.
The Chi-Square result is outside the range of 7.63 - 36.19.

Verify the 14C spectrum integrity via the SpectraView window. Repeat the Chi-Square test. If the result falls outside the range on the repeat test, call PerkinElmer Technical Services.
Warning: Questionable H-3 efficiency value-please rerun quench curves and view historic data.
The Tritium source failed the IPA check, and the tSIE value for the source is less than 950.

Check that the correct source is being used in the second vial position of the SNC/IPA cassette. Check for dirt or oil on the Tritium standard. Check the DPM value entered in the IPA Definitions window (page 151). Review the historic IPA data, and re-run the quench curve. Call PerkinElmer Technical Services.

Warning: Questionable H-3 efficiency value-please view historic data.
The Tritium source failed the IPA check.

Check that the correct source is being used in the second vial position of the SNC/IPA cassette. Check for dirt or oil on the Tritium standard. Check the DPM value entered in the IPA Definitions window (page 151), and review historic IPA data. Call PerkinElmer Technical Services.

Warning: Questionable H-3 figure of merit value-please view historic data.
The Figure-of-Merit value for Tritium is below the threshold entered in the IPA Definitions window (page 151).

Check the Figure-of-Merit threshold value, and efficiency/background values for Tritium. If these values are within specifications, call PerkinElmer Technical Services.

Warning: System not normalized.
The instrument is not normalized.

Perform the instrument Calibration and Normalization procedures (page 159).

Warning: User Has Modified Count Conditions
Changes have been made to the assay currently being counted.

Allow the current assay to finish counting before making changes.

You cannot exit the application because the instrument is counting a protocol.
The QuantaSmart program cannot be closed while the instrument is counting samples.

Allow the instrument to finish counting before closing the program.
You cannot exit the application because the instrument is counting group priostat. The QuantaSmart program cannot be closed while the instrument is counting samples.

Allow the instrument to finish counting before closing the program.

You cannot exit the application because the instrument is engaged in a sample priostat activity. The QuantaSmart program cannot be closed while the instrument is counting samples.

Allow the instrument to finish counting before closing the program.
Appendix A

Calculations

This appendix describes calculations performed by the Tri-Carb instrument including:

- Background Correction
- Background Threshold (page 218)
- Chi-Square Calculation (page 218)
- Disintegrations Per Minute (DPM) (page 218)
- Efficiency (page 219)
- Figure of Merit (FOM) Calculation (page 219)
- Half-life Correction (page 219)
- IPA Background (page 219)
- Low Count Reject (LCR) (page 220)
- LUM (% Luminescence) (page 220)
- Radioactivity Units (page 220)
- 2 Sigma % (%2s) (page 221)
- Radionuclide Decay Calculator (page 222)
- % Reference (% Ref) (page 222)

Background Correction

This process subtracts backgrounds from sample nuclide activity. The background correction is performed before any other calculations (e.g. half-life corrections) are performed. The correction of the sample count for background is calculated as:

\[
\text{CPM}_{\text{corrected}} = \text{CPM}_{\text{sample}} - \text{CPM}_{\text{background}}
\]
Background Threshold
This value is expressed as Counts Per Minute (CPM) and calculated from the Instrument Performance Assessment (IPA) background value.

\[
BKG_{\text{threshold}} = BKG_{\text{IPA}} + \frac{4 \times \sqrt{BKG_{\text{IPA}} \times CT}}{CT}
\]

where:

- \(BKG_{\text{threshold}}\) = Background threshold in CPM
- \(BKG_{\text{IPA}}\) = Mean of first five IPA background values in CPM
- \(CT\) = Background count time for IPA

Chi-Square Calculation
This test is a measure of reproducibility of sample counting, and is performed by counting a single sample in the detector 20 consecutive times with a count time of 30 seconds for each repeat measurement.

\[
\chi^2 = \sum \frac{(CNT_i - \overline{CNT})^2}{\overline{CNT}}
\]

where:

- \(\overline{CNT}\) = mean of the repeat measurements
- \(CNT_i\) = gross count of each repeat measure

This test is not a measure of detector accuracy.

Disintegrations Per Minute (DPM)
This is an expression of radionuclide activity, and calculated as follows:

\[
DPM = \frac{\text{Counts Per Minute}}{\text{Efficiency}}
\]
Efficiency
This is a measurement of the instrument’s ability to quantify radionuclide activity. This value is calculated as follows:

\[\text{Efficiency} = \frac{\text{Counts Per Minute}}{\text{Disintegrations Per Minute}} \]

Figure of Merit (FOM) Calculation
This is a measure of instrument sensitivity based on counting efficiency. This value is calculated as follows:

\[\text{FOM} = \frac{(\text{Efficiency})^2}{\text{Background}} \]

Half-life Correction
This process recalculates sample CPM or DPM, and accounts for the half-life decay of a sample nuclide. This calculation is performed as follows:

\[\text{Activity}_{\text{current}} = \text{Activity}_{\text{initial}} \times e^{-0.693 / T(\text{hl})} \]
where:
\[\text{Activity}_{\text{current}} = \text{the current remaining activity} \]
\[\text{Activity}_{\text{initial}} = \text{the starting activity of the nuclide} \]
\[T(\text{HL}) = \text{the half-life of the radionuclide, in hours} \]
\[e = 2.71828 \text{ (base of natural logarithmic scale)} \]
\[t = \text{time interval in hours, from the reference date to the current date} \]

The half-life correction is performed after a background correction.

IPA Background
This function may be subtracted from all samples. The value is established as the mean of the first five background values collected via the Self-Normalization and Calibration (SNC) protocol.

\[\text{BKG}_{\text{IPA}} = \sum_{i=1}^{5} \text{BKG}_i \]
Low Count Reject (LCR)
This is a means of rejecting and flagging samples if nuclide activity does not meet a minimum specified criterion within the first 30 seconds of a sample count.

LUM (% Luminescence)
This value represents the % luminescence of a sample and is calculated as follows:

\[
LUM = \frac{\text{chance coincidence events}}{\text{true coincidence events}} \times 100
\]

Radioactivity Units
The Curie and the Becquerel represent different units of measure for radioactivity. The Becquerel is the International System (SI) unit of activity.

