Macular - Laboratory Research Unit

macular-laboratory-banner [F]oxymoron Angelo Juan Ramos David Rouhani Lori Greig Pete Fang Guo

Retinal vascular diseases caused by abnormal leakage of fluid through small blood vessel walls (capillaries) are among the commonest causes of blindness – especially in diabetic retinopathy, retinal vein occlusion, ocular inflammation, the wet form of AMD and type 2 of perimacular telangiectasis. The Retinal Therapeutics Laboratory Research Unit studies the biomolecular determinants of leakiness in retinal capillaries using laboratory and animal models. The group also conducts preclinical studies into pharmacological and other therapies for the treatment of retinal vascular diseases.

Laboratory Projects

The importance of glucose metabolism in retinal health and disease

Retinal health relies on proper glucose metabolism to produce energy and metabolites to support different populations of retinal cells including various neurons, Müller cells (a supportive glial cell in the retina) and the retinal pigment epithelium (RPE). Photoreceptors (photo-detecting cells) have high demands for energy to maintain normal vision. Metabolic derangement is likely involved in photoreceptor degeneration, a major feature of macular diseases such as age-related macular degeneration, diabetic macular edema and macular telangiectasia. However, how metabolic dysfunction affects photoreceptor health remains largely unknown.

Müller cells and the RPE play important roles in transporting and metabolising glucose to support photoreceptors. We have generated a unique transgenic mouse in which a Müller cell-specific promoter along with the Cre/Lox-P approach was used for Müller cell-specific gene targeting. We also have transgenic lines carrying cell-specific promoters which allow us to manipulate gene expression in photoreceptors and the RPE. We are currently using these unique cell-specific approaches to study the consequences of selectively disrupting various metabolic pathways in Müller cells, rod photoreceptors and the RPE in the intact retina. This will allow us to precisely dissect the contribution of metabolic derangement in Müller cells, photoreceptors and the RPE to photoreceptor degeneration in retinal diseases.

Test new ways to protect photoreceptors, inhibit blood vessel leak and prevent retinal fibrosis

We have generated an inducible transgenic line which allows us to specifically manipulate gene expression in Müller cells (Figure 1A). We have crossed this transgenic line with transgenic mice carrying an attenuated form of the diphtheria toxin gene and found that selective Müller cell ablation leads to photoreceptor degeneration, retinal vessel leak, and later, intraretinal neovascularisation (Figure 1B-H). These changes are also accompanied by reactive activation of retinal glia including astrocytes, surviving Müller cells and microglia. These features make our transgenic mice very useful for studying the cellular and molecular mechanisms underlying Müller glia-neuron-vascular interactions. Our transgenic mice can also be used to test novel strategies for neuroprotection, inhibition of retinal vessel leak and prevention of retinal fibrosis.

Development of photoreceptor degeneration and retinal vascular pathology after selective Müller cell

Figure 1. Features of transgenic mice in which after selective Müller cell ablation leads to photoreceptor degeneration, retinal vessel leak and deep retinal neovascularisation (Shen W et al. J Neurosci 2012).

Why is the macular so susceptible to disease - is it because of Müller cells?

Why the central retina, or macula, is so susceptible to disease is a major unresolved issue in ophthalmic research?

We believe that one of the important differences between the macula and the rest of the retina is the nature of the Müller cells, the retina’s main glial cell, in the 2 regions. We have found significant differences between Müller cells from the macula and peripheral retina at the transcriptional level. Of note are differences in the de novo serine synthesis pathway, which controls cell susceptibility to stress. We believe Müller cells derived from the central and peripheral retina have different susceptibility to stress due to the differences in this pathway. We aim to compare de novo serine synthesis in central and peripheral Müller cells as well as to understand the pathological consequences of disturbing this pathway in Müller cells. We will further test compounds that can compensate for derangement of Müller cell de novo serine synthesis. This will be the first study to compare Müller cells from human macula and peripheral retina as well as to investigate the role of de novo serine synthesis in Müller cells in health and disease. The significance of this research is that it may provide insights into a major unresolved question in vision research: why is the macula so susceptible to some of the commonest blinding diseases such as age-related macular degeneration and diabetic macular oedema.

Recent Publications

Shen W, Yau B, Lee SR, Zhu L, Yam M, Gillies MC. Effects of ranibizumab and aflibercept on human Müller cells and photoreceptors under stressed conditions. Int J Mol Sci 2017, 18(533):1-16.

Baumann B, Sterling J, Song Y, Song D, Fruttiger M, Gillies M, Shen W and Dunaief JL. Conditional Müller cell ablation leads to retinal iron accumulation. Invest Ophthalmol Vis Sci 2017;58:4223–4234.

Chung SH, Gillies MC, Yam M, Wang , Shen W.
Differential expression of microRNAs in retinal vasculopathy caused by selective Müller cell disruption
. Scientific Report 2016;6: 28993.

Xu C, Zhu L, Chan T, Lu X, Shen W, Madigan MC, Gillies MC and Zhou F. Chloroquine and Hydroxychloroquine Are Novel Inhibitors of Human Organic Anion Transporting Polypeptide 1A2. J Pharma Sci. 2016, 105 884-890.

Coorey NJ, Shen W, Zhu L and Gillies MC. Differential Expression of IL-6/gp130 Cytokines, Jak-STAT Signaling and Neuroprotection After Müller Cell Ablation in a Transgenic Mouse Model. Invest Ophthalmol Vis Sci. 2015;56:2151-2161.