One Becquerel = One Disintegration Per Second (DPS)
One Curie = 3.7×10^{10} Becquerels
2 Sigma % (%2s)

This value represents the percent of uncertainty in a gross count value (with 95% confidence limits). It is calculated as:

\[
%2s = \frac{200}{\sqrt{\text{accumulated counts}}}
\]

The following table indicates the total accumulated counts necessary to achieve the corresponding 2% Sigma:

<table>
<thead>
<tr>
<th>Uncertainty 2 Sigma %</th>
<th>Total Accumulated Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>250,000</td>
</tr>
<tr>
<td>0.5</td>
<td>160,000</td>
</tr>
<tr>
<td>0.8</td>
<td>62,500</td>
</tr>
<tr>
<td>1.0</td>
<td>40,000</td>
</tr>
<tr>
<td>1.5</td>
<td>17,778</td>
</tr>
<tr>
<td>2.0</td>
<td>10,000</td>
</tr>
<tr>
<td>2.5</td>
<td>6400</td>
</tr>
</tbody>
</table>
Radionuclide Decay Calculator

This calculator (Figure A-1) allows users to calculate the Current DPM Activity for common nuclides. Refer to page 66 for more information about the Radionuclide Decay calculator.

![Radionuclide Decay Calculator](image)

Figure A-1. Radionuclide Decay Calculator.

% Reference (% Ref)

This value represents the percent of a reference standard, and is calculated using the CPM of the unknown sample and reference standard. The reference standard is typically the first vial counted in the assay, unless used to measure background. In this case, the second vial is used as the reference standard.

\[
\%\text{Ref} = \frac{\text{CPM}_{\text{sample}}}{\text{CPM}_{\text{reference}}} \times 100
\]
Appendix B

Glossary

2S%
This value represents the percent of uncertainty in a gross count value.

Acquisition Time
This represents the amount of time a sample has been counting.

Automatic Efficiency Correction (AEC)
Used to adjust counting region settings to compensate for the effect of quenching on a sample spectrum.

Background Radiation
This includes environmental radiation (e.g. cosmic rays from space), and radionuclides present in metals, glasses, ceramics and concrete.

Becquerel (Bq)
An International System of Units basic unit of radioactivity.

- One Becquerel = One Disintegration Per Second
- One Curie = 3.7 x 10¹⁰ Becquerels

The calculation for Bq is (DPM for nuclide 1, 2, or 3)/(60DPM/Bq).

- For uCi = DPM(nuclide 1, 2, or 3) / (2.22* e6 DPM/ uCi)
- For pCi = DPM(nuclide 1, 2, or 3) /(2.22DPM/pCi)
Block Data Items
Comprised of several data items, these are used to define reports - typically, in printing reports. By selecting certain Block Data items, the instrument can create reports including instrument, protocol, spectrum, or performance (IPA) information. For more information, refer to page 113.

Calibration
This a process by which voltage applied to each Photomultiplier Tube (PMT) in a liquid scintillation counter is adjusted until the tubes are synchronized in their standard response. This is designed to assure that the instrument accurately quantifies the energy from all beta-particle emissions. For more information, refer to Chapter 6.

Cassettes
These are plastic racks that hold sample vials, and allow them to be moved on the sample changer deck.

Chemical Quenching
This is the reduction in scintillation intensity detected by PMTs of a liquid scintillation counter due to materials present in the scintillation solution that interfere with processes leading to light production. The result is fewer photons per keV of beta particle energy, and usually a reduction in counting efficiency.

Chemiluminescence
This involves random single photon events generated as a result of chemical interaction of sample components. The coincidence circuit used in the Tri-Carb instrument excludes most chemiluminescent events, except when they occur at high rates.

Chi-Square Test
This is a general procedure for determining a probability that two different distributions are samples of the same population. In scintillation counting, this test is often used to compare observed variations in repeat counts of a radioactive sample with variations predicted by statistical theory.

Cocktail
This is a solution in which samples are placed for measurement in a liquid scintillation counter. Solvents and scintillators are the major components of a scintillation cocktail.
Coincidence
This refers to a system using a special circuit which rejects pulses not received from the scintillation counter’s two PMTs within a specified coincidence time. If scintillation events occur “in coincidence” (both events must occur within the specified coincidence time), these events are considered true decay events from the sample. If not, they are considered random (background) and are not counted.

Coincidence Time
This is the time (10–200 nanoseconds) during which both PMTs must detect scintillation events. If scintillation events occur in coincidence (both events must occur within the specified coincidence time), these events are considered true decay events from a sample. If not, they are considered random (background) and not counted. Use the default of 18 for most cases. When using solid scintillators, this value may be increased to an empirically determined value.

Color Quenching
This is the reduction in scintillation intensity seen by PMTs of a liquid scintillation counter due to colored materials in a scintillation solution that interfere with light detection. The result is fewer photons per keV of beta particle energy, and usually a reduction in counting efficiency.

Counts Per Minute (CPM)
This is an expression of radionuclide activity. The gross counts per channel cumulatively equal the counts per region; the gross counts per counting region are divided by the count time to calculate CPM for each region.

Curie (Ci)
This is a basic unit of radioactivity named for Marie and Pierre Curie, who co-discovered Radium in 1898.

- One Curie = 3.7 x 10¹⁰ Becquerels
- One Becquerel = One Disintegration Per Second

Decay, radioactive
This is the spontaneous transformation of one nuclide into another, or into a different energy state of the same nuclide. This process results in a decrease over time of the number of original radioactive atoms in a sample, and the emission from a nucleus of alpha/beta particles, gamma rays, or the nuclear capture or ejection of orbital electrons (fission). Also called radioactive disintegration.
Delay Before Burst
This is the length of time (75–800 nanoseconds) after an initial pulse (prompt pulse) that the detector looks for additional pulses (afterpulses). Afterpulses, which occur after the prompt pulse and delay time interval, indicate that a scintillation event is due to background. Some scintillators, such as PerkinElmer Ultima Gold, produce slower decaying pulses that may require longer delay times. When using these scintillators, it is advisable to lengthen delay times to retain high counting efficiencies. This is vital when counting high energy beta-emitting nuclides. The default setting for this parameter is 75.

Delimited Text File
This checkbox is located on the Report Output tab (page 115) of the Assay Definition window. Select this checkbox to create a delimited text; delimited text is a file format in which each data item is separated by a defined delimiting character. This is a common format for transferring data between applications as database systems can import and export this file type.

Note: The field delimiter is defined by the Windows O/S using the Regional and Language Options window accessed from Windows Control Panel. Once the Regional and Language Options window is opened, click the Customize button and access the List Separator field on the Numbers tab.

Detector
This is a device sensitive to radiation, and can produce a response signal suitable for measurement or analysis. In a liquid scintillation counter, this device measures the light emitted from the interaction between a scintillation cocktail, and an alpha-emitting or beta-emitting nuclide.

Discriminator
This is an electronic circuit that distinguishes signal pulses by pulse height or voltage. A discriminator is used to exclude extraneous radiation counts or background radiation, and is the basis for pulse height analysis.

Disintegrations per Minute (DPM)
An expression of radionuclide activity. DPM are calculated as follows:

\[
\text{DPM} = \frac{\text{Counts Per Minute}}{\text{Efficiency}}
\]

Dual Label
This refers to a sample that contains two different radionuclides.
Efficiency
This is the ratio of measured counts to the number of decay events that occur during a measurement interval. Efficiency is usually expressed as a percentage.

External Standard
This is a radioactive source placed next to a sample to produce scintillation to monitor the sample’s quench level. The Tri-Carb instrument uses a Barium-133 source for this purpose.

Figure of Merit
This is a term applied to a numerical value used to characterize the performance of a system.

Flags, protocol
These are numbered, plastic devices with encoded, reflective metal that the instrument uses to identify appropriate assay counting parameters for a set of samples. Physically place an appropriately numbered flag on the first vial cassette of a group to identify the protocol that associates the desired assay parameters. See Figure 1-3 on page 7 for an example of a protocol flag placed on a cassette.

Guard Compensation Technology (GCT)
This is used to reduce backgrounds via an efficiency calculation applied to events detected in the Guard. Settings include: “High” (default - best suited to removal of a maximum number of background events), “Low” (a less aggressive setting for background reduction), or “Off” (no GCT background corrections).

“Normal” count mode must be selected when GCT is applied.

Half-Life
This is the time in which one-half (50%) of the atoms in a radioactive substance disintegrate to another nuclear form.

IPA (Instrument Performance Assessment)
This is a process by which a Tri-Carb instrument measures background, counting efficiency, sensitivity (Figure of Merit), and the reproducibility of sample counting (Chi-Square test). For more information, refer to Chapter 6.

Isotope
This refers to atoms of the same element with the same atomic number, but different atomic weights.
keV (kiloelectron Volt)
One thousand electron volts; used to express energy associated with radioactive decay.

Library
In the QuantaSmart program, this is a repository of data regarding sample nuclides or standards. For more information, refer to Chapter 5.

Luminescence
This is a general term applied to light emissions (in photons) that cannot be attributed to sample radioactivity. Luminescence is typically due to a chemical reaction between the sample and emulsifier (detergent) containing cocktails, and often caused by alkaline pH and peroxides in a sample.

Normalization
This is a process used to establish a lower limit of quench measurement. For more information, refer to Chapter 6.

Nuclide
A general term applicable to all isotopes (stable and radioactive) of all elements. Frequently, the term “isotope” is incorrectly used to mean “nuclide.”

Photomultiplier Tube (PMT)
A device capable of converting low levels of light into electrical energy (photoelectrons). Photoelectrons generated in a PMT are multiplied to facilitate their detection.

Photon
In the quantum theory of electromagnetic radiation, light is emitted as discrete units of energy called photons.

Priostat
A set of capabilities on the Tri-Carb instrument that allow for the interruption of a current protocol in order to count a set of high priority samples, or perform specialized counting functions. For more information, refer to page 164.

Pulse
An electrical signal resulting when photons are detected by a PMT.
Pulse Amplitude Comparison (PAC)
A technique to reduce background often caused by PMT crosstalk. Pulses generated by true sample events will be very close in amplitude. However, scintillations in PMTs will vary widely due to the distance that light must travel to be detected by an opposing PMT. To eliminate these crosstalk events, the PAC circuit compares the amplitude of coincident event pulses detected by sample PMTs. PAC levels range from 0 - 255, whereas 0 (zero) allows all coincident pulses to be accepted, and 255 rejects pulses with a greater than 20% difference in left and right pulse amplitudes.

Pulse Shape Analysis (PSA)
A technique by which nuclide pulses are sorted into separate multichannel analyzers for analysis and quantitation. PSA relies on differences in pulse duration to classify radioactive emission types (alpha, beta, gamma) from a nuclide.

Quench
A reduction in scintillation intensity seen by PMTs of a liquid scintillation counter from materials in a scintillation solution that interfere with processes leading to light production or detection. The result is fewer photons per keV of beta particle energy, and often a reduction in counting efficiency.

Quench Curve
A mathematical graph which correlates counting efficiency to a Quench Indicating Parameter (QIP). A QIP sample is determined during sample counting. This value is used to interpolate counting efficiency for quench curve samples (where %Efficiency is plotted vs. the QIP). The interpolated efficiency value is used to calculate DPM (where DPM = CPM / Efficiency).

Quench Indicating Parameter (QIP)
A numerical value used to express a sample quench level (SIS, tSIE).

Reference Date
The date on which a radio-labeled material has the specified amount of activity.

Reference Time
The time at which a radio-labeled material has the specified amount of activity. Typically, this parameter is described only for radionuclides with brief half-lives.

Region
The range of energy over which counts are measured for a nuclide in a liquid scintillation counter. Also referred to as a window or channel.
Replay
A feature available on the Tri-Carb instrument that allows reanalysis of previously collected data under various data reduction conditions, without recounting samples. For more information, refer to page 181.

Rich Text Format (RTF)
A common ASCII file type with special commands that specify document formatting information, such as fonts and margins. This output type is useful to bring data into a word processing software to perform additional formatting for formal reports.
RS-232
A standard interface for connecting serial devices to a computer; a USB to RS-232 converter must be used. The default port for RS-232 communications is COM1. A different port may be used by modifying the following registry key:

```
HKEY_LOCAL_MACHINE\SOFTWARE\PACKARD\QuantaSmart (TM)\Settings\RS232PortName
```

Serial communications port settings are specified in the Device Manager dialog for the communications port:

![Communications Port (COM4) Properties](image)

Sample List Library
A function available in the Worklist portion of the QuantaSmart program, this is used to create a Sample List Library of frequently used sample names. For more information, refer to page 125.
Scintillation
A flash of light produced in a scintillator by an ionizing event. A scintillation is the sum of all photons produced by a decay event.