Burdon KP, Fogarty RD, Shen W, Abhary S, Kaidonis G, Appukuttan B, Hewitt AW, Sharma S, Daniell M, Essex RW, Chang JH, Klebe S, Lake SR, Pal B, Jenkins A, Govindarjan G, Sundaresan P, Lamoureux EL, Ramasamy K, Pefkianaki M, Hykin PG, Petrovsky N, Brown MA, Gillies MC and Craig JE. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia 2015;58:2288-2297.

Zhu L, Shen W, Lyons B, Wang Y, Zhou F and Gillies MC. Dysregulation of inter-photoreceptor retinoid-binding protein (IRBP) after induced Müller cell disruption. J Neurochem 2015;133:909-918.

Chung SH, Gillies M, Sugiyama Y, Zhu L, Lee SR and Shen W. Profiling of microRNAs involved in retinal degeneration caused by selective Müller cell ablation. PLOS One 2015;10:e0118949.

Chung SH, Shen W and Gillies M. Genomic analysis using Affymetrix standard microarray genechips (169 format) in degenerate murine retina. Methods in Molecular Biology. 2015;1254:129-140.

Xu C, Zhu L, Chan T, Lu X, Shen W, Gillies MC and Zhou F. 2015. The altered renal and hepatic expression of solute carrier transporters (SLCs) in type 1 diabetic mice. PLOS One 2015;10:e0120760.

Chan T, Zhu L, Madigan MC, Wang K, Shen W, Gillies MC and Zhou F. Human organic anion transporting polypeptide 1A2 (OATP1A2) mediates cellular uptake of all-trans-retinol in human retinal pigmented epithelial cells. Br J Pharmacol 2015;172:2343-2353.

Shen W, Chung SH, Irhimeh MR, Li S, Lee SR and Gillies MC. Systemic Administration of Erythropoietin Inhibits Retinopathy in RCS Rats. PLoS ONE 2014;9(8):e104759.

Shen W, Lee SR, Araujo J, Chung SH, Zhu L, and Gillies MC. Effect of glucocorticoids on neuronal and vascular pathology in a transgenic model of selective Müller cell ablation. Glia. 2014;62:1110-24.

Barthelmes D, Zhu L, Shen W, Gillies MC, and Irhimeh MR. Differential gene expression in Lin-/VEGF-R2+ bone marrow-derived endothelial progenitor cells isolated from diabetic mice. Cardiovasc Diabetol. 2014;13:42

Chung SH, Shen W, Gillies MC. Identification of a novel miRNA targeting CD146 for suppression of angiogenesis. Non-coding RNAs in Endocrinology 2014;1:28-30.

Zhu L, Shen W, Zhu M, Coorey NJ, Nguyen AP, Barthelmes D, and Gillies MC. Anti-retinal antibodies in patients with macular telangiectasia type 2. Invest Ophthalmol Vis Sci. 2013;54:5675-83.

Shen W, Zhu L, Lee SR, Chung SH, and Gillies MC. Involvement of NT3 and P75(NTR) in photoreceptor degeneration following selective Müller cell ablation. J Neuroinflammation. 2013;10:137.

Chung SH, Shen W, Jayawardana K, Wang P, Yang J, Shackel N, and Gillies MC. Differential gene expression profiling after conditional Müller-cell ablation in a novel transgenic model. Invest Ophthalmol Vis Sci. 2013;54:2142-52.

Chung SH, Shen W, and Gillies MC. Laser capture microdissection-directed profiling of glycolytic and mTOR pathways in areas of selectively ablated Müller cells in the murine retina. Invest Ophthalmol Vis Sci. 2013;54:6578-85.

Barthelmes D, Irhimeh MR, Gillies MC, Zhu L, and Shen W. Isolation and characterization of mouse bone marrow-derived Lin(-)/VEGF-R2(+) progenitor cells. Ann Hematol. 2013;92:1461-72

Barthelmes D, Irhimeh MR, Gillies MC, Karimipour M, Zhou M, Zhu L, and Shen WY. Diabetes impairs mobilization of mouse bone marrow-derived Lin(-)/VEGF-R2(+) progenitor cells. Blood Cells Mol Dis. 2013;51:163-73.

Shen W, Fruttiger M, Zhu L, Chung SH, Barnett NL, Kirk JK, Lee S, Coorey NJ, Killingsworth M, Sherman LS, and Gillies MC. Conditional Müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci. 2012;32:15715-27.

Coorey NJ, Shen W, Chung SH, Zhu L, and Gillies MC. The role of glia in retinal vascular disease. Clin Exp Optom. 2012;95:266-8.

Shen W, Zhang J, Chung SH, Hu Y, Ma Z, and Gillies MC. Submacular DL-alpha-aminoadipic acid eradicates primate photoreceptors but does not affect luteal pigment or the retinal vasculature. Invest Ophthalmol Vis Sci. 2011;52:119-27.

Shen W, Li S, Chung SH, Zhu L, Stayt J, Su T, Couraud PO, Romero IA, Weksler B, and Gillies MC. Tyrosine phosphorylation of VE-cadherin and claudin-5 is associated with TGF-beta1-induced permeability of centrally derived vascular endothelium. Eur J Cell Biol. 2011;90:323-32.

Shen W, Li S, Chung SH, and Gillies MC. Retinal vascular changes after glial disruption in rats. J Neurosci Res. 2010;88:1485-99.


Autumn 2017
Spring 2016
Autumn 2015
Spring 2015
Autumn 2015
Spring 2014
Autumn 2014
Spring 2013
Autumn 2013
Spring 2012
Autumn 2012
Spring 2011
Autumn 2011
Spring 2010

Laboratory Contacts

Chief Investigator

(02) 9382 7309

(02) 9382 7270

Find Us

Laboratory Research Unit - Level 2

Macular Group - Laboratories