Shielding
A process used to reduce the amount of ionizing radiation that reaches a physical area via a shield (lead, tungsten).

Single Photon Counting (SPC)
A method used on the Tri-Carb instrument for counting luminescent samples, using only one Photomultiplier Tube (PMT).

Specific Activity
The quantity of radioactivity per unit mass (e.g. DPM/g or Ci/g).

Spectral Index of the Sample (SIS)
A number obtained from the spectrum analyzer of a liquid scintillation counter calculated from the sample’s spectral distribution; this is used as an index for quench levels in a sample.

Spectral Mapping
A technique used during single-label DPM sample counting for displaying a sample and quench standards spectra in a three-dimensional view.

SpectraView
A window in the QuantaSmart program that displays a two-dimensional, real-time view of a current sample spectrum. For more information, refer to page 45.

Spectrum Unfolding
A technique that separates a composite spectrum of a dual-label sample into individual components.

Spillover
A term used to describe the situation in dual-label counting where a portion of a spectrum from one radionuclide is included in a region used to count the other radionuclide.

Static
Refers to the accumulation of electric charge on an insulated body, such as a scintillation vial. In liquid scintillation counting, a discharge of static may result in spurious pulses from the PMT.
Tandem Processing
A process allowing a Tri-Carb instrument to pass data from a protocol to an application program.

Time Resolved Liquid Scintillation Counting (TR-LSC)
A process patented by PerkinElmer, Inc., for detection of low level background counts resulting in enhanced sensitivity through the discrimination of true beta from background counts.

Transformed Spectral Index of the External Standard (tSIE)
A number obtained from the spectrum analyzer of a liquid scintillation counter calculated from a spectral distribution of external standards, and used as an index for quench levels in a sample.

Worklist
A function in the QuantaSmart program used to designate Positive Identification numbers and sample names corresponding to sample numbers on a printout. For more information, refer to page 125.
Appendix C

Theory

This appendix contains supplementary information on the theory of the Low Level Counting mode and Alpha/Beta Counting mode (page 246).
Low Level Counting Theory

In liquid scintillation counting, the limit of detectability is a function of detection efficiency and background noise. By increasing the efficiency of detection, reducing the background (or both) the sensitivity is enhanced. This enhanced sensitivity yields lower limits of detection. In practical terms, this means accurate measurements occur in less time with smaller samples. This is essential when measuring environmental samples for radioactive contamination from nuclear power plants, dump sites, and naturally occurring radiation.

In radiocarbon age dating, to determine the age of archaeological artifacts, only the smallest sample may be spared for measurement without damaging a specimen. In medicine and biomedical research, improved sensitivity facilitates the use of less test substances to determine metabolic pathways.

Most approaches to background reduction employ huge amounts of heavy lead shielding, expensive secondary detection circuits or both. Such systems are very expensive, and due to their design, have very limited utility beyond low level counting. In 1985, however, Packard Instrument Company developed the first electronic burst counting circuitry used in a commercial liquid scintillation counting system. This patented development is the basis of Time Resolved Liquid Scintillation Counting (TR-LSC) in PerkinElmer Tri-Carb liquid scintillation analyzers. In the Tri-Carb Model GCT 6220 analyzer, the burst counting circuitry is further enhanced through the use of a slow scintillating, Bismuth-Germanium Oxide (BGO) detector guard, yielding even higher sensitivity.

Also, PerkinElmer recently released a background reduction method called Guard Compensation Technology (GCT). This patent pending development enhances the action of the BGO crystal to provide, in many cases, lower background levels than TR-LSC while maintaining higher efficiencies.

☞ Note: Replay can be used to change GCT values after a run has been acquired.
Guard Compensation

“Guard Compensation” is a mathematical method which calculates the number of environmental background events that were not blocked or detected by a guard, and then uses this information to reduce sample background counts accordingly.

Guard Compensation Technology (GCT) determines the number of environmental background events which pass through the BGO guard undetected, and then produce scintillation events in the sample. GCT then uses this information to reduce (in real time) sample background counts caused by the environment.

The patent pending GCT process works as follows:

The ability of a BGO guard to detect background events from the environment is measured at our factory. These measurements are stored, and later used to calculate a set of guard efficiencies.

When a customer sample is analyzed, environmental background events are stored in parallel with sample decay events, and using previously measured guard efficiencies, the instrument calculates the number of background events that passed through the BGO guard undetected. The background events which were missed are then subtracted from the sample measurements in real time.

In scintillation counting, if a detector’s efficiency is known, the number of events can be calculated using the equation:

\[\text{ACTUAL EVENTS} = \frac{\text{DETECTED EVENTS}}{\text{EFFICIENCY}} \]

When an unknown sample is counted, the actual number of environmental background events is calculated using the first equation above. The total events the guard missed can then be calculated (\(\text{ACTUAL} – \text{DETECTED}\)) and subtracted from beta sample counts.

Finally, GCT has a tendency of working better than TR-LSC Low Level count mode when plastic or Teflon vials are used.
Burst Counting

TR-LSC burst counting circuitry uses a background discrimination technique that differentiates aspects of Beta scintillation pulses from non-quenchable background scintillation pulses. A typical Beta scintillation event is composed of at least two components as a function of time. There is a fast (or prompt) component due to the fluorescence of scintillator(s), and a slower (or delayed) component due to the destruction of triplet excited molecules (200–900 nanoseconds). The slow component is present only in the absence of quenching agents (oxygen). When oxygen or other quenching agents exist in a sample (the most common case for routine lab samples), the slow component is reduced. This means that in routine samples prepared in ambient lab air, there is little or no slow component or afterpulses from the sample itself.

TR-LSC increases counting sensitivity by reducing the non-quenchable component of instrument background caused by interaction of high energy cosmic radiation with the sample vial and Photomultiplier (PMT) glass face. Other non-quenchable background interferences including PMT afterpulsing and natural radiation in the PMT and vial construction materials are also reduced by TR-LSC. Approximately 68% of the observed total background is non-quenchable, and can be greatly reduced by this technique.

Non-quenchable background events can be distinguished from true beta events since they are characterized by a series of low amplitude afterpulses that follow the initial prompt pulse. True scintillation pulses have fewer afterpulses associated with them. The figures below show a graphical representation of a background pulse and Tritium Beta pulse. Note that the background pulse has more prominent afterpulse characteristics that extend over time.

TR-LSC is designed to evaluate each event for afterpulses as one criteria to reduce background. When a series of afterpulses is detected, TR-LSC characterizes the event as background and rejects it. The efficacy of this rejection can be increased when a BGO detector guard is used in conjunction with TR-LSC electronics. The BGO guard completely surrounds the sample vial and acts as a cosmic guard to further increase afterpulse rejection, thus reducing the background.
Figure C-1. Liquid Scintillation Background Pulse.

Figure C-2. Liquid Scintillation True Beta Pulse.
TR-LSC can be optimized for the latest generation of safer cocktail formulations, and higher energy beta emitters. This is accomplished through the instrument software by modifying the Delay Before Burst parameter on the Count Corrections tab in Assay Definition. The Delay Before Burst feature functions by implementing a time delay before afterpulse discrimination is enabled. This is necessary because:

- Scintillation cocktails with solvents based on di-isopropyl naphthalene (DIN) and 1-phenylxylylethane (PXE) have long scintillation decay constants (i.e. they produce light pulses of longer duration).
- Higher energy beta emitters produce longer duration pulses.

These phenomena must be considered to minimize the misclassification of beta and background events, as the longer duration pulses arising from these conditions mimic background pulses, and may be eliminated by TR-LSC. By increasing the time delay before afterpulse discrimination begins, counting efficiency losses are minimized and sensitivity is increased.
High Sensitivity and Low Level Counting

In the PerkinElmer Tri-Carb series of liquid scintillation analyzers, the patented TR-LSC burst counting circuitry totals the number of afterpulses following a coincident event. This information is used to discriminate background pulses from pulses arising from actual scintillation events in the sample. Thresholds have been established, and are used to reject events producing significant numbers of afterpulses. Thresholds vary with the energy of coincident pulses due to afterpulsing phenomena in PMT tubes. As PMTs can produce energy-dependent afterpulses, this must be factored into background noise discrimination from sample activity.

The PerkinElmer Tri-Carb series liquid scintillation analyzers use this time-resolved discrimination of afterpulses at three levels. These levels are:

- **Normal Count Mode** – This mode employs a minimum amount of discrimination.
- **High Sensitivity Count Mode (HSCM)** – This mode applies an intermediate amount of discrimination.
- **Low Level Count Mode (LLCM)** – This mode provides maximum discrimination.

Progressing from NCM to LLCM yields increasing efficiency to background ratios \(E^2/B\). The improvement is demonstrated in the table of 14C data (page 242).

PerkinElmer also offers the Tri-Carb Model Quantulus GCT 6220 analyzer, which achieves super low level sensitivity through use of a slow scintillating BGO detector guard. In the Quantulus GCT 6220 analyzer, this special material surrounds the sample as a special detector assembly to further increase the number of photons in the trailing burst from background radiation. The detector assembly replaces the conventional sample changer, and provides a considerable increase in \(E^2/B\) performance compared to the burst counting system alone. This configuration is referred to as the Super Low Level Count Mode (SLLCM).

For environmental water samples, it is often necessary to count as much water as possible as amounts of Tritium found are extremely low, and larger volumes permit shorter counting times. Typical water samples are made using from 9 - 12mL of water in a total volume of 20 - 22mL.

Radiocarbon dating samples are often made of pure benzene from the conversion of raw samples through a benzene synthesis procedure. Such samples are generally only 3 - 5mL total volume. Comparative data is shown in the tables for \(^{14}\)C samples and Tritium water samples (page 242).
Example of 14C in Benzene Sample Performance

<table>
<thead>
<tr>
<th>TR-LSC Count Mode</th>
<th>Sample Configuration</th>
<th>Energy (keV)</th>
<th>14C % Efficiency</th>
<th>BKG CPM</th>
<th>E^2/B Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Sample Only</td>
<td>20.0-113.0</td>
<td>64.99</td>
<td>3.62</td>
<td>1167</td>
</tr>
<tr>
<td>NCM</td>
<td>Sample Only</td>
<td>20.5-101.5</td>
<td>64.03</td>
<td>3.28</td>
<td>1250</td>
</tr>
<tr>
<td>HSCM</td>
<td>Sample Only</td>
<td>21.5-95.5</td>
<td>61.22</td>
<td>1.36</td>
<td>2756</td>
</tr>
<tr>
<td>LLCM</td>
<td>Sample Only</td>
<td>19.5-95.5</td>
<td>54.05</td>
<td>0.76</td>
<td>3844</td>
</tr>
<tr>
<td>LLCM (SLLCM)</td>
<td>Sample+BGO Detector</td>
<td>10.0-75.0</td>
<td>70.70</td>
<td>0.54</td>
<td>9256</td>
</tr>
</tbody>
</table>

Note: The samples were 14C toluene in benzene cocktail (PPO 6 grams/liter POPOP 0.2 grams/liter). Total sample volume was 3.5mL in standard low 40K 7mL vials, prewashed with 0.1M EDTA, and Teflon cap liners were used.

Example of Large Volume Tritium in Water

<table>
<thead>
<tr>
<th>TR-LSC Count Mode</th>
<th>Sample Configuration</th>
<th>Energy (keV)</th>
<th>3H % Efficiency</th>
<th>BKG CPM</th>
<th>E^2/B Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Sample Only</td>
<td>0.0-18.6</td>
<td>34.2</td>
<td>22.3</td>
<td>52</td>
</tr>
<tr>
<td>NCM</td>
<td>Sample Only</td>
<td>0.0-18.6</td>
<td>33.8</td>
<td>17.8</td>
<td>64</td>
</tr>
<tr>
<td>HSCM</td>
<td>Sample Only</td>
<td>0.0-18.6</td>
<td>33.9</td>
<td>12.8</td>
<td>90</td>
</tr>
<tr>
<td>LLCM</td>
<td>Sample Only</td>
<td>0.0-18.6</td>
<td>29.4</td>
<td>6.2</td>
<td>139</td>
</tr>
<tr>
<td>LLCM (SLLCM)</td>
<td>Sample+BGO Detector</td>
<td>0.0-18.6</td>
<td>26.7</td>
<td>2.8</td>
<td>255</td>
</tr>
</tbody>
</table>
Burst Discrimination Modes

<table>
<thead>
<tr>
<th>TR-LSC Count Mode</th>
<th>Burst Discrimination Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Equivalent to conventional LSC systems.</td>
</tr>
<tr>
<td>NCM</td>
<td>Minimum or Normal Count Mode.</td>
</tr>
<tr>
<td>HSCM</td>
<td>Intermediate or Low Activity, High Sensitivity Count Mode.</td>
</tr>
<tr>
<td>LLCM</td>
<td>Maximum or Ultra Low Level Count Mode</td>
</tr>
</tbody>
</table>

Lab performance will depend on various factors. First, in counting environmental water, sources for background samples must be free of contamination by radionuclides (especially Tritium). When counting very low Tritium levels, even the smallest contamination will increase a background sample count rate. This cannot be discriminated out as the contamination is from the sample itself. Therefore, it is necessary to secure a “dead” water source (in terms of radioactivity) for background samples.

For radiocarbon dating samples, ensure that reagents used during sample preparation are free from contaminating ^{14}C. This includes the actual scintillators and any reagents used to convert the sample into benzene.

Overall, preparation of samples for extremely low level counting must be conducted with extreme care to provide contamination free samples for counting. If background or unknown samples contain extraneous radionuclide sources, performance will be degraded.

In Super Low Level counting, as in other low level count modes, it is important to tailor the scintillation fluor (scintillator) to the counting conditions. Secondary scintillators (BBOT, DPA, POPOP, Me2POPOP, and bis-MSB) produce significantly higher counting efficiencies than are possible with only a primary scintillator.

Although there are many potential combinations of primary and secondary scintillators suitable for use with the TR-LSC, a combination of six grams per liter PPO and 0.2 grams per liter bis-MSB works well for many sample types, and can be used reliably. This is a commonly used combination of scintillators for a variety of counting applications.
Operational Considerations

The operating procedures for the Tri-Carb Quantulus GCT 6220 liquid scintillation analyzer are described in this documentation. Aside from count rate limitations and differences in the SNC/IPA procedures, operation of the Quantulus GCT 6220 analyzer is exactly the same as other Tri-Carb analyzers.

The selection of counting vials for low level counting is essential to assure low background and high sample counting sensitivity. Low potassium (K) glass vials are recommended when counting low levels of Tritium or 14C. Certain plastic vials may also be used for large or small samples measuring Tritium in water.

It is recommended that all glass or plastic vials used for low level counting be carefully sealed. Teflon cap liners for vial screw caps improve seals against leakage.

Glass vials should be washed, then rinsed in a dilute ethylene-diamine-tetraacetic acid (EDTA) solution, followed by a “dead” deionized water rinse and allowed to air dry. This will help reduce background and surface contaminants which could contaminate the detector guard.

Maximum vial dimensions are as follows:

- **Small vials** - Must not exceed 17.8mm diameter and 58.0mm height (including cap)
- **Large vials** - Must not exceed 28.1mm diameter and 63.0mm height (including cap).
High Sensitivity/Low Level Count Mode Setup

When operating the system in the High Sensitivity or Low Level Count Modes, remember that the maximum sample activity is 100,000 CPM. If a sample exceeds this count rate, the system will automatically switch to Normal Count Mode (GCT, however, will function regardless of the sample count rate). Therefore, when purchasing or making quenched standards or reference standards, this limitation must be observed for proper operation.

When defining a protocol, either the High Sensitivity (HSCM) or Low Level Count Mode (LLCM) must be selected in the Count Conditions window. Selecting LLCM will automatically cause the instrument to operate at that level of afterpulse discrimination. This will enable the TR-LSC background discrimination.

Note: The luminescence correction feature is not recommended for use when counting very low CPM samples. For such samples, the Luminescence Correction checkbox in the Count Corrections window should be not be marked.

Note: Do not use High Sensitivity or Low Level Count Modes to count alpha samples in normal CPM or DPM counting assays. These TR-LSC discrimination modes are not appropriate for counting alpha samples. Extremely low alpha count rates will be observed.

Allow samples to dark adapt before actual count begins. The Tri-Carb analyzer provides sample counting delays up to 99.99 minutes. With a sample counting delay selected, the sample is lowered into the counting chamber, and allowed to dark adapt for the specified delay time before count begins for the indicated counting time. The Pre-Count Delay is selected in the Count Conditions window and is specific for the assay.

Precautions and Limitations

Note that background radiation varies throughout the world, and will be a factor when determining the instrument background. Higher elevations and areas where geology tends to concentrate uranium, and its decay products will most likely yield higher backgrounds. The exact instrument background and performance for a given location must be determined at the site of the installation.
Alpha/Beta Counting Theory

Alpha and Beta emitting radionuclides may be counted simultaneously in the same liquid scintillation sample. Some Alpha and Beta nuclide energies may overlap in an LSC environment, and their spectra are not resolvable with simple energy discrimination. To separate Alpha and Beta nuclide energies, take advantage of their differing pulse decay times. The Pulse Shape Analysis (PSA) method of discrimination is used by Tri-Carb instruments equipped with Alpha/Beta capability.

Alpha/Beta Discriminations Using PSA

Physical Background

Alpha particles emit 5 MeV (or more) energy able to create triplet states in a solvent which de-excite to a ground state slower than singlet states produced by Beta particles.

Measurement of pulse decay time (or length) allows identification of the particle which caused it, and enables simultaneous recording of pure Alpha and Beta spectra, respectively. Pulse length also depends on the solvent and fluors used such as fast cocktails containing volatile solvents (e.g. xylene, pseudocumene, toluene, and dioxane). Safe, biodegradable cocktails are slow as those based on di-isopropynaphthalene (DIN).
PSA Principle

This principle integrates the pulse tail for long enough time to enable differentiation between short and long pulses (see figure below), and normalize pulse length information to pulse height to achieve amplitude independence.

![Figure C-3. Pulse Shape Caused by Alpha/Beta Particles.](image)

The Alpha/Beta pulse amplitude (energy) spectrum is transformed in this process to 3-D counts vs. pulse amplitude and pulse spectrum (see the following two figures). Electronic division of pulses into Alpha and Beta spectra is done by dividing the pulse amplitude/length plane into two parts by a straight, user adjustable line. Pulses above it are directed into the long pulse spectrum; pulses below it into a short pulse spectrum.

When the dividing line is correctly set, the former spectrum is the pure Alpha spectrum, and the latter is the Beta spectrum. The dividing line position is controlled by PSA level adjustment. This feature allows settings to conform with various solvents, fluors, and quench levels.
Figure C-4. 3-D Spectrum of Ra-226 vs. Pulse Amplitude (total signal) and Pulse Length (tail signal).

Figure C-5. 3-D Spectrum of Ra-226 vs. Pulse Amplitude and Pulse Length Normalized to Pulse Amplitude.
Usage of PSA
For Alpha/Beta separation, and extra background reduction in Alpha and Beta counting.

Most LSC background is composed of short pulses, and falls into the Beta spectrum while Alpha background typically remains very small (much less than 1 CPM). Therefore, users may count natural decay series radionuclides with greater sensitivity by measuring Alpha emissions only versus counting total Alpha/Beta activity. Another application is to count very small Alpha activity amidst high Beta activity.

Users may set PSA to cut Beta counting efficiency (e.g. by 5 %), resulting in a great reduction of Beta background particularly in glass vials, further reducing the already low backgrounds achieved by the active anti-coincidence guard detector. PSA levels can also be based on the Figure of Merit. Alpha background may be reduced analogously by cutting Alpha counting efficiency.

Advantages of Alpha Counting by LSC
- 4pi counting geometry (equivalent to geometrical factor = 1)
- No sample self-absorption (e.g. planchet counting)
- 95% counting efficiency (less than 50% in planchet counting and solid state alpha spectrometry)
- Simple sample preparation by mixing with a commercial cocktail
- High throughput - automatic, multiple sample counting
- Large sample capacity
- Simultaneous Alpha/Beta counting (with separation of each spectrum using PSA)
- Low backgrounds and greater sensitivity for Alpha counting
Pulse Shape Analysis and Quench

- **Pulse Length** - This is a function of sample quench: the higher the quench, the shorter the pulse length. This is a physical phenomenon not introduced by the instrument. When sample quench level is fairly consistent, there is no need to adjust PSA levels between samples (when counting efficiency is constant). If quench variation is large (50 Ch or more), there may be necessary to re-adjust PSA levels for variable quench, or leave PSA levels at the optimum value for the lowest quench sample, and allow Alpha efficiency drop at higher quench. In Quantulus and Tri-Carb, when PSA levels for optimum Alpha/Beta separation are lower, the higher the quench.

- **Counting Efficiency** - Alpha particle counting efficiency remains close to 95% up to very high quench levels, provided that PSA levels are set accordingly. This is due to the number of emitted photons per decay being in the several thousands. Thus, there is room for photon loss, and decay events are still observed. The Alpha spectrum will shift to a lower energy at increasing quench; therefore, the counting window must cover the range of Alpha energies under variable quench.

- **Pulse Shape Analysis and Plastic Vial Effect** - Fast cocktails (e.g. containing toluene, xylene and pseudocumene) will penetrate plastic vial walls resulting in the deterioration of the Alpha spectrum, and instability of Alpha count rates. Plastic vials are not recommended for counting using these cocktails; instead Teflon-coated plastic vials, glass vials, or Teflon vials should be used.
Optimum Alpha/Beta Discriminator

This minimizes the misclassification of Alpha events counted as Beta events, and vice versa.

- If the discriminator is set too low, Beta events are counted as Alpha events.
- If the discriminator is set too high, Alpha events are counted as Beta events.

An optimum Pulse Shape Analysis (PSA) Discriminator is established when counting an Alpha/Beta Standard Set.

To optimize the pulse discriminator setting, perform an Alpha/Beta Standards assay to count two standard sources: a pure Beta emitter and a pure Alpha emitter. The composition of standards must be as close as possible to the chemistry and volume of subsequent samples to be counted. When counting the pure Beta emitter source, the percentage of Beta events counted as Alpha events is plotted (and stored) as %Spill versus Discriminator value (misclassification curve). When counting the pure Alpha emitter source, the percentage of Alpha events counted as Beta events is also plotted. The optimum discriminator value is where the spillover for both radionuclides is at a minimum.

Note: After counting the two standards, the optimum computed discriminator setting is determined (minimal spill for both alpha and beta events). Users may manually adjust this setting to favor the Alpha or Beta nuclide by entering the desired discriminator setting for In Use.

Refer to Page 192 for more information.
Appendix D

Half-Life Correction

This appendix features questions and answers on half-life corrections in the QuantaSmart system.
When do I use start of assay vs. when do I use manually entered reference date/time?

The selection of reference date/time depends on which type of assay is using half-life correction. When selecting the date/time, the same method must be used for both date and time. If the assay start is chosen for a reference date, it must also be chosen for the reference time. If a manual reference date is entered, the reference time must also be manual. See the discussion of each assay type for guidance on the correct method for that assay.

Why do I use half-life correction in a CPM or DPM assay?

Half-life correction is typically used for CPM or DPM assays when a nuclide half-life being measured is short versus the time required to measure the sample set. By applying half-life correction, the activity (CPM or DPM) of the samples is easier to compare, as the error associated with half-life decay (which varies for each sample based on its measurement time) has been eliminated.

The reference date/time can be selected as Start of Assay if the user is only interested in a relative comparison of sample activities at the time the assay was started. A manual reference date/time can be selected if the user is interested in comparing the activities at some other time that is more pertinent to their experimental study.
Why do I use half-life correction in a Quench Standards assay?

For a Quench Standards Assay, half-life correction is used to ensure that the counting efficiencies of quench standards are determined using the correct activity (DPM) of the standards. Quench standards have a known DPM at the time they are prepared. When later measured in a Quench Standards Assay, activity has decreased due to radioactive decay. Half-life correction is used to ensure that the DPM value used in the denominator of the efficiency calculation (CPM / DPM) has taken into account the decay that occurred between the time that the standard was prepared, and the time that it was measured in the Quench Standards Assay.

If half-life correction is not applied, a systematic error is introduced into the efficiencies calculated by the Quench Standards Assay. Those efficiencies are incorrectly low, and when unknown samples are later measured against those efficiencies, the DPM values calculated for the unknown samples are incorrectly high. The magnitude of the error is larger for short half-life nuclides than for long half-life nuclides. To avoid this systematic error, use of half-life correction is recommended for all Quench Standards Assays except those in which the half-life of the standard is long enough that the error caused by ignoring half-life decay is insignificant.

If half-life correction is used for a Quench Standards Assay, when the Quench Standard is defined in the Quench Standards Library, the activity listed on the top of the vial must be entered into the Quench Standards dialog. When the assay is defined, the reference date/time must be entered using the manual entry method (i.e., “Start of Assay” must not be used). The reference date/time are the date/time when the standard was prepared, and is typically printed on top of the vial. However, the time is not always included, unless the half-life standard is extremely short. If the time is not provided, the manually entered reference time can be chosen arbitrarily.

If the half-life correction option is not used for a Quench Standards Assay, then the DPM that is entered when the Quench Standard is defined in the Quench Standards Library must be manually corrected for half-life decay. This can be done by using the Decay Calculator available from the Quench Standards Library dialog. Note that if the half-life correction option is not used for a Quench Standards Assay (and that assay is re-measured), the DPM should be manually corrected, and re-entered into the Quench Standards Library before it is re-measured.
When would I use half-life correction in both a Quench Standards assay and the DPM assay that uses the results from that Quench Standards assay?

In general, half-life correction should be used for all Quench Standards assays, as it eliminates the need to manually calculate the half-life corrected DPM of standards before entering them into the Quench Standards Library; it also eliminates the need to re-calculate and re-enter the activity when the assay is re-measured. Half-life correction for a DPM assay is only required if there is interest in comparing sample activity being measured at some specific time.

When would I use half-life correction in a DPM assay, but not in its corresponding Quench Standards Assay?

If the nuclide has a sufficiently short half-life that half–life correction is required to compare sample activities in a DPM Assay, then its corresponding Quench Standards Assay should also use half-life correction.
Appendix E

Easy View Function

This appendix includes instructions on how to view and convert spectrum data using the Easy View function.
Viewing Spectrum Data Using Easy View

1. Start Easy View.

2. Open the file from the Tri-Carb results folder with your data. (e.g.: “C:\Packard\Tricarb\Results\Default\AssayName\20150326_1111”)

Figure E-1. Before Data Conversion
3. To convert data from linear to logarithmic, click the Bunch button twice.

Figure E-2. Bunch Button

4. Click the Smooth button once.

Figure E-3. Smooth Button
5. When file conversion is complete, your data should resemble the following graph:

![Figure E-4. After Data Conversion](image)
Appendix F

Installation of Enhanced Security

This appendix contains information on installing enhanced security measures for your Tri-Carb instrument.
Procedure

The Enhanced Security option requires that User Account Control (UAC) is turned off. Prior to installation, please follow these steps:

1. Log in to the instrument as an administrator.
2. Open the command line by pressing the Windows key and “R” - then type “Cmd” and press Enter.
3. Run the group policy editor by typing “gpedit.msc” and press Enter.
5. At Security Options, in the right panel, select “User Account Control: Run all administrators in Admin Approval Mode.”
6. Double click on this item, and change the value to Disabled.
7. Close the application, and restart the computer. Enhanced Security measures may now be installed.
Figure F-1. Local Group Policy Editor.
Appendix G

Special Configurations for QuantaSmart

This appendix describes special configuration files for use with the QuantaSmart system.
Configurations

The following are special configuration files which enable special configurations for QuantaSmart.

These files can be run by double-clicking on each, and are located in the following directory: c:\packard\tricarb\bin.

- **BgoIpaMeasureEveryTimeEnable.reg**
 - Run IPA measurement every time a SNC protocol flag is encountered on a BGO instrument. This file has no effect on other instrument models.

- **BgoIpaMeasureEveryTimeDisable.reg**
 - Run IPA measurement only if 23 hours have elapsed since the last SNC protocol flag on a BGO instrument. This file has no effect on other instrument models.

- **IpaPrintToRtfFileEnable.reg**
 - At the end of each IPA measurement, create a report in c:\packard\tricarb\iparesults instead of using the printer. The file will have the naming format of IpaResults_Month_Day_Year_Hour_Min.rtf

- **IpaPrintToRtfFileDisable.reg**
 - At the end of each IPA measurement, send a report to the current printer.
Appendix H

TriCarb & Quantulus™ GCT System Configurations

<table>
<thead>
<tr>
<th>Feature</th>
<th>TriCarb 4810TR</th>
<th>TriCarb 4910TR</th>
<th>TriCarb 5110TR</th>
<th>Quantulus™ GCT 6220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-in computer with Windows 8.1 operating system 4 GB (minimum) RAM and 250 GB hard disk (minimum) 3 high speed USB ports and Dual Gigabit Ethernet support</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>19 inch Wide LCD monitor with DVI-D video output, keyboard and ergonomic arm</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>QuantaSmart Software for Windows® 8.1 operating system</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>LED System Status Indicator</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>TR-LSC background electronics</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>EasyView Spectrum Analysis</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td>SpectraWorks Software</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td>Enhanced Security (21 CFR Part 11 Compatibility)</td>
<td>NA</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Patent Pending Guard Compensation Technology</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>S</td>
</tr>
<tr>
<td>BGO detector guard</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>S</td>
</tr>
<tr>
<td>HSCM (High Sensitivity Count Mode)</td>
<td>O</td>
<td>O</td>
<td>S</td>
<td>NA</td>
</tr>
<tr>
<td>ULLCM (Ultra Low Level Count Mode)</td>
<td>NA</td>
<td>O</td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td>Alpha/Beta discrimination (PSA),</td>
<td>NA</td>
<td>O</td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td>Pulse amplitude comparison (PAC) Std. when purchased with LLCM</td>
<td>NA</td>
<td>O</td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td>Sample numeric data screening</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Direct DPM</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Single/dual color-corrected DPM</td>
<td>O</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Triple Label DPM</td>
<td>O</td>
<td>O</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Enhanced IPA (Instrument Performance Assessment)</td>
<td>NA</td>
<td>O</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Live spectral display and plotting</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Group PrioStat automatic priority interrupt</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Sample PrioStat manual special function interrupt</td>
<td>NA</td>
<td>O</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Luminescence correction</td>
<td>O</td>
<td>O</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Single photon counting for bioluminescence assays</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Enhanced Replay sample recall and reprocessing</td>
<td>O</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Varsette sample changer</td>
<td>O</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Number of user acquisition protocols with unlimited assays</td>
<td>18</td>
<td>30</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>60</td>
<td>optional</td>
<td>optional</td>
</tr>
<tr>
<td>2D Barcode reader</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Worklist</td>
<td>O</td>
<td>O</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Temperature Control</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>S</td>
</tr>
</tbody>
</table>

S = Standard O = Optional NA = Not Available